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Effect of Carrier Concentration Dependant Mobility

on the Performance of High Electron Mobility

Transistors

Mustafa EROL
Department of Physics, Education Faculty of Buca,
Dokuz Eylül University, 35150, İzmir - TURKEY
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Abstract

The influence of the sheet carrier concentration dependence on mobility on the
performance of High Electron Mobility Transistor (HEMT) structures is theoreti-
cally modeled. The model basically takes into account both the drift and diffusion
part of the overall drain current. The normalised drain current and normalised
transconductance are found to be greatly affected by the carrier concentration de-
pendant mobility.

1. Introduction

High Electron Mobility Transistor (HEMT) structures have been the focus of intense
research, with particular focus on high speed and high frequency semiconductor devices,
since the introduction of the devices in 1980 [1]. This device has demonstrated some
unusually higher transconductance, lower noise and extremely fast switching speeds. In
order to obtain optimum device parameters and to attain even higher performance, some
considerable amount of effort has gone into the more realistic modeling of the HEMT
devices [2-7], each dealing with different aspects of them. Among the findings, some works
have clearly demonstrated, both theoretically and experimentally, that the mobility of the
channel electrons depend strongly on the carrier concentration [8]. However, the effects
of the carrier concentration dependent mobility, as well as the diffusion part of the total
current, have not yet been simultaneously taken into account. This paper, hence, aims
to model the effect of the carrier concentration dependant mobility on the characteristics
and on the transconductance of the devices, by simply employing the diffusion portion of
the drain current as well as the drift part.
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2. The Model

The Al0.3Ga0.7 As in a HEMT structure is fully depleted under normal operating
conditions and the electrons are confined to a triangular like potential well, at the GaAs
side of the heterointerface. The sheet carrier concentration at a point x along the channel
is hence given by, [2]

ns(x) =
ε

qd∗
[Vg − VT − V (x)] (1)

where ε is the dielectric permittivity of Al0.3Ga0.7 As, q is the electronic charge, d∗ is the
total effective distance between the metal gate and the actual channel, VT denotes the
threshold voltage of the device, and finally V (x) =

∫
E(x)dx is the position dependant

potential within the channel. Note here that d∗ = d + ∆d is larger than the actual
physical distance, d, because of the field induced variation in the Fermi Energy of the two-
dimensional electron gas (2DEG) and the difference is considered to be about ∆d = 80Å.

The model presented here is valid for the range in which the charge control is linearly
changing with the gate voltage. It is however well known that, as Vg starts to saturate,
a second parasitic channel is eventually created in the doped Al0.3Ga0.7 As layer. Hence
a so-called three-dimensional electron gas becomes reality instead of a two-dimensional
one [9]. At gate voltages closer to the threshold voltage, the Vg dependence of the sheet
carrier concentration becomes superlinear. This effect is also to be excluded in the model
in order to reach the result in the shortest way. These effects however can be included to
obtain even better results.

The drain current is in general given by the sum of two components, namely drift and
diffusion parts [7],

Id = qWns(x)v(x) + qWD(x, T )
d

dx
ns(x) (2)

where W is the width of the gate, v(x) denoting the position dependant velocity and
D(x,T) denotes the diffusion constant for the conducting 2DEG electrons.

Various velocity-field characteristic curves have been proposed in the modeling of
the devices [3-5]. Yokoyama and Sakaki have pointed out that the electric field may not
always be high enough for the electrons to move at their saturation velocity in the vicinity
of the source under the gate and mentioned the importance of the low field mobility in
the modeling of HEMT and other FET devices [10]. Following that, the effect of the low
field mobility on the performance of the FET devices was tackled by Sakaki et al. [11].
We, therefore, try to concentrate only on the ns dependant mobility and its influence on
both drain current and transconductance. For the velocity-field relation, we intend to
employ the one most commonly used that is [12]

v(x) =
µ(x)E(x)

1 + µ(x)E(x)
vs

(3)

138



EROL

where E(x) is the electric field at point x, vs is the saturation velocity of the electrons and
µ(x) is the position dependant mobility of the electrons. The mobility is position depen-
dant because the sheet carrier concentration ns(x) varies along the channel. The mobility
of the electrons along the channel is strongly affected by the sheet carrier concentration.
So the relation is expressed in simplest manner as follows [13]:

µ(x) = µ0
nαs (x)
nαs0

(4)

where µ0 is the low field mobility, a very important parameter for the device performance;
and ns0 is the equilibrium sheet carrier concentration of the heterostructure. The crucial
exponent α on the other hand, depends strongly on the operating temperature and the
internal structure of the HEMT devices but typically ranging from 0.3 to 2. The appear-
ance of the parameter α in fact mostly originates from the ionised impurity scattering.
For the HEMT structures having about 200 Å of spacer layer, the parameter α is found
to be about 0.7 at 4.2 K [14], and for the devices having no spacer layer, it is about 1.1,
0.5 and 0.3 at 10,77 and 300 K, respectively [13].

Substitution of D(x,T)=µ(x)kT/q, µ(x), v(x) and ns (x) into the equation (2) and
integrating it from V (x) = 0 (x = 0 at the source end) to V (x) = Vd (x = L at the drain
end), gives us the following equation for the overall drain current which includes both
linear and saturation regions inside:

Id =
A(α)[V α+2

p − (Vp − Vd)α+2]−B(α)[V α+1
p − (Vp − Vd)α+1]

1 + C(α)[V α+1
p − (Vp − Vd)α+1]

(5)

where

A(α) =
qWµ0

Lnαso(α + 2)
(
ε

qd∗
)α+1 (6)

B(α) =
WkTµ0

Lnαs0
(
ε

qd∗
)α+1 (7)

C(α) =
µ0

Lvsnαs0(α+ 1)
(
ε

qd∗
)α (8)

and k is the Boltzmann’s constant, T is the absolute temperature, L is the gate length
and W is the gate width. By doing so we obviously ignore both source and drain contact
resistances, which makes the situation quite straightforward to understand. Equation (5)
is to be employed for the case prior to “quasi pinchoff”. In this situation, the electric
field at the drain end of the gate remains finite, which means the carrier concentration at
the drain end is not zero but has a finite value. The situation beyond the quasi pinchoff
can easily be obtained by substituting Vd = Vp = Vg − VT . So the drain current for the
saturation region can be given by,

Ids =
A(α)V α+2

p −B(α)V α+1
p

1 + C(α)V α+1
p

. (9)
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The influence of the parameter α on the transconductance is even more important and
must also be significant. In order to obtain an equation for the transconductance beyond
the quasi pinchoff, we employ the actual definition for the transconductance, that is

gm =
dld
dVg

. (10)

By doing so, we finally obtain the following equation for the transconductance,

gm =
(α+ 2)A(α)V α+1

p − (α+ 1)B(α)V αp +A(α)C(α)V 2(α+1)
p

(1 +C(α)V α+1
p )2

. (11)

This equation now gives us the actual relation between the parameter α and the transcon-
ductance for a certain gate voltage.

3. Results and Discussion

Figure 1 is plotted by using equations (5) and (9), and provides information about
the drain voltage dependence of the normalized drain current. A brief examination of
the figure, makes a few points clear that are worth mentioning. Firstly, the influence of
the parameter α depends somehow on the gate voltage or the pinchoff voltage. When Vp
less than 0.6 V or Vg is negative, the drain saturation current decreases as the parameter
increases. However, when Vp is larger than 0.6 V which means Vg positive, the drain
saturation current goes up in direct propotion with the parameter α. Secondly, the
effect previously seen by others [11], namely, the occurence of the saturation at lower
drain voltages, is not observed here. This is presumably due to the diffusion part of the
current.

In Figure 2, the normalised trasconductance (gm/W) is plotted versus the gate voltage
or the pinchoff voltage. The points extracted from the Figure 1 is more pronouncingly
caught here. At a certain gate voltage, the transconductance increases as the parameter
α goes up, because the mobility of the electrons increases. What happens however when
Vp is less than 0.45 V is not very clear. We beleive that the increase in the mobility is
supressed by the change in the actual channel length. The other point worth noting here
is the dependence of the transconductance on the pinchhoff voltage. For the case in which
α=0, the dependence seems to be quite linear. For positive α values, as α increases, the
dependence on the other hand becomes more and more superlinear. The saturation in the
transconductance as the gate voltage increases, is not seen here, because the employed
charge control model does not include that effect.

In summary, the carrier concentration dependence of the mobility influences the per-
formance of the HEMT structures significantly, Especially, at normal operating voltages
the parameter α greatly increases the transconductance.
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Figure 1. Normalised drain current

(IL=Id/W) plotted versus drain volt-

age (Vd) using equations (5) and (9).

The values used here are L=35 µm,

W=65 µm, ns0=3.4x1015m−2, µ0 =

0.825 m2/Vs, vs=2.5x105 m/s, d∗=95nm,

ε=1.05x10−10Nm2/C2 and VT=-0.6V.

Figure 2. Gate voltage dependence of the

normalised transconductance (g′m = gm/W )

plotted by using the Equation (11). The same

numbers, as in the Figure 1, are used in the

calculation.
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