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Abstract

Wave propagation and dissipation of magnetosonic waves are considered in an in-
homogenous viscous coronal plasma permeated by a spatially varying magnetic field.
In the linear magnetohydrodynamic approximation the dispersion relation yields two
wave modes, fast and slow respectively. Depending on the physical parameters of the
medium the damping length scales of the modes show varying behaviours. Damping
length scales of the modes show sudden decrease at relevant heights. These drops
may be due to phase mixing and resonance absorption. Wave flux density of the
magnetosonic waves turns out to be of the order of 106 erg cm−2 s−1. This is high
enough to replace the lost energy through optically thin emission and the thermal
conduction down to the transition region

Key Words: magnetosonic waves, solar corona, dispersion relation, damping length
scale.

1. Introduction

One of the long-standing problems of solar atmosphere is its ‘anomalous’ temperature
profile. As is well-known that the temperature of the solar photosphere is 5780 K. If one
moves radially out then one reaches at the temperature minimum occurring at about 500
km above the photosphere. Then the temperature rises again all through the chromo-
sphere but slowly. The sharpest gradient of the temperature profile is throughout the
transition region. In the corona, the temperature keeps rising but comparatively less
sharply, reaching 1− 5× 106 K at the upper corona [1].

Such a hot plasma is bound to lose energy through optically thin radiation and thermal
conduction to the transition region below. These losses must be balanced by a heat source

195



KALOMENI, HÜRKAL, PEKÜNLÜ, YAKUT

to maintain the coronal temperatures. The long-sought-for answer to the question, “By
what mechanism or mechanisms is the corona being heated ?” has yet to be satisfactorily
given.

Although it will not be addressed directly in this study, a related problem to the one
posed above is the existence of high speed solar wind. Observations of high speed solar
wind indicate the need for a substantial energy flux that is transported outward from
the coronal base by some process other than convection or classical thermal conduction.
Undamped Alfvén waves are claimed to be capable of supplying the necessary energy flux
[2][3][4][5][6][7].

It is obvious that all the carriers of mechanical energy derive their energy from the
nuclear processes in the solar core. This energy is then transported to the solar surface
in the form of radiation and convection. Mechanical energy is generated in the surface
convection zone. Since the density near the top boundary of this zone is smaller the
plasma motions become larger there and waves are quite easily generated in a narrow
surface layer.

Plasma motions in the convection zone can be described by a common temporal and
spatial turbulence spectrum. This spectrum consists of a distribution of plasma bubbles
of all sizes and lifetimes.

Energy is transported by macroscopic mechanisms (transport with velocity v and work
due to the pressure) and by microscopic mechanisms (thermal conductivity, viscosity,
resistivity, Hall effect, etc.). The microscopic mechanisms and the corresponding terms
in the energy and heat equations are called dissipative. These mechanisms increase the
entropy of the plasma and result in the conversion of mechanical energy into heat [8].
In dissipative processes organized motions of waves or potential energy is converted into
random thermal motions [9].

2. The Relative Importance of Processes for Dissipation

In this subsection we’ll examine the relative importance of four dissipative processes:
viscosity, thermal conduction, resistivity and Hall effect. For this purpose, we define
dimensionless parameters, so-called ‘numbers’ by referring to the induction equation, the
equation of motion and the energy equation. The equation giving the temporal and the
spatial evolution of the magnetic field is called the induction equation :

∂B
∂t

= ∇× (v ×B) + η∇2B, (1)

where v is the average velocity of the plasma in its bulk motion; η = (µσ)−1 is the
magnetic diffusivity; µ is the magnetic permeability; σ−1 is the electrical resistivity. The
first term on the right hand side of the induction equation is called the convective term
and the second term is called the diffusive term.

The Magnetic Reynolds number, Rm = l0V0/η, is the ratio of the convective term to
the diffusive term, where V0 is typical plasma speed and l0 is the length scale; it is a
measure of the strength of the coupling between the flow and the magnetic field[10]. In
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the solar atmosphere Rm � 1 so that the coupling is strong, i.e., plasma is “frozen into”
the magnetic field. That is to say, plasma and the magnetic field have no relative velocity
with respect to each other.

On the other hand, the motion of the plasma blob under various forces is described
by the equation of motion:

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p+ (∇×B) ×B/µ+ ρv

[
4
3
∇(∇ · v)−∇×∇× v

]
(2)

where ρ is the mass density; p is the pressure; and ρv is the viscosity coefficient. If
we take the ratio of the inertial term (left hand side term) to the viscous term then
we get the Reynolds number, Re = l0V0/v. The Magnetic Prandtl Number is defined as
Pm = Rm/Re = v/η. The Prandtl Number Pr = v/κ, is a measure of the ratio of viscous
to thermal diffusion.

The relative importance of viscosity and resistivity is characterized by the magnetic
Prandtl number Pm. If we substitute into Pm = v/η the parameter values for an active
region of the solar corona, we get, Pm ∼ 1010. This estimate shows that dissipation due
to resistivity can be neglected in comparison with dissipation due to viscosity.

Now let us see the relative importance of viscosity and Hall effect. This is characterized
by the dimensionless parameter τeωceP−1

m which is of the order of 10−3 in an active region.
te and ωce are electron collision time and electron cyclotron frequency, respectively. The
above given value (10−3 ) implies that we can neglect the Hall effect in comparison with
the effect of viscosity [11].

The relative importance of viscosity and thermal conductivity is characterized by the
β−1Pr where β = neTe/(B2/2µ0) another dimensionless parameter which measures the
relative importance of plasma pressure and magnetic pressure [12]. In an active coronal
region where we shall deal with the wave propagation and dissipation, β ∼ 0.016. In
this case, the relative importance of viscosity and thermal conductivity is β−1Pr ∼ 1
which means that viscosity and thermal conductivity are of the same importance. Nev-
ertheless, the inclusion of thermal conductivity makes the dispersion relation analytically
intractable. Therefore, the solution of the dispersion relation with its most general form
will be put off for future study.

3. Observational Evidence for the Existence of MHD Waves in the Solar
Corona

In the previous section we demonstrated that two dissipative processes out of four
are qualified for the coronal heating. But are we sure that MHD waves can propagate
through the corona? Are there any observational evidence as to their existence in the
solar atmosphere?

Optically thin emission lines of coronal plasma can provide information concerning the
velocity fluctuations associated with MHD waves (see [13][7]). To isolate line broadening
due to MHD waves, it is necessary to observe line widths of high temperature coronal
lines (formation temperature > 106K ) above the limb (> 1.10R�) where broadening of
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this nature becomes dominant. Early evidence for broadening of transition region (TR)
emission lines has been supplied by Skylab [14][15][16] and by OSO 8 observations [17][18].
However, Skylab and OSO 8 observations are restricted to moderate temperature lines
formed in the TR (i.e., C IV , N IV , O V with temperatures of formation < 5 × 105K)
and in regions very near the limb (< 20′′ above the limb), line broadening due to MHD
waves cannot be distinguished from other broadening mechanisms in the above mentioned
observations.

Through the 1990s, convincing evidence for the existence of MHD waves in the solar
atmosphere has been accumulated. For instance, Hassler et al [7] using a Colorado Uni-
versity’s sounding rocket experiment data provided high resolution EUV spectra along a
solar diameter and out to 1.2R� with spatial resoultion of 20′′ × 60′′. Spectra contained
TR and coronal emission lines, i.e., Mg X λλ 609 & 625, Fe XII λ 1242, O V λ 629, N V
λλ 1238 & 1242. All six lines displayed line broadening above the limb. As is well-known,
there are a series of effects such as opacity, systematic flows, spatial variation of thermal
Doppler width and MHD waves causing line broadening. Hassler et al. [7] seem to have
performed preliminary calculations on these effects so to conclude that the most likely
cause is the presence of MHD waves in the corona.

A similar study was carried out by Saba & Strong [6] with Solar Maximum Mission
(SMM) data. Flat Cyrstal Spectrometer (FCS) on board SMM took spectra of six coronal
X-ray line near a quiescent active region (QAR) loop. These lines are produced by the
transitions 1s− 2p2P1/2,3/2 of the H-like O VIII ion and the 1s2 − 1s2p transition of the
He-like ions Ne IX , Mg XI , Si XIII , S XV and Fe XXV. Ratios of the line fluxes for
various pairs of four ions (O VIII , Ne IX , Mg XI , Si XIII ) were compared with the
ratios of their emissivity functions to determine T e, the average electron temperature,
which was found to be T e = 3.0 ± 0.1× 106K. If the measured line widths were to be
attributed to thermal Doppler motions exclusively, a significant amount of plasma with
T e ≥ 6 × 106K would be required. Such high temperature plasma, authors claimed,
would be detected by high energy FCS and BCS (Brent Cyrstal Spectrometer) channels.
If the temperature equivalent of the measured line widths were as high as 6 × 106K
then spectrometers would detect flux in Si XIII channel 100 times more than actually
observed [6]. The absence of this flux indicates that the excess width is brought about
by non-thermal processes, either by MHD waves or non-thermal motions along the line
of sight.

An optically thin line profile assuming a Gaussian distribution gives a full width at
half maximum as below [19]:

FWHM2 = 4 ln 2
(
λ

c

)2(2kTi
M

+
1
2
〈
δv2
〉2)

, (3)

where λ is the wavelength; c is the speed of light; kB is Boltzmann constant; Ti is the
ion temperature; M is the ion mass; and < δv2 > is the rms velocity of the perturbation
that causes the non-thermal broadening of the line. Saba & Strong [6] claim that if the
broadening is due to the motions perpendicular to the magnetic field caused by Alfvén
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waves, then the energy flux carried by these waves is sufficient to replace the thermal
flux lost through optically thin radiation and thermal conduction to the TR below, i.e.,
FAlf = ρ〈δv2〉VA ≈ 3.1× 105 erg cm−2s−1 ≈ Fth.

Later, Doyle et al [4] combined SUMER, LASCO & UVCS data and Banerjee et al
[5] using SUMER data of SOHO evaluated the line width of Si VIII in the polar coronal
holes. Line width of Si VIII was found to be continuously increasing above the solar limb.
Simultaneous measurements of electron density showed that, 〈δv2〉1/2 ∝ ρ−1/4. This
observational fact supports the theoretical prediction that the rms velocity of undamped
Alfvén waves is inversely proportional to the quadratic root of the density. Using the
measured electron density and the rms velocity one can calculate the Alfvén wave’s flux
density ( see Banerjee et al [5] ). From their data set at 120′′ above the limb for the
North Polar Coronal Hole, using Ne = 4.8× 107 cm−3, 〈δv2〉 = 2× (43.9 km s−1)2 they
find FAlf = 4.9× 105 erg cm −2s−1 for B = 5 gauss which is only slightly lower than the
requirements for a coronal hole with a high speed solar wind flow.

In short Doyle et al [4] claim that the Alfvén waves with an amplitude of 30 - 50 km
s−1 (as observed) at the base of the coronal hole can generate non-linear solitary type
of waves which can contribute significantly to solar wind acceleration in open magnetic
field structures.

4. MHD Waves in Quiescent Active Regions

In the previous chapter, we have seen the observational evidence for the existence of
MHD waves in the solar corona. In this chapter we shall deal with magnetosonic wave
propagation and dissipation in the compressible, viscous coronal plasma.

In the past, Ruderman [20] investigated viscous damping of surface waves at a mag-
netic interface. He did not take thermal conduction into account and to solve his disper-
sion relation he assumed the small damping approximation. But the crux of the matter
lies in the fact that when MHD equations are to be solved self-consistently one should
not make assumptions a priori to their dissipational character; it should rather emerge
quite naturally from the solution. Van der Linden & Goosens [21] incorporated thermal
conduction into their equations but do not take viscosity in search of thermal instabil-
ities in a slab model. Cargill & Hood [22] also incorporate thermal conduction in their
investigation but do not include viscosity. Porter et al [23] [24] take both viscosity and
thermal conductivity into account but in the first paper [23] they assumed an homoge-
neous plasma and a uniform magnetic field ; in the second paper [24] they assumed an
inhomogeneous plasma but preserved magnetic field uniformity.

The major difference between past investigations and the present investigation lies
in the fact that the present one includes inhomogeneity, both in plasma disribution and
magnetic field. In our investigation, plasma density ρ and plasma pressure p are assumed
to be a function of height (z) from the coronal base:

ρ(z) = ρ0 exp(−z/Λp) ; p(z) = p0 exp(−z/Λp) (4)

where, ρ0 = µmpn = 0.6×1.6×10−27×3×1015 = 2.8×10−12 kgm−3 is the mass density
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at the coronal base; µ is the mean atomic weight; mp is the proton mass; n is the number
density; Λp is the pressure scale height and is given as

Λp = 50T (r/r�)2m = 50× 2× 106((6.96× 108 + z)/6.96× 108)2m, (5)

where T is temperature; r� is the solar radius; and r is the distance from the Sun’s center.
The plasma, the properties of which are described above, is permeated by dipole - like

magnetic field and is given as,

B(z) = B0 exp(−z/ΛB), (6)

where ΛB is magnetic field scale height and its value is taken as 2× 108 m [10]; and B0

is the value of magnetic field at the coronal base and is given as 0.005 T [11]. Alfven
velocity can be expressed in terms of length scales and z as

VA(z) = VA0 exp(−2 − δ
2ΛB

z), (7)

where VA0 = 2.5× 106ms−1 is the velocity at the coronal base and δ is the ratio of the
scale heigths: δ = ΛB/Λp [25].

Now, we can investigate the wave propagation and dissipation characteristics of mag-
netosonic waves in coronal plasma which is assumed to be viscous dissipative. This
investigation will be carried out in the linearized MHD context.

5. The Basic MHD Equations

The basic equations for the investigation of wave propagation and dissipation in a
plasma are the continuity of mass, momentum and energy, together with the induction
equation, in the form,

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0 (8)

ρ
∂v
∂t

+ ρ(v · ∇)v = −∇p+ (∇×B) ×B/µ+ ρv

[
4
3
∇(∇ · v)−∇×∇× v

]
(9)

Dp

Dt
− γp

ρ

Dρ

Dt
= 0 (10)

∂B
∂t

= ∇× (v ×B) (11)

∇ ·B = 0, (12)

where γ = 5/3 is the adiabatic index.
Since we are after plane wave solutions we assume that all the variables hydrodynamic

and electromagnetic alike, change as, exp[ik · r−ωt)], i.e., v1(r, t) = v1 exp[i(k · r−ωt]);
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where v1 is the rms velocity inferred from observations and given above as 〈δv2〉; k is the
wave vector; ω is the wave frequency; t is the time; r is the distance from the source.

In linear approximation wherein perturbation quantities are assumed to be small
compared to equilibrium values therefore have P1 � P0;B1 � B0 ; ρ1 � ρ0; v1 = 〈δv2〉.
Now, P = P0 + P1;B = B0 + B1; ρ = ρ0 + ρ1 and v1 are all substituted into equations
(8) - (12) and the result is:

∂ρ1

∂t
+ v1 · ∇ρ0 + ρ0∇ · v1 = 0 (13)

ρ0
∂v1

∂t
+ρ0(v1 ·∇)v1 = −∇p1 +(∇×B1)×B0/µ+ρv

[
4
3
∇(∇ · v1)−∇×∇× v1

]
(14)

∂p1

∂t
+ (v1 · ∇)p0 − c2s

[
∂ρ1

∂t
+ (v1 · ∇)ρ0

]
= 0 (15)

∂B1

∂t
= ∇× (v1 ×B0) (16)

∇ ·B1 = 0. (17)

Equation set (13)-(17) may be reduced to a single equation by differentiating Equation
(14) with respect to time and substituting for ∂ρ1/∂t; ∂p1/∂t and ∂B1/∂t from Equations
(13), (15)and (16), respectively. The temporal and the spatial operators are also replaced
by the below equivalents [26]:

∂

∂t
→ −iω ; ∇ → ik. (18)

The condition that must be satisfied in order for the system of Equations (13) - (17) to
yield a non-trivial solution gives a relation between ω and k called the dispersion relation.
This condition leads us to the dispersion relation of the fourth order in k:

[
c2sαiω −

4
3
α2ω2 − 4

3
αiωV 2

A − c2sV 2
A

]
k4 +

[
−7

3
αiω3 + V 2

Aω
2 − c2sω2

]
k2 + ω4 = 0, (19)

where i =
√
−1; and α = vρ/ρ0 .

It means that we have two separable quadratic equations in k. Each equation repre-
sents one wave mode. These modes are called as “fast” and “slow” with respect to their
phase velocities. Equation (19) is reduced to a quadratic equation by the substitution
k2 = K.

[
c2sαiω −

4
3
α2ω2 − 4

3
αiωV 2

A − c2sV 2
A

]
K2 +

[
−7

3
αiω3 + V 2

Aω
2 − c2sω2

]
K + ω4 = 0 (20)
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For the sake of simplicity in the solution of Equation (20), we’ll use abbrevations for
the coefficients, i.e., A = c2sαiω− 4

3α
2ω2− 4

3αiωV
2
A−c2sV 2

A and B = −7
3αiω

3+V 2
Aω

2−c2sω2.
With these substitutions Equation (20) becomes

AK2 + BK + ω4 = 0. (21)

The solution of Equation (21) is given as

K1,2 =
−B ∓

√
B2 − 4AC
2A

. (22)

Since the expression under the radical is complex, the solution is sought by De Moivre
formula :

n
√
z = n
√
r

[
cos
(
θ

n
+

2mπ
n

)
+ i sin

[
θ

n
+

2mπ
n

)]
, m = 0, 1, 2, . . .(n − 1), (23)

where z = x+ iy = r(cos θ + i sin θ).
In our case, x = −1

9
α2ω6 + (c2sω

2 + V 2
Aω

2)2 and y = i
(

2
3
αω5c2s + 2

3
αV 2

Aα
5
)

and
r =

√
x2 + y2. In Equation (22) the plus sign before the radical refers to the fast mode

and minus sign to the slow mode. There are two roots for the square root of a complex
number. Therefore the solution of the equation (23) yields four Ks and only those with
positive imaginary parts are the candidates to transfer energy to the medium, that is to
say, the positive imaginary part ensures wave damping.

The solution of Equation (23) finally becomes:

k2
∓ =

−c2sω2 + V 2
Aω

2 − 7
3
αiω3 ∓

√
r
[(

1
2

+ x
2r

) 1
2 + i

(
1
2
− x

2r

) 1
2
]

(
8
3
α2ω2 + 2c2sV 2

A

)
+ i
(

8
3
αV 2

Aω − 2c2sαω
) , (24)

where, as we already stated above, the plus sign before the radical refers to the fast mode
and minus sign to the slow mode.

It is clearly seen from Equation (24) that the wave vector is complex, i.e., k = kr+iki.
The damping length scale, by definition, is the inverse of ki, 1/ki.

In our calculations we have used three free parameters, i.e., temperature (T ), magnetic
field length scale (ΛB) and period (P ). Since magnetic field measurements based on
Zeeman splitting in the corona are extremely difficult, due to non-thermal broadening of
the lines, one is bound to make assumptions on ΛB · ΛB assumes three different values,
i.e., 10 7, 10 8, 10 9 m [10]. On the other hand, temperature measurements are more
reliable than that of ΛB . Nevertheless, we have adopted two values for temperature:
T = 1.3× 106K [7] and T = 3× 106K [6]. The results of periodic intensity fluctuations
indicate that MHD waves with periods 141 s, 235 s, 312 s [27] are present in the corona.
Therefore, on the basis of the above observational measurements we have assumed the
presence of waves with periods of 100 s, 200 s, 300 s, 400 s.

Finally, estimation of the wave flux which is given by Doyle et al [19]
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Fms = ρ〈δv2〉∂ω
∂k
, (25)

where ∂ω/∂k represents the group velocity of the wave and the subscript stands for
“magnetosonic”. Bearing in mind the fact that the terms containing α are small compared
with the other terms, we can derive the group velocity from Equation (19) by ignoring α
terms, that is,

∂ω

∂k
=

4c2sV 2
Ak

3 − 2kω2(V 2
A − c2s)

2ωk2(V 2
A − c2s) + 4ω3

. (26)

Using typical values for a corona, i.e., 〈δv2〉 = 2 × (43.9 km s−1)2 [5], cs = 2.1 × 107

cm/s, VA = 2.5× 108 cm/s, ρ = 2.8× 10−15 g/cm3 [10] and 2.0× 10−9 ≤ k ≤ 10−8 [23],
the wave energy density Fms turns out to be of the order of 106 erg cm−2 s−1 which is
quite enough to replace the energy flux lost through optically thin emission and thermal
conduction.

6. Results and Discussion

As pointed out, Equation (19) bears two solutions: one gives the dispersion relation
of the fast mode, while the other gives the slow mode.

6.1. Slow Mode

Figure 1a shows damping length scale of the slow mode versus height from the coronal
base. The damping length scale is the distance over which the original amplitude of the
wave drops to its original amplitude times 1/e. It is assumed that the slow mode wave
is propagating in a plasma whose temperature is T = 3 × 106 K and the magnetic scale
height ΛB = 108 m. We believe that the coronal plasma with these parameters are the
most realistic one. In the figure, the shortest period wave lies at the bottom; the increase
in the period ensues the increase in the damping length scale. As the period increases, the
minimum of the graph becomes more prominent. Longer the period is, the more shifted to
the right the minima becomes. The decrease in the damping length scale means that the
wave mechanical energy is depleted faster in the corona around 250.000 km. The physics
of the process may be outlined as below. A continuous spectrum of magnetosonic waves
propagating along the open field lines may be generated by either granular motion of the
plasma coming out of the convection region or magnetic reconnection or the migration of
the footpoints of the loops. Generated short wavelength waves propagate along the weak
lines and the long wavelength waves propagate along the strong lines [26]. This causes
the phases of the waves on neighbouring field lines to become mixed in space. Priest
[26] reports that if the above mentioned disturbances shake the field lines in phase at the
footpoints, they become more and more out of phase as they propagate upwards. Steep
gradients will be produced perpendicular to the field lines. This steep gradient combined
with viscosity causes the waves to dissipate.
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Table 1a. The variation of the damping length scale with height for Slow Mode with parameters

T = 3× 106 K Λp = 108 m

p(s) 100 200 300 400
Z (m)

3,0E+06 3186 6345 9509 12676
5,0E+07 3208 6352 9511 12673
1,0E+08 3238 6354 9497 12646
1,5E+08 3247 6297 9389 12492
2,0E+08 3157 5969 8851 11752
2,5E+08 3329 5772 7997 10147
3,0E+08 3513 6295 8847 11105
3,5E+08 3594 6468 9237 11801
4,0E+08 3649 6532 9356 12008
4,5E+08 3692 6571 9415 12105
5,0E+08 3724 6599 9454 12164
5,5E+08 3746 6618 9479 12204
6,0E+08 3761 6630 9495 12228
6,5E+08 3769 6636 9503 12240
7,0E+08 3771 6638 9506 12244

0.0E+00

5.0E+03
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z, Height from Coronal Base (km)

Figure 1a. The variation of the damping length scale with height for Slow Mode with param-

eters T = 3× 106K Λ = 108 m
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Table 1b. The variation of the damping length scale with height for Slow Mode with parameters

T = 3× 106 K Λp = 107 m

p(s) 100 200 300 400
Z (m)

3,0E+06 3183 6340 9502 12666
5,0E+07 3076 5458 7361 8957
1,0E+08 3201 5840 8063 9966
1,5E+08 3297 6077 8528 10676
2,0E+08 3382 6232 8836 11166
2,5E+08 3462 6342 9043 11504
3,0E+08 3534 6423 9187 11740
3,5E+08 3597 6486 9290 11906
4,0E+08 3650 6535 9363 12023
4,5E+08 3692 6572 9416 12107
5,0E+08 3724 6599 9454 12165
5,5E+08 3746 6618 9479 12204
6,0E+08 3761 6630 9495 12228
6,5E+08 3769 6636 9503 12240
7,0E+08 3771 6638 9506 12244
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Figure 1b. The variation of the damping length scale with height for Slow Mode with param-

eters T = 3× 106K Λ = 107 m
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In Figure 1b the period range is the same as in Figure 1a. But the minima are shifted
towards the lower values of z and are deeper than that of Figure 1a. Above the coronal
base the damping length scale shows a short drop to its minimum value and then rises
mildly, more or less to its original value. Physically this means that after having lost
its major portion of energy budget magnetosonic waves become more stable in the sense
that their e-folding damping takes place over much greater lengths. To illustrate this
physical reality we have drawn Figure 1d. In this figure there are three portions that
are clearly different from one another. Region I illustrates e-folding damping with a
constant damping length scale. In the region II is shown the wave amplitude with no
damping. Region III shows again e-folding damping with a different length scale. If taken
as a whole, this figure represents the behaviour of damping length scale with height. In
summary, in a medium such as the solar corona where pressure and magnetic length
scales are functions of height, damping length scale shows variation.

In Figure 1c with parameters T = 1.3 × 106 K and ΛB = 109 m. Damping length
scale shows no variation. This means that the magnetosonic wave, no matter what the
period is, will travel well defined distances before it experiences e-folding damping.

The results are given in Tables 1, 2 and in Figures 1, 2.

Table 1c. The variation of the damping length scale with height for Slow Mode with parameters

T = 1.3× 106 K Λp = 109 m

p(s) 100 200 300 400
Z (m)

3,0E+06 3168 6335 9503 12671
5,0E+07 3169 6337 9505 12673
1,0E+08 3169 6337 9506 12674
1,5E+08 3170 6338 9506 12675
2,0E+08 3171 6339 9507 12675
2,5E+08 3173 6339 9507 12676
3,0E+08 3174 6340 9508 12676
3,5E+08 3175 6340 9508 12676
4,0E+08 3176 6341 9508 12676
4,5E+08 3176 6341 9508 12676
5,0E+08 3177 6341 9508 12676
5,5E+08 3177 6341 9509 12676
6,0E+08 3178 6341 9508 12676
6,5E+08 3178 6341 9508 12676
7,0E+08 3178 6341 9508 12676

6.2. Fast Mode

Figure 2a shows damping length scale of the fast mode versus height from the coronal
base. It is assumed that the fast mode wave is propagating in a plasma whose temperature
is T = 3×106 K and the magnetic scale height ΛB = 107 m. The behaviour of the damping
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length scale is very peculiar. It starts with a certain value and gradually increases until
the wave reaches 10000 km from coronal base. Then the damping length scale rises very
steeply and reaches a value of 2.65 × 105 km. We may give an interpretation to this
behaviour as follows: at around 10000 km from coronal base magnetosonic waves become
extremely stable. In other words, if the physical parameters of the corona at the height
of 10000 km were the same throughout the corona then those waves would survive and
exit into the interplanetary medium. But after the waves passes through this relatively
thin region they quickly become dissipational. The same behaviour is visible in Figure
2b. But this time it is assumed that the fast mode wave is propagating in a plasma
whose temperature is T = 3 × 106 K and the magnetic scale height ΛB = 108 m. This
change in parameters causes “the region of stability” shift to the height whose distance
from the coronal base is 1.5× 105 km. Physically speaking, in “the region of stability”
phase mixing is less efficient than anywhere else. Above “the region of stability” phase
velocity of the magnetosonic waves is probably becoming of the same order of magnitude
of that associated with the ion cyclotron frequency. This brings about a condition of
resonance wherein the mechanical energy of the waves is continuously and one-sidedly
transferred to the ions of the medium. Indeed, magnetosonic waves are the MHD wave
modes which appear in that part of the parameter space of the plasma pond neighbouring
the ion cyclotron resonance bounding surface [28][29][30]. What we termed “the region of
stability” appears at about 1.0×104 km in Figure 2a and at about 1.5×105 km in Figure
2b, respectively. These heights, we claim, are the ones where the phase velocity of the
magnetosonic waves and the ion cyclotron frequencies become equal. In this resonance
region the mechanical energy of the magnetosonic waves is sharply depleted and as a
result the damping length scale drops.
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Figure 1c. The variation of the damping length scale with height for Slow Mode with parame-

ters T = 1.3× 106K Λ = 109 m
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Figure 1d. Wave amplitude variation with distance. In this figure there are three portions

that are clearly different from one another. On region I illustrated is e-folding damping with a

constant damping length scale. In the region II shown is the wave amplitude with no damping;

and finally on the region III again e-folding damping with a different length scale.

Table 2a. The variation of the damping length scale with height for Fast Mode with parameters

T = 3× 106 K Λp = 107m

p(s) 100 200 300 400
Z (m)

3,0E+06 177746 705442 1584932 2816216
5,0E+07 1709 2403 2938 3390
1,0E+08 2036 2855 3487 4022
1,5E+08 2330 3258 3976 4583
2,0E+08 2584 3605 4395 5065
2,5E+08 2799 3897 4747 5468
3,0E+08 2976 4136 5036 5798
3,5E+08 3117 4328 5266 6062
4,0E+08 3228 4478 5446 6267
4,5E+08 3312 4592 5583 6424
5,0E+08 3373 4676 5683 6538
5,5E+08 3416 4734 5753 6617
6,0E+08 3443 4771 5797 6668
6,5E+08 3457 4790 5820 6694
7,0E+08 3461 4796 5826 6701

208
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Table 2b. The variation of the damping length scale with height for Fast Mode with parameters

T = 3× 106K Λp = 108 m

p(s) 100 200 300 400
Z (m)

3,0E+06 166898 662637 1488867 2645586
5,0E+07 118146 464234 1041036 1848555
1,0E+08 108582 416865 930661 1649974
1,5E+08 1697822 3271486 6659935 11450477
2,0E+08 11351 40203 88199 155380
2,5E+08 3370 5931 9292 13665
3,0E+08 3046 4339 5423 6420
3,5E+08 3128 4357 5319 6142
4,0E+08 3229 4483 5454 6279
4,5E+08 3312 4593 5584 6425
5,0E+08 3373 4676 5683 6538
5,5E+08 3416 4734 5753 6617
6,0E+08 3443 4771 5797 6668
6,5E+08 3457 4790 5820 6694
7,0E+08 3461 4796 5826 6701
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Figure 2a. The variation of the damping length scale with height for Fast Mode with parameters

T = 3× 106K Λ = 107 m
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Table 2c. The variation of the damping lenght scale with height for Fast Mode with parameters

T = 1.3× 106 K Λp = 109 m

p(s) 100 200 300 400
Z (m)

3,0E+06 1,33E+06 5,33E+06 1,20E+07 2,13E+07
5,0E+07 8,64E+05 3,46E+06 7,78E+06 1,38E+07
1,0E+08 6,12E+05 2,45E+06 5,50E+06 9,78E+06
1,5E+08 4,71E+05 1,88E+06 4,24E+06 7,53E+06
2,0E+08 3,86E+05 1,54E+06 3,47E+06 6,17E+06
2,5E+08 3,32E+05 1,33E+06 2,98E+06 5,30E+06
3,0E+08 2,96E+05 1,18E+06 2,66E+06 4,72E+06
3,5E+08 2,71E+05 1,08E+06 2,44E+06 4,33E+06
4,0E+08 2,54E+05 1,01E+06 2,28E+06 4,06E+06
4,5E+08 2,43E+05 9,68E+05 2,18E+06 3,87E+06
5,0E+08 2,35E+05 9,36E+05 2,10E+06 3,74E+06
5,5E+08 2,30E+05 9,15E+05 2,06E+06 3,66E+06
6,0E+08 2,27E+05 9,03E+05 2,03E+06 3,61E+06
6,5E+08 2,25E+05 8,98E+05 2,02E+06 3,59E+06
7,0E+08 2,26E+05 8,99E+05 2,02E+06 3,59E+06
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Figure 2b. The variation of the damping length scale with height for Fast Mode with parameters

T = 3.0× 106K Λ = 108 m
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Figure 2c. The variation of the damping length scale with height for Fast Mode with parameters

T = 1.3× 106K Λ = 109 m

What we have speculated in the above paragraph about the physical cause of the
drop of the damping length scale can be checked by analysing the same problem in the
context of Maxwell-Boltzmann equation. In this approximation, the relation between
the ion cyclotron frequency and the phase velocity of the magnetosonic waves appears
self-consistently in the dispersion relation. We shall set ourselves to this task in a future
study.

7. Conclusion

Our investigation of the wave propagation characteristics of the magnetosonic waves in
the solar corona yields such results as to make us propose that these waves carry enough
energy flux to heat the corona. If the nonthermal broadening of the coronal lines are as
strong as Doyle et al [4][19] claim to be, then the wave mechanical flux density turns out
to be of the order of 106 erg cm−2 s−1. This is high enough to replace the energy lost
via optically thin emission and the thermal conduction down to the transition region.
This is, of course, not to claim that the wave dissipation is the sole process to heating
the solar corona. Surely, there are other agents such as magnetic reconnection, current
dissipation and so on at work with different efficiencies at different regions of the solar
corona. All we wish to draw attention to is the potentiality of the magnetosonic waves
as a heat source. Although we have shown that the magnetosonic waves are dissipational
and they carry enough flux to replace that lost, we could not quantitatively touch upon
the physical process with which the heat transfer is realized. In a qualitative discussion,
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we remind the reader that the ion cyclotron resonance and/or phase mixing are two likely
candidates among many other. This problem can be solved in kinetic approximation, i.e.,
by the solution of Vlasov equation.
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