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Abstract

The geometry of different possible structures of (110) fcc twist boundaries is
explored. Computer simulation of all possible low energy structures have been
carried out for Σ = 3 and Σ = 9 twist boundaries using many-body potentials
representing copper, silver and gold. Low symmetry structures are found to have
lower energies than the high symmetry CSL structures.

1. Introduction

Most engineering applications of the materials involve their use in polycystalline form.
It is therefore important to have an understanding of the structure and properties of
the interfaces between grains forming such materials. Most common structures of grain
boundaries are classified as twin-, tilt- and twist-boundaries. Tilt boundaries are those
in which two grains are related by a rotation about an axis lying in the grain boundary.
Twist boundaries have their axis of rotation perpendicular to the grain boundary. In
these, two grains meeting at as grain boundary have atoms located at the points of two
lattices related by a rotation. If these lattices are considered to interpenetrate and fill
all space none of the points will in general coincide. However a single point from each
lattice may be brought into coincidence by translation, an infinite number of points may
coincide. These points then form a one-, two and three-dimensional array which is known
as a coincidence site lattice (CSL). The reciprocal density of coincident sites relative to
the original lattice is denoted by Σ.

Computer simulation techniques have recently been used to determine the structure
and energy of coincident site lattice CSL (111) and (001) twist boundaries [1,2]. Bristowe
and Crocker [3] found three distinct stable structures of (001) twist boundary, here two
of which involved relative translations of the grains parallel to the boundary and away
from the reference CSL configurations. Later Ingle and Crocker [4] studied (110) twist
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boundaries and found that three stable structures exist which involve relative translations
of the two grains parallel to the interface. In each case [3,4] the structures have nearly
equal energies, so in practice two or more types for single twist boundary may occur
in real crystals. This implies that complex networks of grain boundary dislocations are
likely to exist.

Computer simulation studies of structures of other types of interface in metals [5,6]
have shown that in many cases only one low energy structure arises and that may have
low symmetry as well. Thus, it is not even clear at this time whether in poly-crystals,
symmetrical or asymmetrical grain boundary plane orientation prevails, or even, whether
symmetrical configurations are energetically favoured over asymmetrical ones. However,
experimental evidences [7,8] suggest that asymmetrical grain boundaries are not as un-
common as sometimes where thought, particularly within the framework of the geomet-
rical grain boundary models [9, 10].

The most crucial decision for the simulation of a specific type of defects is the choice
of an appropriate interatomic potential. The energy of the planar defects, such as grain
boundaries, is almost completely controlled by the strong repulsion between the boundary
atoms, which are at distances shorter than those in the perfect crystal. The CSL twist
boundary structures in copper have been simulated employing Embedded Atom Method
and Lennard-Jones two-body potentials [11,12]. Unfortunately both the potentials give
zero energy for Σ = 3 (111) twist boundary. In this boundary one in three of the atoms
are located at coincident sites of the two grains. Many-body potentials developed by
Ackland et al. for fcc metals [13] have overcome this deficiency and give energy for
(111) twist boundary within the experimentally measured values [1]. According to this
potential energy (of an atom labeled i) is written as:

Ui = 1/2
∑
j

V (rij)−

∑
j

φ(rij)

1/2

The summation extends to all atoms of the system. Their pair potential function V
and embedded cohesive potential φ are:

V (r) =
6∑
k=1

ak(rk − r)3H(kr − r)

and

φ(r) =
2∑

k=1

Ak(Rk − r)3H(Rk − r),

where

H(x) =
{

1 for x > 0
0 for x ≤ 0.

Cut-off radii r1 and R1 are taken equal to the third neighbour spacing. The coefficients
ak and Ak have been determined by fitting exactly to the equilibrium fcc lattice parameter
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a, the cohesive energy Ec, the elastic constants C11, C12 and C44, the relaxed vacancy
formation energy Evf and the stacking fault energy γ. The fitted coefficients of V and φ
for copper are summarized in Table 1.

Table 1. Fitted coefficients by Ackland et al. [13] for V and φ

Coefficient Value (eV) Coefficient Value (a)
a1 29.059214 r1 1.2247449
a2 -140.056810 r2 1.1547054
a3 130.073310 r3 1.1180065
a4 -17.481350 r4 1.0000000
a5 31.825460 r5 0.8660254
a6 71.587490 r6 0.7071068
A1 9.806694 R1 1.2247449
A2 16.774638 R2 1.1180065

As these potentials have successfully been used for the simulation of (111) and (001)
twist boundaries [1,2] in fcc metals, here these have been employed to simulate Σ = 3 and
Σ = 9 (110) twist boundaires in copper, silver and gold. The simulation methods adopted
and results obtained are give in section 2. The significance of the results is discussed in
the last section.

2. Computational Methods and Results

Rectangular prism shape model crystallite was generated with orthogonal axes for
the simulation of twist boundaries. The atoms in the active computational region were
completely free to move under the applied potential. This region was surrounded by a
mantle reasonably thick such that the atoms of the computational cell have full quota of
their neighbors. The mantle atoms on the faces parallel to the twist boundary were kept
fixed and those on the rest of the faces were moreable due to periodic boundary conditions.
This procedure effectively simulates an infinite boundary. The twist boundaries under
study were generated in the middle of the model so as to keep them at equal distances
from the fixed boundaries. Minimum shuffle magnitudes required for the generation of
twisted model, were determined from the geometrical sketches of the perfect model. This
procedure has the advantage that the original rectangular prism shape of the model
remains unchanged even after twisting half of the crystal. The other possible structures
of each of the boundaries could be obtained by displacing two grains with respect to each
other. Three special cases of particular interest arise corresponding to the displacement
of d1/2,d2/2 and (d1 + d2)/2, where d1&d2 represent the complete pattern shift of the
boundary.

In order to minimise energy of the model, the method of conjugate gradients [14] was
adopted in FORTRAN codes. The method of conjugate gradients moves downhill in an
N-dimensional space, in directions which are orthogonal to each other. For a particular
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search direction s, the gradient g satisfies the condition

g.s = 0.

After each new choice of direction s, an appropriate step length in that direction is chosen.
It is often found that after a certain number of iterations, a greater decrease in energy can
be obtained by returning to the steepest descent rather than continuing in yet another
conjugate direction

Computational models were allowed to relax after generating the required twist so
that each atom could move to its minimum energy position under the applied potential.
Static simulation has been carried out, and the equilibrium configuration corresponds to
atoms at rest, such that the calculations are at 0 K.

2.1. The Σ = 3 Twist Boundary

In order to simulate Σ = 3 (110) twist boundary, the model crystallite generated was
bounded by (111), 112) and (110) face. Fixed boundary conditions were imposed on (110)
faces while (111) and (112) faces were simulated under cyclic boundary conditions. The
active computational cell comprised of 5(111), 12(112) and 60(110) planes. The CSL twist
boundary (referred to as type A) was generated in the middle of the model in [110] direc-
tion by applying atomic shuffle technique to the non-CSL atoms of the upper half of the
crystallite. Other three possible structures of types B, C and D were obtained by moving
the upper grain by the magnitudes 1/6[111]a, 1/12[112]a and 1/4[110]a, respectively.

Minimum energy configurations of all four types were obtained by relaxing the com-
puter models, using the conjugate gradient method. Studying the resulting structures,
two distinct type of displacements were noted to occur, one for CSL and other for non-
CSL atoms. As in the case of (111) twist boundaries [1], the displacements for all CSL
sites were normal to the boundary plane, while non-CSL sites had components both par-
allel and normal to it. Of course, equal and opposite displacements arose for equivalent
sites on both sides of the interface. Only significant displacements were observed around
the boundary. The volume increases that occurred at interfaces were accommodated by
compressive strains in the model as a whole. To eliminate these strains, simulations were
carried out in which the two grains were deliberately moved apart and then the models
were allowed to relax. Stable structures were found for all four types of the boundary.
The energies obtained along with the volume expansions normal to the interface are sum-
marized in Table 2 while relaxed structure for Σ = 3 type A boundary is shown in Fig.
1.

2.2. The Σ = 9 Twist Boundary

To study Σ = 9(110) twist boundary structures, a rectangular crystallite of atoms
comprising of 18(221), 18(414) and 60(110) planes was generated. Appropriate number
of mantle atomic planes were added on all sites of the computational model and periodic
boundary conditions were imposed on (221) and (114) faces. The atoms of the mantle
region on the faces parallel to the boundary were treated as fixed. The Σ = 9 CSL
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boundary (type A) was generated in the middle of the model in [110] direction by the
minimum shuffle of non-CSL atoms of one half of the crystallite. The remaining three
structures of types B, C and D were obtained from type A structure, by translating
the upper half grain parallel to the boundary plane through magnitudes 1/18[221]a,
1/36[114]a and 1/36[552]a, respectively.

Figure 1. A relaxed structure of Σ = 3 type A twist boundary projected on the (110) plane.

The atoms of the planes immediately above and below the boundary are represented by 2 and

+.

The long-range compressive strains in the models were eliminated by allowing volume
increases. During relaxation, as in the case of Σ = 3 boundary, the displacement for CSL
sites were observed to be normal to the boundary only, while non-CSL sites had both
normal and parallel components. The displacements were significant only near boundary.
All four relaxed stuctures of Σ = 9 twist boundary were found to be stable. The energies
for types A, B, C and D boundaries in copper were 1371, 1305, 1405 and 1402 mJ/m2

and volume expansions 10, 6, 30 & 16× 10−3 a, respectively. The results for boundaries
in silver and gold are included in Table 2 along with earlier results of copper [4] for
comparison. The relaxed structure of the CSL (type A twist boundary in copper in
shown in Fig. 2.

39



GHAFOOR, FARIDI, AHMAD

Table 2. Twist boundary energies for fcc metals, in units of mJ/m2, translation and volume
expansion in units of lattice parameter a.

Type Translation Energy (mJ/m−2) / Expansion (a)
Copper∗ Copper Silver Gold

A − − − 1398 /0.014 1433 /0.086 1099 /0.130 1081 /0.101
Σ = 3 B 1/6[111] 1363 /0.032 1272 /0.104 975 /0.124 915 /0.118

C 1/12[112] 1475 /0.056 1389 /0.126 1009 /0.148 1019 /0.145
D 1/4[110] 1677 /0.047 1511 /0.106 1065 /0.154 1030 /0.152

A − − − 1410 /0.010 1371 /0.116 1046 /0.126 1009 /0.140
Σ = 9 B 1/18[221] 1403 /0.006 1305 /0.128 973 /0.154 912 /0.132

C 1/36[114] 1466 /0.030 1405 /0.112 1024 /0.140 986 /0.138
D 1/35[555] 1489 /0.016 1402 /0.116 1030 /0.130 986 /0.133

∗The values in this column are taken from Ingle and Crocker [4].

Figure 2. A relaxed structure of Σ = 9 type A twist boundary projected on the (001) plane.

3. Discussion

The atomic structures of (110) twist boundaries have been investigated with misori-
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entation angles of 70.5◦ and 38.9◦. The results obtained are very different from those of
earlier work on (111) and (100) twist boundaries [1,2]. In particular the lowest energy
structures for both the Σ = 3 and Σ = 9 boundaries have lower symmetry than the
CSL. Nonetheless the high symmetry CSL structures provide a useful starting point for
investigation.

Ingle and Crocker [4] have used copper pair potential [15] for similar calculations of
(110) twist boundaries and their results for copper are included in Table 2- for comparison.
In the present work, energies of all four types of twist boundaries are lower than their
corresponding values with only one exception of Σ = 3 type A boundary, where present
energy is slightly higher. Theoretical or experimental results for these boundaries in silver
and gold are not available in literature and therefore could not be compared. In general,
twist boundary energies for copper are higher than silver and those of silver are higher
than gold. There is also one exemption to be noted from the result summary of Table 2
which is for Σ = 3 type C silver energy being 0.1% lower than that of the same boundary
in gold.

It is observed that type B structures for both of the twist boundaries in copper, silver
and gold, have the lowest energy among all four possible structures considered. For silver
and gold, type A boundary has the highest energies for both the twist boundaries.
However, copper type D boundary structure has the highest energy.

Although the computing procedure was capable of accommodating rigid-body transla-
tions, both parallel and perpendicular to the twist boundaries, additional rigid rotations,
increasing or decreasing the angle of twist from the exact CSL values could not be in-
troduced in the present models. However, during relaxation long-range torsion of model
was not observed in the present investigations.

Acknowledgement

Financial support from NSRD Board is gratefully acknowledged.

References

[1] A Ghafoor, S. A. Ahmad and B. A. S. Faridi, J. Nat Sci. Maths., 36 (1996) 33.

[2] A. Ghafoor, S. A. Ahmad and B. A. S. Faridi, Tr. J. of Phys., 22 (1998) 789.

[3] P. D. Bristowe and A. G. Crocker, Phil. Mag., 38 (1978) 487.

[4] K. W. Ingle and A. G. Crocker, Phil. Mag., 41 (1980) 713.

[5] B. A. S. Faridi, S. A. Ahmad and M. A. Choudhry, Indian J. of Pure & Appl. Phys., 29
(1991) 796.

[6] A. G. Crocker and B. A. Faridi, Acta Metall., 28 (1980) 549.

[7] C. B. Carter, Acta Metall., 36 (1988) 2753.

[8] K. L. Merkle, J. F. Reddy and C. L. Wiley, Ultramicroscopy, 18 (1985) 281.

41



GHAFOOR, FARIDI, AHMAD

[9] D. G. Brandon, B. Ralph, S. Ranganthan and M. S. Wald, Acta Metall., 12 (1964) 318.

[10] W. Bollman, Crystal Defects and Crystalline Interfaces, (Springer, Berlin 1970).

[11] D. Wolf, Acta Metall., 38 (1990) 791.

[12] D. Wolf, Acta Metall., 37 (1989) 1983.

[13] G. J. Ackland, G. Tichy, V. Vitek, M. W. Finnis, Phil. Mag., 56 (1987) 735.

[14] R. Fletcher and C. M. Reeves, Comput. J. 7 (1964) 149.

[15] A. G. Crocker, M. Doneghan and K. W. Ingle, Phil. Mag. 41 (1980) 21.

42


