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Abstract

Multiparticle equations for scalar particles are derived in the framework of the
Lagrangian formalism of field theory as a consequence of the Dyson-Schwinger equa-
tions for the generating functional of Green’s functions. The general form of the
n-particle equation is determined. The formula for the kernel of the equation is ob-
tained. It makes possible to use the functional methods for the investigation of the
equation. It is proven that the equation is correct in the lower orders for two-particle
Green’s functions.

1. Introduction

Multiparticle equations for Green’s functions are used in the description of the bound
states of elementary particles and at the same time for the description of processes: bound
state scattering, particle scattering on bound states etc. For the first time the two-particle
equation has been derived by Bethe and Salpeter [1]. Every attempt to generalize the
latter equation for the case of three or more particles leads to essential difficulties.

Nevertheless there is a possibility to describe multiparticle states in the framework
of the Lagrangian formalism of field theory [2-3] using functional integration or path
integration.

Model-independent derivation of the system of two particle Edwards-Bethe-Salpeter
equations and the system of three-particle equations for three-linear scalar field is carried
out using Legendre transformations of the generating functional for the Green’s functions
[4].

The two-particle fermion-antifermion equations have been studied using the Legendre
transformations [5]. The general formula of the n-fermion equation has been derived
and its kernel structure is investigated in [6]. The formula connecting the kernel of the
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n-particle equation with the 2(n+1)-point Green’s function has been obtained.
In the present paper the n-particle equations for the system of scalar particles in-

teracting with electromagnetic field are derived by the method of functional integration.
These equations are obtained using the Dyson-Schwinger equations [7]. The kernels of the
equations are expressed in terms of the functional derivatives of n-particle propagators.
Calculation of the generating functional for scalar field is carried out taking into account
the second order. The derived equation is correct in this order for two-particle Green’s
functions.

2. Multiparticle equations for scalar field

Let us consider now the Lagrangian of complex scalar fields describing charged spinless
particles. In order to satisfy the condition of the local gauge invariance, it is necessary to
introduce the electromagnetic field. The total Lagrangian, which is invariant under the
gauge transformation and contains the complementary gauge fixing term, is defined by
the formula

Leff = −φ∗(2 +m2)φ+
1
2
Aµ[gµν + (

1
α
− 1)∂µ∂ν ]Aν − ieφ∗

↔
∂µ φA

µ + e2AµA
µφ∗φ, (1)

where we use the following notation:

f(x)
↔
∂µ g(x) = f(x)(∂µg(x)) − (∂µf(x))g(x). (2)

By definition the propagator is the inverse operator to the quadratic term of the La-
grangian. Consequently the following equality holds:

Leff = φ∗S−1φ+
1
2
AµD−1

µν A
ν − ie(φ∗

↔
∂µ φ)Aµ + e2AµA

µφ∗φ. (3)

Let us introduce the sources of fields Jµ, K∗, K and define

Ls = JµA
µ + φ∗K + K∗φ. (4)

The generating functional of the latter fields is defined as a functional integral:

Z̃[K∗, K, J ] = N

∫
Dφ∗DφDAµe

i
∫
Ltotdx;

Ltot = Leff + Ls. (5)

Let us transform (5) to a form which is useful for functional derivation, using the prop-
erties of path integral. Then we have

Z̃ = Nexp(i
∫
Lint(

δ

iδK(x)
;

δ

iδK∗(x)
;

δ

iδJµ(x)
))Z, (6)

where
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Z =exp(
i

2

∫
Jµ(x)Dµν (x, y)Jν(y)dxdy) ×

× exp(−i
∫
K∗(x)S(x, y)K(y)dxdy), (7)

Lint = −ie(φ∗
↔
∂ µ φ)Aµ + e2AµA

µφ∗φ. (8)

It is evident that one-particle free propagator is

S(x, y) = i
δ2Z[0]

δK(x)δK∗(y)
, (9)

where zero in square brackets denotes that all sources of the fields must be equal to zero
after the calculation of functional derivatives. The exact total one-particle propagator
for scalar particles with respect to the Lagrangian of interaction is defined as follows:

S̃(x, y) = i
δ2Z̃[0]

δK(x)δK∗(y)
. (10)

The exact n-particle propagator is defined by analogy

S̃n(x1, . . . , xn; y1, . . . , yn) = in
δ2nZ̃[0]

δK(x1) . . . δK(xn)δK∗(y1) . . . δK∗(yn)
. (11)

The Dyson-Scwinger equations for generating functional of Green’s functions follow
the invariance of functional measure under the translation φ∗ → φ∗ + δφ∗.

In this way the field equation can be derived from the condition

δφ∗ Z̃ = 0, (12)

∫
Dφ∗DφDAµ

(
δItot
δφ∗(x)

+K(x)
)
exp(iItot) =

=
(

δItot
δφ∗(x)

(
δ

iδK∗(x)
;

δ

iδK(x)
;

δ

iδJµ(x)
) +K(x)

)
Z̃ = 0,

Itot =
∫
Ltotdx. (13)

As the functional derivative of the action function with respect to the field φ∗(x) is equal
to

δItot
δφ∗(x)

= −(2 +m2)φ(x)− 2ie∂µφ(x)Aµ(x)− ieφ(x)∂µAµ(x)

+ e2Aµ(x)Aµ(x)φ(x), (14)
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then (13) implies that:

S−1(y1, z)
δZ̃[K∗, K, J ]
δK∗(z)

−
(

2e
δ

δJµ(y1)
∂

∂yµ1
+ e

∂

∂yµ1

δ

δJµ(y1)
+

+e2 δ

δJµ(y1)
δ

δJµ(y1)

)
δZ̃[K∗, K, J ]
δK∗(y1)

+ iK(y1)Z̃[K∗, K, J ] = 0. (15)

Here, and later repeating variables denote the integration over the whole spacetime.
Let us calculate the functional derivative of the last identity with respect to 2n-1

sources K(x1) . . .K(xn)K∗(y2) . . .K∗(yn) at the point where all sources are equal to
zero. Thus

S−1(y1, z)
δ2nZ̃[0]

δK(x1) . . . δK(xn)δK∗(z)δK∗(y2) . . . δK∗(yn)
−
(

2e
δ

δJµ(y1)
∂

∂yµ1
+

+e
∂

∂yµ1

δ

δJµ(y1)
+ e2 δ

δJµ(y1)
δ

δJµ(y1)

)
δ2nZ̃[0]

δK(x1) . . . δK(xn)δK∗(y1) . . . δK∗(yn)
+

+i
n∑
i=1

δ(xi−y1)
δ2(n−1)Z̃[0]

δK(x1) . . . δK(xi−1)δK(xi+1) . . . δK(xn)δK∗(y2) . . . δK∗(yn)
= 0. (16)

Using (11) we can write

S−1(y1, z)
1
in
S̃n(x1, . . . , xn; z, y2, . . . , yn) =

(
2e

δ

δJµ(y1)
∂

∂yµ1
+

+e
∂

∂yµ1

δ

δJµ(y1)
+ e2 δ

δJµ(y1)
δ

δJµ(y1)

)
1
in
S̃n(x1, . . . , xn; y1, y2, . . . , yn)−

− i

in−1

n∑
i=1

δ(xi − y1)S̃2(n−1)(x1, . . . , xi−1, xi+1, . . . , xn; y2, . . . , yn) = 0. (17)

After some transformations we have

S̃n(x1, . . . , xn; z, y2, . . . , yn) = S(z, y1)
(

2e
δ

δJµ(y1)
∂

∂yµ1
+

+e
∂

∂yµ1

δ

δJµ(y1)
+ e2 δ

δJµ(y1)
δ

δJµ(y1)

)
S̃n(x1, . . . , xn; y1, y2, . . . , yn)+

+
n∑
i=1

S(xi − z)S̃2(n−1)(x1, . . . , xi−1, xi+1, . . . , xn; y2, . . . , yn) = 0. (18)
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The expression in the brackets in (18) is a functional operator and a kernel of this
equation. It is denoted by T̂ (y1) :

T̂ (y1) = 2e
δ

δJµ(y1)
∂

∂yµ1
+

∂

∂yµ1
e

δ

δJµ(y1)
+ e2 δ

δJµ(y1)
δ

δJµ(y1)
. (19)

With the help of (19) equation (18) can be written as following:

S̃n = ST̂ S̃n + ΣSS̃2(n−1). (20)

3. The verification for the case of two scalar particles

The derived equation (20) can be verified for the case of two scalar particles. We have
in this case

S̃2(x1, x2; z, y2) = S(z, y1)T (y1)S̃2(x1, x2; y1, y2)+

S(x1, z)S̃(x2, y2) + S(x2 , z)S̃(x1, y2). (21)

In the zero order, the first term on the right hand side vanishes. Since S2(x1, x2; z, y2) =
S(x1 , z)S(x2, y2) + S(x2 , z)S(x1, y2), then (18) is correct. In the second order, equation
(18) for two-particle propagator can be written as follows:

δ4Z(2)[0]
δK(x1)δK(x2)δK∗(z)δK∗(y2)

= S(z, y1)
(
−2e

δ

δJµ(y1)
∂

∂yµ1
×

× δ4Z(1)[0]
δK(x1)δK(x2)δK∗(y1)δK∗(y2)

− e ∂

∂yµ1

δ

δJµ(y1)
δ4Z(1)[0]

δK(x1)δK(x2)δK∗(y1)δK∗(y2)

−e2 δ

δJµ(y1)
δ

δJµ(y1)
δ4Z[0]

δK(x1)δK(x2)δK∗(y1)δK∗(y2)

)
+ iS(x1 , z)

δ2Z(2)[0]
δK(x2)δK∗(y2)

+iS(x2 , z)
δ2Z(2)[0]

δK(x1)δK∗(y2)
. (22)

Let us calculate the generating functional (5) in two lower orders of the perturbation
theory with respect to the coupling constant e. In the first order we obtain

Z(1) = eK∗(x)
(
S(x, z)

↔
∂
µ

z S(z, y)
)
K(y)Dµν (z, t)Jν(t)Z, (23)

where we use the notation (2). By analogy in the second order we have
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Z(2) = ie2K∗(x)S(x, z)S(z, y)K(y)Dµρ (z, t)Jρ(t)Dµσ(z1, t1)Jσ(t1)Z +

+ e2K∗(x)
(
S(x, z)

↔
∂
µ

z S(z, t)
)

(∂νt S(t, y))K(y)Dµν (z, t)Z −

− e2K∗(x)
(
S(x, z)

↔
∂
µ

z ∂
ν
t S(z, t)

)
S(t, y)K(y)Dµν (z, t)Z −

− e2K∗(x)
(
S(x, z)

↔
∂
µ

z S(z, y)
)
K(y) ×

× K∗(x1)
(
S(x1 , t)

↔
∂
ν

t S(t, y1)
)
K(y1)Dµν(z, t)Z + . . . . (24)

To obtain the second order approximation for the generating functional, let us write
only the terms giving nonzero contribution into (22). For the fourth derivative of (24) we
have

− δ4Z(2)[0]
δK(x1)δK(x2)δK∗(z)δK∗(y2)

=

= ie2S(z, u)
(
∂µuS(u, v)

↔
∂
ν

v S(x1, v)
)
S(x2 , y2)Dµν(u, v) −

− ie2 (∂µuS(z, v))
(
S(u, v)

↔
∂
ν

v S(x1, v)
)
S(x2 , y2)Dµν (u, v)−

− e2S(y2 , u) (∂µuS(x1 , u))
(
S(z, v)

↔
∂
ν

v S(x2, v)
)
Dµν(u, v) +

+ {x1 ↔ x2; z ↔ y2; x1 ↔ x2, z ↔ y2}. (25)

By analogy, we obtain the terms of (22) containing second derivatives:

iS(x1 , z)
δ2Z(2)[0]

δK(x2)δK∗(y2)
+ {x1 ↔ x2} = ie2S(x1 , z)S(y2, u)×

×
(
∂µuS(u, v)

↔
∂
ν

v S(x2 , v)
)
Dµν(u, v)−

−ie2S(x1, z) (∂µuS(y2, u))
(
S(u, v)

↔
∂
ν

v S(x2 , v)
)
Dµν(u, v) + {x1 ↔ x2}. (26)

For the fourth derivative of the functional Z(1), that is of (23), we have
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− S(z, y1)K(y1)
δ4Z(1)[0]

δK(x1)δK(x2)δK∗(y1)δK∗(y2)
=

ie2
(
S(z, y1)

↔
∂
µ

y1
S(y1 , t)

)
(∂νt S(x1, t))S(x2, y2)Dµν (y1, t) +

+ ie2S(z, y1)
(
S(y2 , t)

↔
∂
ν

t S(x1, t)
)(↔

∂
µ

y1
S(x2, y1)

)
Dµν(y1, t)−

− ie2
(
S(z, y1)

↔
∂
µ

y1
∂νt S(y1 , t)

)
S(x1 , t)S(x2, y2)Dµν(y1 , t) +

{x1 ↔ x2; y1 ↔ y2; x1 ↔ x2, y1 ↔ y2}. (27)

Substituting (25), (26), (27) into equation (22), collecting similar terms, renaming
integration variables when it is necessary, we can see that the equation for the two-particle
propagator is correct in the second order.

The main result of this paper is the derivation of equation (18) which permits to
use functional methods for investigation of the kernel of the n-particle equation. We are
planning to develop further this approach in a future publication.
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