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Determination of Optical Constant of Materials by
two Different Methods: An Application to Single

Crystals Si
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Abstract

The normal reflectance of single crystal Si was measured at 0.5 5.6 eV range by
unpolarized light. Optical parameters of Si were determined from this reflectance
data by using two different methods: oscillator fit procedure and Kramers-Kronig
analysis. The refractive index, extinction coefficient and the real and imaginary
parts of complex dielectric constant obtained by these two methods were compared.
A good agreement was found between two methods. Furthermore, the optical pa-
rameters so obtained seem to be in a satisfactory agreement with the literature.
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1. Introduction

There are many different methods that have been developed for the purpose of deter-
mining the optical constants of materials. Some of these are based upon measurement of
multiple reflections or transmission and absorbance in thin films, while others are based
on the measurement of reflectance from bulk materials only. Every method has differ-
ences with respect to their relative precision and the techniques with which they handle
the experimental data. Depending on the experimental setup, the optical constants have
been determined either only at the specified energy values or over some energy range.

Most common techniques that have been used to determine the optical constants over
the whole measurement range are Kramers-Kronig analysis [1,2] and classical oscillator fit
procedure [3]. The former, in its most commonly used form, is based on the measurement
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of normal reflectance, over an energy range, from a bulk material and the application of
an integral transformation. If the material considered is in the form of a thin film or
is transparent, the application of this method becomes difficult, since no simple or clear
expression can be written for this case. The most important disadvantage of this method
is the probable errors arising from taking into account the contributions from outside the
experimental measurement range by means of extrapolation.

In the other commonly used technique, the optical parameters of investigated materi-
als are represented as a sum of classical oscillators in the related spectral region. In this
method, the complex dielectric constant is generally, written as a sum of damped classical
oscillators. These oscillators’ parameters are determined by fitting the chosen dielectric
function to experimental data. The most important disadvantage of this method is that
the fit procedure requires long calculations. Especially, if the experimental reflectance
spectra show marked structure, too many oscillators have to be chosen to provide a
satisfactory fit.

2. Theory

It is well known from Fresnel equation that, in any solid material, the complex re-
flectance is given as

r̃ =
√
R(ω)eiθ(ω). (1)

Here, the R(ω) is measured reflectance, and θ(ω) is phase shift arising from the reflection.
By taking logarithm of Eq. (1), one obtains

`n(r̃) = `n[
√
R(ω)] + iθ(ω). (2)

If Hilbert transformation is applied to this expression, the real and imaginary parts of it
can be related to each other as

θ(ω) = −(
ω

π
)P

∞∫
0

`n(R(ω))
ω′2 − ω2

dω (3)

Here, P is the principal value of the integral.
In the process of performing the Kramers-Kronig analysis, Eq. (3) is first applied to

the measured normal R(ω) data taken between a certain ωa − ωb frequency range and
θ(ω) are calculated for each value. The most important problem encountered here is to
calculate the contributions arising from outside the measured range, namely (0−ωa) and
(ωb−∞). The integral corresponding to the measured range can be calculated by means of
any numerical integration technique. For the purpose of accounting for the contributions
from outside of the range, various authors have supposed different extrapolation functions
[4, 5]. The most common and the oldest of these is Roessler’s extrapolation function, in
which the contributions from the outside are represented by a logarithmic peak having
its maximum value at the end points. In this study, this extrapolation function has been
used [4].

726
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For solid materials, if R(ω) and θ(ω) are known, the refractive index n(ω) and extinc-
tion coefficient k(ω) of that material are given by

n(ω) =
1− R(ω)

1 + R(ω)− 2
√
R(ω) cos θ(ω)

, (4)

k(ω) =
−2
√
R(ω)2 sinω(ω)

1 + R(ω)− 2
√
R(ω) cos θ(ω)

. (5)

Moreover, the complex dielectric constant of a solid is given as

ε̃(ω) = ε1(ω) + iε2(ω). (6)

Here, real and imaginary parts are related to n(ω) and k(ω) as

ε1(ω) = n2(ω)− k2(ω),
ε2(ω) = 2n(ω)k(ω). (7)

Another method that is used widely to determine the optical constant is the oscillator fit
procedure. In the spectral range involving the lattice vibrations, the complex dielectric
constant of a solid is represented as a sum of classical oscillators as

ε̃(ω) = ε∞ +
N∑
İ

 Si

1− (ω2

ω2
i
) − iFi( ωωi )

 (8)

Here, Si, ωi and Fi are oscillator strength, frequency, and bandwidth of the i’th oscillator
respectively [3]. ε∞ is the contribution to the dielectric constant due to high frequen-
cies, especially from electronic transitions, and is called the “high frequency dielectric
constant”.

On the other hand, it is known [6] that, for normal incidence, the reflectance of any
material is related to the dielectric constant as,

R(ω) =

∣∣∣∣∣
√
ε̃(ω) − 1√
ε̃(ω) + 1

∣∣∣∣∣ (9)

The real and imaginary parts of the complex dielectric constant can be given by

ε1(ω) = n2(ω)− k2(ω) = ε∞ +
N∑
i

 Si(1− ω2

ω2
i

)

(1− (ω2

ω2
i

)) + F 2
i ( ωωi )

2

 , (10)

ε2(ω) = 2n(ω)k(ω) =
N∑
i

 SiFi
ω
ωi

(1− (ω2

ω2
i

))2 + F 2
i ( ωωi )

2

 . (11)
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DURMUŞ, ŞAFAK, KARABIYIK

On the other hand, the complex dielectric constant can be written in terms of re-
flectance and phase angle [7]:

ε̃(ω)

(
1 +

√
R(ω)e−iθ(ω)

1−
√
R(ω)e−iθ(ω)

)2

. (12)

If the θ(ω) phase angle is withdrawn from this expression, following equation can be
written as

θ(ω) = − arcsin

(R(ω) − 1)( ε1
ε2
−
√

( ε1
ε2

)2 + 1

2
√
R(ω)

 , (13)

which is an analytical expression depending on the real and the imaginary parts of di-
electric constant and on the reflectance.

3. Experimental Procedure

The normal reflectance measurements of single crystal Si wafers was performed by
a JASCO model UV-VIS-IR spectrophotometer, in the 220-2200 nm wavelength range.
Prior to the measurement, the samples were left in a HF-H2O mixture for adequate time
to remove a possible oxide layer. Reflectance measurements have been made at room
temperature and by using unpolarized light. The data taken in two nanometers intervals
are transferred into a computer. For the Kramers- Kronig Analysis, a Fortran program
has been written, and the numerical integration has been performed by Simpson 1/3
integration method. Moreover, in the oscillator fit procedure, Sigma-plot 1.0 program
has been used.

4. Results and Discussion

Oscillator Fit Method.

The experimental reflectance spectrum is given in Fig. 1. As seen from the figure,
there is a uniform rise until 3.5 eV. Two main peaks, E1 = 3.4 eV and E2 = 4.49 eV,
correspond to high energy interband transitions. Vina and Cardona [8] have reported
similar energy values for these transitions such as E1 = 3.4 eV and E2 = 4.25 eV. They
have attributed E1 energy to the interband transition from highest valance band to lowest
conduction band along the Λ symmetry line in the Brillouin zone [8]. In fact, this peak
has represented the direct transitions occuring at the L and Γ points. In the analysis
of Germanium’s reflectance spectrum (which is similar to that of Si), these transitions
are distinguishable from each other, while in Si’s reflectance, these two transitions have
the same energy, and therefore seem to be a single peak. The E2 peak arises from wide
regions of Brillouin zone, especially near a special 2π

a (3
4 ,

1
4 ,

1
4) point [8,9].
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Figure 1. Experimental reflectance spectrum of Si.

One of the most important problems encountered in classical oscillator fit procedure
is to decide how many oscillators be chosen within the experimental spectral range, and
whether to take into account any contribution from outer parts of related regions. Gener-
ally the number of oscillators required can be determined from the reflectance spectrum
considered. But, in performing the fit procedure, it is assumed that, in addition to the
oscillators selected in the experimental reflectance spectrum, it can be useful (for better
fit) to choose more oscillators outside of this range [6]. But in this work, the oscillators
selected within the measurement range had provided a satisfactory result and therefore
any oscillators outside had not been selected. The number and positions of oscillators
have been determined by means of derivative of experimental reflectance spectrum. In
this manner, six oscillators have been chosen and these initial oscillator parameters and
their values found by fit procedure have been given in Table 1. In Fig. 2, the reflectance
curve plotted by using the initial oscillator parameters and the experimental curve are
compared. In Fig. 3, the reflectance curve obtained by using the final values of oscillator
parameters and experimental curves have been given for comparison.

As seen from Figure 3, there is a perfect agreement between the experimental and
theoretical curve, which is plotted by the parameters, found in the fit procedure. To
prevent the time loss and to speed the procedure, not all of the measurement values
but only some selected values which represent the whole spectral variation have been
employed. By using the final oscillator parameters in Eq. (9) and (10), ε1(ω) and ε2(ω),
real and imaginary parts of complex dielectric constant have been calculated and given
in Figure 4. Phase shifts calculated by Eq.(12) is shown in Figure 5. On the other hand,
by making use of these phase values and also reflectance values in Equations 4 and 5,
the refractive index n(ω) and the extinction coefficient k(ω) are determined and given in
Figure 6.
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Figure 2. Theoretical reflectance curve obtained by initial oscillator parameters and the exper-

imental one.

Figure 3. Comparison of experimental and theoretical reflectance spectra which is obtained

after fit.
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Table 1. The initial and final values of oscillator parameters (Initial ε∞ = 2, after the fit

ε∞ = 0.787).

Si ωi Fi
Initial From the fit Initial From the fit Initial From the fit

1.8 0.8102 3.2 3.4848 0.15 0.0657
1.8 1.6044 3.4 3.3647 0.15 0.0503
1.8 3.3142 3.7 3.6555 0.15 0.1619
1.8 4.8913 3.9 4.0090 0.15 0.1771
0.5 2.7924 4.2 4.2375 0.15 0.0837
1.8 1.2181 5.4 5.2424 0.15 0.1664

Figure 4. Real and imaginary parts of complex dielectric constant of Si obtained by oscillator

fit procedure.

Kramers-Kronig Method.

As a second method in this work, Kramer-Kronig analysis has been applied. For
this purpose, by using the reflectance values and Eq. (3), corresponding phase shifts are
calculated and shown in Figure 7. In calculating these phases, the Roessler’s extrapolation
function has been used. In substituting these phase values and experimental reflectance
data in Eq. (4) and (5), n(ω) and k(ω) are calculated and from equation 6, ε1(ω) and
ε2(ω) are determined. and are shown in Figure 8, and ε1(ω) and ε2(ω) in Figure 9.

In Roessler’s method, to take into account the contributions from the outside of the
measurement range, two wavelengths have been selected over the measurement range
at which total phase shift are assumed to be zero. Many investigators have supposed
that the parameters to be determined are very sensitive to this selected wavelength pair.
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It is declared that this wavelength pair has need not be near the end of experimental
measurement range.

Figure 5. Phase shifts upon reflection calculated by using Equation 12.

Figure 6. Refractive index and extinction coefficients calculated by means of Equation 4 and

5.
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Figure 7. Phase shifts variation determined by Kramers-Kronig transformation.

Figure 8. Refractive index and extinction coefficient determined by KKT.

733
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Figure 9. Real and imaginary parts of complex dielectric constant determined by KKT.

In this work, the 1602 and 1632 nm wavelength pair are chosen. These values corre-
spond to lower energies than forbidden energy gap of Si (1.1 eV). Two phase shifts, that
are obtained by this wavelength pair and by oscillator fit procedure, have been found very
closer to each other. Apart from this mentioned pair, a number of various wavelength
pairs have been selected and it was seen that refractive index, n(ω) is not too depen-
dent on this pair selection. But, k(ω) extinction coefficient and hence imaginary part
of complex dielectric constant, ε2(ω), are found to be more sensitive to the selection of
wavelength pair.

If Fig. 6 and 8 are compared, it can be seen that the refractive indices obtained
by two methods show almost the same variation but extinction coefficients exhibit some
difference. This discrepancy is due to the difference between the phases obtained by the
two methods, especially at higher angles. The n(ω) values obtained by the two methods,
have been found to be in good agreement with the literature [10].

By considering Figs. 4 and 9, it can be said that the above mentioned ideas for n(ω)
and k(ω) are also true both for ε1(ω) and ε2(ω). ε1(ω) curves determined by two methods
are in a good agreement with each other [8, 9]. There are two main peaks in ε2(ω) graph.
These correspond to main peaks in the reflectance spectrum, having energies of E1 = 3.4
eV and E2 = 4.49 eV. The positions of these peaks are consistent with the literature [8].

5. Conclusions

KKT analysis is still most commonly used technique in evaluating the experimental
reflectance measurements. Although two different methods used here, KKT analysis and
oscillator fit procedure, are independent in principle, they might be used as complemen-
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tary tools for each other.
There are various approximations for phase correction in KKT [11, 12]. The KKT

method could be applied for both bulk materials and thin films and also for anisotropic
media [13]. But, as is well-known, this analysis is very sensitive to the method of extrap-
olation. Therefore, the results obtained by it must be tested by other methods. Here,
this comparison was performed for Si and it is found that the results obtained by KKT
and fit procedure are in agreement with each other.
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