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Abstract

In the proposed model, polarization in the scattering amplitude for a Gaussian
potential including spin is considered. The problem of scattering amplitude is for-
mulated in two different ways: the first and second Born approximations along with
their high energy limits and the eikonal approximation including Wallace correc-
tions. A comparison of the numerical zeros of the scattering amplitude computed in
the above two approximations is studied in the complex momentum transfer plane.
An analysis of the zero trajectories shows that the contribution of the spin part
in the potential is quite significant at high energies whereas at low energies the
spin-part has no appreciable effect.

Key Words: Scattering amplitude, Born approximation, Eikonal approximation,
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1. Introduction

The recent study [1-5] of the scattering of particles by Gersten, Barrelet and others
has widened largely the possibilities of employing the complex zeros of the scattering am-
plitude. Gersten [1-3] discussed the possibility of reconstructing the scattering amplitude
with the aid of the zeros and has shown that the treatment of the ambiguities in phase
shift analysis is greatly simplified, if one considers the complex zeros of the scattering
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amplitude in the cosine of the scattering angle plane. De Shalit [6] pointed out that the
polarization patterns in direct nuclear reactions can be explained simply by the position
of the complex zeros. This idea has been employed by Buhring [7] to analyze the slow
electrons elastically scattered from heavy atoms. Barrelet [8] analyzed the employment
of the zeros of the scattering amplitudes in reconstructing the scattering of spin-1

2
and

spin-0 particle scattering. He investigated the π+p scattering data and has shown that
the analysis of the complex zeros has many advantages including the analysis of resonance
position and identifying their spin. Carter [9] used the zeros of differential cross-section
for the process spin (1

2 + 1
2 ) → (0 + 0) using the reaction p̄p → π−π+ and found evi-

dence for the existence of three dominant meson spin states and a detailed fit to the data
obtained supported a resonance interpretation of these states.

In the elastic scattering of intermediate energy protons by spin-zero nuclei the strong
spin-orbit force gives rise to interesting polarization effects. The polarization is quite
large so that the spin-flip amplitude must be significant. To reproduce this, a spin-
orbit potential of Gaussian shape is studied in this paper. The first and second Born
approximation to the general off-shell scattering amplitude for the scattering from a
potential with a spin-orbit part as well as a central component are formulated. The high
energy limits of these amplitudes on energy shell are then obtained. A reliable estimate
for the scattering amplitudes to first and second order in the potential at high energies
with small scattering angles provided by eikonal series are also derived. Corrections to
the eikonal approximation suggested by Wallace [10,11] and evaluated by Waxman et al.
[12] for a velocity dependent and spin-orbit potential have been included and compared
with the high energy Born amplitudes. We then find the zeros of the amplitudes obtained
in the above two approaches. The behaviour of the zero trajectories obtained from the
different approximation methods for our model potential are then studied in the complex
momentum transfer plane which turn out to be the best to study the nature of the zero
trajectories.

2. Formulation of scattering amplitude with spin

The formal expression [13] for the scattering matrix in the simplest case of scattering
of spin-half particles by a spin-zero target is given by

F̂ (k, cos θ) = F (k, cosθ) + σ · n̂G(k, cos θ), (1)

where σ is the Pauli spin vector and n̂ is the axial unit vector perpendicular to the
scattering plane. The differential cross-section for a transition from (k, ν) to (k′, ν ′)
states is formulated as

dσν
dΩ

= |F |2 + |G|2 + (F ?G+ FG?)n̂ ·Pi, (2)

where Pi =< χν|σ|χν > is the initial polarization vector, k and k′- the incident and
final momenta and χν and χν′ are the initial and final spin eigenvectors, respectively. We
observe that, in general, the above expression depends not only on the momentum and
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the scattering angle but also on the spin orientation of the incident particles, or more
exactly, on the angle between the normal n̂ to the scattering plane and the direction of
polarization Pi . An interesting particular case is that we choose the axis of quantization
along the vector n̂ perpendicular to the scattering plane. For example, if we write χν= 1

2
and χν=− 1

2
for the spinors describing incident particles respectively polarized parallel and

antiparallel to n̂, the differential cross section then reduces to

dσ±1
2

dΩ
= |F ±G|2 (3)

and we get a quite simple structure for the 2× 2 matrix F̂ in an explicit form

F̂ =
(
F + G 0

0 F −G

)
(4)

where no spin-flip is allowed.

3. First and Second Born approximation for a Gaussian potential

Considering the non-relativistic spin-zero and spin-half scattering, we take a simple
model of spin-dependent Gaussian potential of the form

V (r) = Vc(r) + σ · LVs(r) = V0e
−α2r2/2 + σ · LV2e

−ξ2r2/2 (5)

The spin non-flip and spin-flip parts of the first Born approximation to the scattering
amplitude for this potential are given by

FB1(k,k′) = −µV0

h̄2

√
2π
α3

e−q
2/2α2

(6)

GB1(k,k′) = −|k× k′| iµV2

h̄2

√
2π
ξ5

e−q
2/2ξ2

, (7)

where q = k − k′ is the momentum transfer. In the second Born approximation for the
same potential, we get the spin non-flip and spin-flip parts of the scattering amplitude as

FB2(k,k′) = (
µV0

h̄2α2
)2 e
−q2/4α2

K
[
√
πQα1(K) +

iπ

α
Eα1(K)]

+(
µV2

2h̄ξ2
)2e−q

2/4ξ2
e−K

2/ξ2

×[4(k · k′)ρ′ξ(K2) − (k × k′)2ρ′′ξ (K2)] (8)

GB2(k,k′) = |k× k′|(µη
h̄2 )2 ih̄V0V2

2α3ξ3
[e−k

2/2ξ2
e−k

′2/2α2
ρ′η(M2)

+e−k
2/2α2

e−k
′2/2ξ2

ρ′η(N2)

−i( µV2

2h̄ξ2
)2e−q

2/4ξ2
e−K

2/ξ2
2 ρ′ξ(K

2)], (9)
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where

K = |K| = |k + k′

2
|, η2 =

2α2ξ2

α2 + ξ2

Qα1(K) = D(
k0 +K

α
) −D(

k0 −K
α

), Eα1(K) = e−(k0−K)2/α2
− e−(k0+K)2/α2

ρξ(K2) =
eK

2/ξ2

K2
[
√
πQξ1(K) +

iπ

2
Eξ1(K)]

M =
η2

2α2ξ2
(α2k + ξ2k′), N =

η2

2α2ξ2
(ξ2k + α2k′) (10)

D(z) = e−z
2 ∫ z

0
ex

2
dx being the Dawson’s integral [14] and k0 is the magnitude of the

momentum in the intermidiate stage. Also, ρ′ξ(K
2) and ρ′′ξ (K2) are the first and second

order derivatives of ρξ(K2), respectively, and ρ′η(M2) and ρ′η(N2) are obtained by just
replacing ξ by η and K2 by M2 and N2, respectively, in ρ′ξ(K

2).

4. High energy limit of the Gaussian amplitudes

For high energy limit ka >> 1,which is the short wave length condition, ‘a′-being the
range of the potential, we consider the amplitudes on-shell, where |k| = |k′| = k0 leading
to the condition k2

0 >> q2 with q2 = 2k2
0(1− cos θ). The spin non-flip amplitude and the

spin flip amplitudes in the second Born approximation then become

FB2H(q, k0) = (
µV0

h̄2α2
)2e−q

2/4α2
{
√
πα

4k2
0

(1− q2

2α2
) +

iπ

2k0
}+ (

µV2

2h̄ξ2
)2e−q

2/4ξ2

×[
2iπk0

ξ2
(1− q2

4ξ2
) +

4
√
π

ξ
(
3
4
− 7q2

16ξ2
+

q4

32ξ4
)] (11)

GB2H(q, k0) = k2
0 sin θ [

ih̄V0V2

(αξ)5
(
µη3

h̄2
)2e−q

2/{2(α2+ξ2)}

{ iπ

2η2k0
+
√
π

ηk2
0

(
3
4
− η2q2

8α2ξ2
)}

+
1
2i

(
µV2

h̄2ξ2
)2e−q

2/4ξ2
{ iπ

2ξ2k0
+
√
π

ξk2
0

(
3
4
− q2

8ξ2
}]. (12)

In the evaluation of these amplitudes we keep the dominant terms and neglected the
terms of order lower than 1/k2

0. The spin non-flip and spin-flip amplitudes in the first
Born approximation for high energy limit are the same as we obtained earlier for the
simple first Born approximation, so that we have

FB1H(q) = −µV0

h̄2

√
2π
α3

e−q
2/2α2

(13)
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GB1H(q, k0) = k2
0 sin θ [− iµV2

h̄2

√
2π
ξ5

e−q
2/2ξ2

]. (14)

5. Eikonal approximation for Gaussian potential

The impact parameter representation for the spin non-flip and spin-flip amplitudes
are given by [13]

FE(q, k0) = −ik0

∫ ∞
0

bdbJ0(qb)Γf (b) (15)

GE(q, k0) = k2
0 sin θ[− i

q

∫ ∞
0

bdbJ1(qb)Γg(b)], (16)

where the profile functions Γg(b) and Γf(b) are

Γg(b) ' −eiχ̄(b) sin[∆χ(b)] ; Γf(b) ' 1− eiχ̄(b) sin[∆χ(b)] + i
Γg(b)
2k0b

(17)

with

χ̄(b) = δl+ + δl− ; ∆χ(b) = δl+ − δl− ; δl± = − µ

h̄2k0

∫ ∞
−∞

Vl±(r)dz (18)

and

Vl+ = Vc(r) + lVs(r); J = l+
1
2

= l+ , (19)

Vl− = Vc(r)− (l+ 1)Vs(r); J = l+
1
2

= l− (20)

The impact parameter ‘b′ has the quantal definition k0b = l+ 1
2
, ‘l’ being the partial waves

and δl± - the partial wave phase shifts. If we consider Wallace-Waxman [13] expansion
for correction in the eikonal phases we see that to the lowest order correction we get the
spin non-flip amplitude to first and second order in V as

FE1(q) = − (
µV0

h̄2 )
√

2π
α3

e−q
2/2α2

(21)

FE2(q, k0) = (
µV0

h̄2 )2 πi

2k0α4
e−q

2/4α2
+ (

µV2

h̄2 )2 k0πi

2ξ6
(1− q2

4ξ2
)e−q

2/4ξ2

−(
µV2

h̄2 )2 πi

8k0ξ4
e−q

2/4ξ2
(22)
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and the spin-flip amplitudes to first and second order in V as

GE1(q, k0) = k2
0 sin θ[−i(µV2

h̄2 )
√

2π
ξ5

e−q
2/2ξ2

] (23)

GE2(q, k0) = k2
0 sin θ[−(

µ

h̄2
)2 V0V2πη

4

2k0α5ξ5
e−q

2/2(α2+ξ2) + (
µV2

h̄2
)2 π

4k0ξ6
e−q

2/4ξ2
]. (24)

Comparing these eikonal amplitudes with those obtained in the Born approximation
method, we observe that, to the zeroth order Wallace-Waxman correction, the eikonal
result for the first order potential strength exactly reproduces the first order Born ampli-
tude at high energy. But for the second order potential strength, the eikonal result for the
non-spin part reproduces only the imaginary part of the second order Born amplitude at
high energy and the eikonal result for the spin part reproduces only the real part of the
second order Born amplitude for high energy. We therefore consider the first correction
term in the Wallace-Waxman [13] expansion and expand Γg(b) and Γf (b) to second order
in V and have the spin-flip amplitudes to first and second order in V in the following
form:

GE1(q, k0) = k2
0 sin θ [−iµV2

h̄2

√
2π
ξ5

e−q
2/2ξ2

] (25)

GE2(q, k0) = k2
0 sin θ[i(

µ

h̄2 )2 V0V2

k2
0

√
πη5

α5ξ5
(
3
4
− η2q2

8α2ξ2
)e−q

2/2(α2+ξ2)

− i(µV2

h̄2 )2

√
π

4k2
0ξ

5
(
3
2
− q2

4ξ2
)e−q

2/4ξ2
− (

µ

h̄2 )2 V0V2π

k0

η4

2α5ξ5
e−q

2/2(α2+ξ2)

+(
µV2

h̄2 )2 π

4k0ξ6
e−q

2/4ξ2
] (26)

and the spin non-flip amplitude to first and second order in V as

FE1(q) = −µV0

h̄2

√
2π
α3

e−q
2/2α2

(27)

FE2(q, k0) = (
µV0

h̄2α2
)2e−q

2/4α2
[
iπ

2k0
+
√
πα

4k2
0

(1− q2

2α2
)]

+(
µV2

h̄2ξ2
)2e−q

2/4ξ2
[
iπk0

2ξ2
(1 − q2

4ξ2
) − { iπ

8k0
+
√
πξ

16k2
0

(1− q2

2ξ2
)}

+
√
π

ξ
(
3
4
− 7q2

16ξ2
+

q2

32ξ4
)] (28)

These equations show that the eikonal result completely reproduces the second order
Born result at high energies in addition with the term containing 1/k0 in the non-spin
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part. Thus we observe that a Wallace correction as an expansion in the eikonal phase
shift function forces the second order eikonal amplitude to reproduce all the real and
dominant terms of the second order Born amplitude in the high energy limit.

6. Zeros of the Gaussian amplitudes

Since the functions F + G and F −G are simply connected by the relation F (−θ) +
G(−θ) = F (θ) − G(θ), it is sufficient to formulate the zeros of F + G only. On energy
shell we have |k| = |k′| = k0 which gives σ · (k×k′) = σ · n̂k2

0 sin θ. To obtain the zeros of
scattering amplitudes in each of the three approximations we introduce the Mandelstam
variable −q2 = t = tr + iti in the s-channel. For simplicity we take α = ξ which
gives η2 = α2 = ξ2 and M = N = K. For the zeroth order Wallace correction the
zeros of the amplitude from the eikonal approximation do not give us a clear picture
of the zero trajectories except at very high energy. So we combine this pure eikonal
solutions with the first and second order Born solutions in the high energy limit. Using
the expression for−q2 from eikonal approximation, in the zero solutions of the high energy
Born amplitude, we have the zeros for eikonal-Born amplitude. In each of the three cases
a solution t = (tr , ti) can be sought out by using computer minimization routine. We
note that the function t(k0) has an infinite number of sheets due to the logarithmic cut
and the principal sheet corresponds to the first zero trajectory. Working with the natural
units h̄ = c = 1 and using computer minimization programs we calculate the principal or
first zero trajectories in the C.M system in all three cases for a range of the momentum
k, between 0.20 fm−1 to 20.0 fm−1. A small repulsive potential V0 = 0.95fm−1 for the
central part is taken throughout. The potential strength of the spin orbit part Vs is taken
as 0.095fm−1 and for simplicity, the shape parameter α and ξ both are taken as 0.99fm−1.

7. Discussion and conclusion

Due to the presence of the spin-orbit part in the potential V (r) we have the zeros in
pairs. The computer program is so designed that it calculates simultaneously the zeros of
the scattering amplitude for the central potential only with Vs = 0 as well as the zeros of
the scattering amplitude for the potential which includes both the central part and the
spin-orbit part. The zero trajectories obtained for F +G in all the three approximations
together with the zero trajectories obtained for the zero spin cases are shown in Figure
1 in the complex momentum transfer plane. In Figure we observe that we have three
different curves, for each of the three approximations: the bold one for the zero spin
cases and the thinner and the dotted one for the spin-dependent cases. First, we observe
that the zero spin curves though remain far apart from each other at low energies, become
close at high energies. We also observe that in each of the three cases the spin-dependent
curves converge slowly towards the corresponding zero spin curves with the increase of
energy. After a certain stage, the sets of spin-dependent curves cross the corresponding
zero spin curves and then diverge. The values of the momentum k at the crossing points
lie between 1.85 and 2.0fm−1. After diverging, the first set of spin-dependent curves (the
thinner lines) converge at a point below the zero spin curves and the second set of spin-
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dependent curves (the dotted lines) converge at a point above the zero spin curves. This
analyses that the contribution of the spin-orbit part in the potential is quite significant
at high energies whereas at low energies the spin-orbit part has no appreciable effect.
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Figure 1. Comparison of the Zero trajectories in the complex-t plane for a spin dependent

Gaussian potential with the non-spin part as V0 and the spin-orbit part as Vs in three different

approximation methods.

To conclude, we observe that the behaviour of the zero trajectories we obtain for
the spin-dependent Gaussian potential is similar to those of the corresponding spin-
independent potential except perhaps for large values of the momentum k. The behaviour
of the zero trajectories also shows that the contribution of spin part in the potential is of
little significance in the range of energy 140Mev to 550Mev. But for energy higher than
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550Mev, it is essential to take account of the spin part in the potential. Also the zero
solutions for the Born amplitude in the high energy limit and the zero solutions for the
eikonal plus Born amplitude both become close to the numerical Born solutions at high
energies as expected.

References

[1] . Gersten, Nucl. Phys., A 219 (1974) 317.

[2] . Gersten, Journal De Physique, C 2 (1985) 471.

[3] . Gersten, Nucl. Phys., B 12 (1969) 537.

[4] . E. Bowcock et al., J. Phys. G: Nucl. Phys., 11 (1985) 1145.
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