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Abstract
Successive toroidal compactifications of a closed bosonic string are studied and
some Lie groups solutions are derived.

1. Introduction

Our present understanding of the observed fundamental interactions is encompassed,
on the one hand, for the strong, weak and electromagnetic interactions by the standard
mode and, on the other hand for, the gravitational interaction by Einstein’s classical
theory of general relativity which, however, can not be consistently quantized.

Although the success of some of the unified grauge theories (based on the point-
like quantum fields concept), there are too many arbitrary parameters and some of
the outstanding problems like the Higgs, spontaneous symmetry breaking mechanism,
Kobayachi-Maskawa matrix etc... are still unsolved.

The discovery in the summer of 1984 by Green and Schwarz [1] of the unique anomaly
free open superstring has once again spurred an enormous interest in string theories as
candidates for unified quartum theories of all interactions and matter.

As opposed to point-like particles in ordinary field theories, the fundamental con-
stituents of string theories are 1-dimensional objects. A single classical relativistic string
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can vibrate in an infinite set of normal modes, which, when quantized correspond to an
infinite set of states with arbitrary high masses and spins.

These theories can be consistently quantized for one specific dimension of space-time
only. This critical dimension is 26 for the bosonic string (open or closed) and 10 for the
superstring [2], [3]. However, to keep contact with the real world, the extra space-time
dimensions have to be compactified. It turns out that there are too many ways to do
such a procedure and consequently, the four-dimensional low energy physics is not unique
[4]-[12]. Thus, there is still no clear answer to the important problem of compactification
and how constact can be made with a realistic phenomenology.

In this paper, and as a toy model, we consider a closed bosonic string and study the
effect of successive toroidal compactifications.

In section 2, we present general solutions resulted from various types of an even
dimensional tori compactifications. In section 3, we display our results and draw our
conclusions.

2. Formalism

The Nambu-Goto action of a closed bosonic string is given by [2], [3];

1 N2 _ s2 02
S = ~5— /drda[(x.x) — .2 (1)
with :
zu(0+7r77_) :;L'“(O-’ T)a (2)

and o, 7 are the dimensionless world-sheet parameters. Here ¢’ is the string scale and x'#
(resp. &*) means % (resp. %). The general solution of the equation of motion (in the
orthonormal gauge)

A U | (3)

which satisfies the boundary condition (2) is :

) 1
(o, 7) = ¢" + o'p" + % Z E[aﬁ exp —2in(t — o) + & exp —2in(t + o)},  (4)
n=0

where ¢" and p" are the string center of mass coordinates and the momentum, respec-
tively.

After quantization, the critical dimension is fixed to D = 26 and the physical states
[¢)) phys are subject to the Virasoro conditions:

Ln|w>phys = En|w>phys n>1 (5)
(Lo = Lo)[4)phys = 0
(LO + Z/O - a(o))|w>phys =0,
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where the Virosoro generators L,, and L,, are given by:

1
L, = o m;m Qi (6)
+oo
1 - ~
Ln = 4_0_, L Op—mQm

(here o(0) = 2). To get the mass spectrum, one has to apply the following mass operator
M2
M? = 4[N + N — a(0)] (7)

on the physical states [1))phys (We have taken 5 = 1) with:

N|w>phys = N|w>physa

where

—+oo
N = Z at o, (8)

m=—0o0

—+oo

- -
N = E al Oy,

m=—o00
Now, our compactification program consists of starting from the critical dimension D = 26

and then truncating the extra dimensions successively through a various number of tori
compactifications.

We remained the reader that an r-dimensional torus 77 is defined as the set R/T,
where I' is an r-dimensional lattice generated by a basis {&5,a = 1,_7)"} One can be also
define a dual lattice I'* as

I'“={F e R"/v¥ €T, 3 -7 is an integer} (9)

with a dual basis e, a = 1,7} such that
7t = 6. (10)
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1. Method N =1

The first method consists of taking the left and right movers modes as mixed. Thus,
the compactified coordinates x can be written as:

. . o 1 _
(o, 7) =¢ +ap’ + % Z E[a% exp —2in(1T — o) + &, exp —2in(T + o). (11)
n=0

For the compactified coordinates zf(I = 1,—71) on an r-dimensional torus, one has to
identify the points under the translation by 27 R, in the &g direction. Thus:

o~ +—Zna- o el (neZ) (12)

where 7 (resp. R,) is the torus dimension (resp. radius in the « direction) and therefore
one can write:

) 1
(o, 7) = ¢ +a'pf + 205 + % Z E[afl exp —2in(1 — o) + &l exp —2in(r + o)  (13)
n=0

with:

(ma € Z) (14)

W

and ¢ are the winding numbers which have the following expression:

Ra=1 IIeall

ZmﬁRﬁ eall 15)

“ ”

Now, after compactification, the mass operator M takes the form:

M2 N—i—N—QZZ +07) (16)

k=1I=1

(here 7y, is the dimension of the k' torus (3.7_, r, = 22)). With:

p=1

NW} phys — N+ ZZEI I W} phys; (17)

k=1I=1

where
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3
el

I
m~m

=2
I

P I
NE
g
\Q°“
3
Q

. -
+

§ M
NIE
g
\Q"‘
Q

k=1I=1 k=11=1
n Tk n Tk
N = &l ek, + al,.al
- —-m-m —m-m"
m=1k=11=1 m=1k=1I1=1

With a self dual lattice and orthonormal basis, eqs (16) and (17) become:

M? = (N +ZZ+—+4n R?) (19)
k=11=1

n
N|’Lﬁ phys Z NaMe |¢ phys-

k=1I=1

It is to be noted that one can characterize the quartum physical states |¢)pnys by the
quantum numbers n, and m,. Now, it is easy to show, that for R, = %(Va =1,rpp=

1,n), the number of the vectorial physical massless states and the quantum numbers n,,
and m,, is (see APPENDIX A):

Q=4) (r7+11) (20)
p=1
and
n
D=2) r, =44, (21)
=1

respectively. However, for at least one R, = %, the number of the physical vectorial
massless states becomes 44.

2.2. Method N =2

In this method the left and the right movers of the closed string 2! (0—7) and 2! (0+7),
respectively, are treated independently. In this case, the compactified coordinates can be
written as:

) 1
d(o—1)=q +p(r—0)+ =3 —alexp—2in(r - o) (22)
2 —n

1
al exp —2in(r + o),

n

I o~ ~] i
v (o+7)=q +p (T+U)+§Z

n=0
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where the string center of mass momentum p’ and p’ are given on the dual lattice I'* by:

r
ma e[*

I
p =
~ Ra ||€a||

(Mmama € Z) (23)

:U‘S‘

Y-S

el

It is to be noted that in this case, the winding numbers ¢/ and /T are related to the
momenta p’ and ! by the relations:

gl — 7%27[

o= 1pl.

(24)

This means that the lattice I' and its dual I'* have a non zero intersection. Now, the
mass shell condition (16) leads to the relation

M2 —2(N+N — 4+ZZ

k=1 B,a=1

R Rﬁ mamg + ﬁlaﬁlﬁ)]. (25)

where g7, 5 is the dual lattice metric. Moreover, the Varisoro condition (2—5—10) implies
that:

*

N+ Z Z R Rﬁmam6)¢)>phys: N+ Z Z ;—Rmamﬁ |¢>;Dhys (26)

klﬁ, klﬁ,

It is important to mention that, if R, = the massless vectorial states belong to the

\/57
adjoint representation of the tensorial product G ® G, where G is the simply laced Lie
group of rank r = 22 and with a Cartan matrix g,3. Now, if the lattice I' is even and
integer, i.e.

VB,7el — 3 - 7 is an integer;
vy el — ? is integer and even;

the momenta p! and p! are identified with the weight vectors of the Lie group G. Now, if
we characterize the vectorial physical states by the quartum numbers m,, and m,, we can
show that for R2 = R? = an integer or half integer the number 2 of these independent
states is [see APPENDIX Bj

25p+1

f =dd+ Z p)Q11Q2! . .. Q! @7)

(n is the number of successive compactifications) where, for the p*" compactification,
rp,Sp and @y, are the dimension of the compactified space, the number of the non zero
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quantum numbers (m, and n,) and the degeneracy of the tfgh quantum number respec-
tively. However, if at least one of the R is not an integer of half an integer, the number,
of the physical states becomes Qf, = 44.

3. Results and Conclusions

To get an idea and keep our results transparent, we have considered compactifications
on an even dimensional tori. Tables 1 and 2 display various types of compactifications and
the rank and order of the resulted Lie groups with both methods 1 and 2 with R = %
and 1, respectively. It is important to notice that the results depend on:

Table 1. Display the rank and order of the Lie groups coming from various types of Tori

compactifications with the use of the first method and R = %

Type of compactification | rank | order
T22 44 | 234212
T2 0 T 44 | 174882
T e T™ 44 | 223644
TS ®T1° 44 | 123868
TS TH 44 | 42172
TIO g 112 44 129116
T?°T? T8 44 | 115046
T2QTYTR T 44 | 79758
T2 T TH 44 | 47806
T2 T3 T 44 129630
T2 TOxT!0 44 | 23742
TITTeTH 44 | 46998
TP TS @ T2 44 | 23254
T T8 T 44 115254
T T6 @ T10 44 | 15126
TOQT3® T8 44 | 12758
2T e Ti T2 44 | 29408
T’@T TS T 44 | 12512
T’T* T8 T8 44 | 12832
T2QT?2@T2gQ T 44 189110
T?T?2 T T2 44 | 54640
T?T?T° T 44 | 32112
T?°T?° T8 T 44 | 21400
T?T°2T® T8 44 111698
T'TTe T T 44 116820
TRT T T3 44 | 11124
T RTS®T®TC 44 | 7732
T?RT?T?T?x T 44 | 64602
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Table 1. Continue

Type of compactification rank | order
T?RT?QT? T QT2 44 | 38898
T°RT?T?2 T T10 44 | 23898
T’RT?’RT?’°QT3® T8 44 | 19074
T°RT?T*T*e T10 44 | 21706
T’RT?’T*@ TS T8 44 113970
T?T?’T° T T° 44 | 11066
T’T*T*T*®T® 44 112530
T2T*T*Tx TS 44 | 9674

T'QTrRT T T° 44 | 8250

T?T2 T2 T2 T2 ® T2 44 | 45424
T?RT2RT?T?T* T10 44 | 26866
T?RT?’T?’T? T T8 44 | 18034
T?RQT2RT?2T*T* T8 44 | 24612
T?°RT?’T?’T* T ®T° 44 |612916
T°RQT2T*T*T* T8 44 | 15990
T?TeT*eT*eT* T 44 | 9464

T2RQT2RT?2T?>?T?* T2 T 44 | 30662
T?PT?RT?’RT?RT? T T° 44 | 18590
T2RQT2RT?2T?T*T*e T° 44 | 12598
T?PT?T?T T T e TF 44 110510
T2RQT?2RT?2T?*T?2T?>T2 T8 44 | 25910
T?’RT?’T?’RT?’RT?’RT?T*®T° 44 |19616
T2RT?2RT?2T?*T?2T* T e T? 44 | 16458
T2RT?QT?RT?’QT?RT?QT? T2 QT 44 | 23976
T2RT?T?*RT?T?T?*T? T e T 44 | 21848
T’RT’RT?°RT?RT?RT?T?T?T? T | 44 28530
T’?RT?T?’QT?T?°RT?’RT?T°T?>®T? | 44 | 36180

a) The choice of the method:

In fact, it is clear from tables 1 and 2 that for the same type of compactification, the
resulted Lie groups obtained with the first method are totally different from the second
one. For example, a compactification on 722 gives with the first method, the folowing
possible Lie groups : SO(5)®@S50(60)0U (12); SO(58)®S0(22)®@U (4); SO(14)®S0(14)®
SO(61); SO(56) @ SO(5) ® SO(29); SO(63)@U(8) @ U(5); SO(44) ® SO(44); SO(58) ®
SO(16) ® E7. However with the second method one gets: SO(51) ® SO(36) ® U(1);
SO(36) ® SO(3) ® SO(51); SO(45) ® SO(45). As a second example, the ten successive
tori compactifications T2 @ T? @ T? @ T? @ T? @ T? @ T? @ T? @ T? ® T* lead to no
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solutions for the first method and SO(11) ® SO(58) ® U(12); SO(47) @ SO(40) @ U(1);
SO(57)®S0(24)®@U(4); SO(59)® SU(3)®S0(14); SO(3)®S0O(37)®S0(51); SO(58) ®
SO(11) ® U(5); SO(48) ® SO(36) ® G2; SO(58) ® SU(5) ® U(11) for the second one.

Table 2. The same as Table 1 but with the use of the second method and R =1

Type of compactification | rank | order
T22 44 | 9624428
T? @ T%0 44 | 6168104
T T 44 16154058
T6 @ T16 44 | 1405082
TS T™ 44 | 568380
TI0 @ 712 44 | 243836
T’°QT?>T™H 44 | 3841396
T°T*e T 44 | 1821254
T’°T@T™ 44 | 656222
T>?@ T8 T 44 | 317942
T2 T g T 44 1189190
T*eT*eTH 44 | 782618
T*@ TS @ T 44 1305290
T* T8 T 44 | 122554
TS T8 @T™ 44 1111282
TS@T®eT® 44 | 127674
T?TY*e T e T12 44 | 425734
T?’T* T xT™ 44 |161392
T’T T3 T8 44 191560
T°T?®T?x T 44 | 1283546
T’RT*’T*eTH 44 11041106
T°T?®T 2T 44 | 426592
T2QT?2T3 T 44 | 186860
T°T° T T® 44 166458
Tr@Tre T e T 44 1156310
T*RT*@T T8 44 160072
T*@TS TS T° 44 137170
T2RT2QT?2QT2QTH 44 11356836
T?2QT?RT2Tr® T2 44 | 572866
T2QT?2RT?2 T T 44 | 228514
T’?T’T? T8 T8 44 | 134170
T’RT?@T T T 44 | 224942
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Table 2. Continue

Type of compactification rank | order
T°T?’T* T T8 44 | 93598
T°T?’TTC®T° 44 | 51502

T°T*T* T T8 44 | 84654
T2T*T*eTxT° 44 | 9674

T'T*T* T *T° 44 | 33934
T2RT?’RT?’RT?’°T? T 44 | 790064
T°T?°T?T?°T*eT0 44 | 313838
T’RT?’T?’°QT? T T8 44 170800
T°T?°T?T* T e T8 44 | 153804
T2RT?RT?’T* T T° 44 | 76606
T2T?RT*T*T* T° 44 | 6226

T?°T*T*T* T T 44 49194
T2T?RT?’RT?’°T?°T? TN 44 | 430974
T?RT?’T?’T?°T?’T* T8 44 | 178496
T’T?’RT?’eT?*T* 0T e T° 44 189848
T?T?’T?T*T*eT* e T? 44 | 68048
T’RT?’T?’RT?’T?RT?T?®T° 44 | 253958
T?RT?’T?T?°T?’°T?*T TP 44 | 130820
T’RT?’RT?’RT?’RT?’RT T e T* 44 197954
T?RT?°T?’RT?T?°T?*T?°T?® T° 44 | 187536
T?RT?’QT?’RT’T?’RI?2T? T T T? 44 141310
T?°RT?°T?’RT?T?°T?’T?°T?°T?T* | 44 | 198350
T?RT?’RT?’RT?’RT?’@T?’RT?T?T?T? | 44 | 277918

b) Type and number of compactifications:

Each type and number of successive compactifications gives different results. In fact,
the type T? ® T?° (for eample) leads to the following Lie groups: SO(12) ® SO(28) ®
S0(48); SO(38) ® SO(42) ® U(4); SO(8) ® SO(33) ® SO(49); SO(55) @ U(2) ® U(15);
S0(48) ® SO(28) ® E6; SO(48) ® SO(26) ® ET; However, the type T? ® T? @ T6 @ T2
gives SO(20) @ U(15) ® U(19); ®SO(13) @ U(17) @ U(21); SO(25) @ U(14) @ U(18).

c¢) Tori radius:
The results of the successive compactifications depend strongly on the choice of the

radius of the compactified tori. For example the first method gives for R = %(Va =
1,7k = 1,n), a number of 44 + 2Y"}'_, r? vectorial physical states which can form the
irreducible representation of a Lie group. However, for at least R = %, this number is

reduced to 44 and leads to different Lie groups solutions.
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Appendix A

a
The possible physical vectorial states are: o' ,|0),a" ;|0),a’, H a’, |0y, at,
s=1

q

als, 0),a’ deu |0) and o’ tHOLu |0) with ¢,u and ¢ € N*. For the states
s=1 s=1 s=1

|¥) phys Of the form a? ,|0) and &' ,|0) and by imposing

EQ

M2|w>phys =0 (A_]-)
and
5 n
N ) phys = (NZ Z NaMa)|Y)phys (A-2)
p=1a=1
one gets
n Tp m2
> (g T rake) =2t (A-3)
p=1a=1 @
and

n Tp
Z Z NaMa = *t,

p=1a=1
where n denotes the number of tori compactifications (+ and — signs are for the case
o' ,|0) and &' ,|0) respectively). This implies that t = 1 and R = (2)~/2 and one of the
n

ne and mg are equal to +£1 (For the others, n, = mg if a#3). Thus, the 427‘12, states

=1

can be written as: '
I1,0,...,0;1,0,...,0),]0,1,0,...,0;0,1,0,...,0),...,
|—1,0,... 0;-1,0,...,0)|0,-1,0,...,0;0,—1,0...,0)
[1,0,...,0;-1,0,..., >,|0,1,0,...,0;0,—1,0,...,0),...,

and

1-1,0...,0;1,0,...,0),]0,-1,0,...,0;,1,0...,0),..., .
It is worth mentioning that the states of the form:

q q

H ) and o’ , H o/_‘gus |0)

s=1
used with eq. (A—1) and (A —2) can e easily shown to be equivalent to the states o’ ,|0)
and @' ,|0), respectively. For the states of the form o', H d{u |0); &*, H aljus |0), the

s=1 s=1
conditions (A —2) and (A — 3) lead to:
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n Tp 2
_ my 2 2
2 (t+u +uQ+---+uq)—;;(4R3 +n2R2)
and
n Tp
ZZnama:tf(ul +us+ -+ ug),
p=1a=1

which implies that n, = m, = 0(a = 1,7). Thus, the number of the physical states is

2 z": rp = 44.
p=1

(6]
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Appendix B

The number of massless vectorial states of the form o’ ,|0), & ,|0) with ¢ € N can be
determined by solving the equations

Mo =0 ZZ :2

2
plalo‘
Tp o 9

o

it = 0 g;m_

2
a

(B-1)

respectively. Notice that in both cases the solution is the same. Setting R, = R(Va =
1,7;p = 1,n) we obtain:

n Tp n Tp
YD ILTIEL S 30 3t 2
p=1a=1 p=1a=1
Now, it is obvious that if R? is not an integer or half an integer, eqs. (B — 1) and (B — 2)
have no solutions. In what follows we denote by s the number of the non zero my’s. As
an example, for R = (2)%/2, eq. (B — 2) becomes

n Tp
> D ma=
p=1a=1
which can be written as:
a) 1+ 14+ 14 1+ 1+ 1+ 14 1+ 1+ 1+ 14 1+ 1+ 1+ 14 1=16
b) 44+ 1+ 1+ 14 1+ 1+ 1+ 1+ 14+ 1+ 1+ 14 1=16
c) 4+ 4+ 1+ 1+ 1+ 1+ 1+ 1+ 14 1=16
d) 4+ 4+ 4+ 1+ 1+ 14+ 1=16
e) 4+ 4+ 4+ 4=16
£) 94+ 1+ 14+ 1+ 1+ 1+ 1+ 1=16
g) 9+ 4+ 1+ 1+ 1=16
In this case, the values of s are respectively 16, 13, 10, 7, 4, 8, 5.
Now, if R =1 (case of our interest) one gets:

p=1a=1

which implies that |mq| = 1. So, the degeneracy s of M, is equal to 2. Thus the number
Q of all possible physical states of the form |11,1,0,...,0), [11,0,1,...,0),... etc is

1 o " p!
,51;%(%71):;72'( 5 (B-3)
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This result can be found in an equivalent way by taking r number arranged in two and
without repetation. Thus, the number of the different physical vectorial states € is:

n Q!Cgp n rp!
Q=3 —F=> 30, — 1)1 (B-4)

p=1 p=1

Now, taking into account the positiv and negative values of m, amounts to multiplying
the result by 22. Hence, the total number, of states Qo is:

n
_ 2 Tp!
Qtot - Z 2 2'(7’ — 2)' (B'5)
p=1 p

Then, it is clear that for a given s, eq. (B — 6) can be generalized to

n

|
Qiot = Z 29p "y’

tp
p=1
(rp = sp)! H Qq!
qg=1

where @, (resp. s,) is the degeneracy of the ¢"" quartum number (resp. the number
of the non zero quantum numbers 7m,), ¢, is the number of the non identical quantum

numbers among the s ones for the pt” compactification. The factor % represents

»—5p)
the number of the rearrangements of r, by s, numbers. i.e.

Sp __ S
ATr = s,lCr.

However, if there are some identical non zero quantum numbers, one has to divided by
tp

the factor H Qq!. Notice that the factor 2°» comes from the fact that m, can take both
q=1

positive and negative values.
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