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Fizik Bölümü, 01330 Adana-TURKEY

Received 26.06.2000

Abstract

In this study, we have developed a general theoretical model, based upon the sim-
ple mean field model of Néel, for the non-linear response of an antiferromagnetic sys-
tem. The results indicate that the odd order derivatives, (d2n+1ma)0= (-d2n+1mb)0,
where n=1,2,3......, will diverge and the even order derivatives, (d2nma)0= (d2nmb)0

will vanish due to the symmetry of two sublattices, “a” and “b”, forming the anti-
ferromagnet. This model also supports our experimental results performed on two
antiferromagnetic samples, namely, Cs2MnCl4.2H2O and MnCl2.4H2O [1].
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1. Introduction

One of the signatures of a true phase transition is the observation of a divergence in
the nonlinear susceptibility in the vicinity of the so-called critical temperature. In spin
glasses, this divergency obeys the power law ε−γ at the freezing temperature Tf , where ε
= (T-Tf)/ Tf is the reduced temperature and γ is the critical exponent [2]. However, for
ferromagnets and antiferromagnets the mean field theory predicts the relation χ3α -χ4

1

in the paramagnetic region [3,4]. For ferromagnets the linear susceptibility χ1 diverges
at Tc , as does the third harmonic χ3 [5]. For antiferromagnets, χ1 is finite at TN and
hence χ3 is also finite [1]. The latter result, relating to the magnitude of the nonlinear
susceptibility in an antiferromagnet , can also be obtained by using the available simple
mean field theory, namely the theory of Néel: above the Néel temperature TN the two
sublattices are completely equivalent and the theory simplifies to a calculation analogous
to the ferromagnetic mean field theory [1,5]. However, below TN the calculations are
considerably more complicated but lead essentially to the same result as that found for
T>TN .
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In this work, we have developed a general theoretical model, based upon a simple
mean-field model of Néel, for the nonlinear response of an antiferromagnetic system, for
temperatures above as well as below the critical temperature TN . The result of this
theoretical model agrees with our experimental observations appearing in [1].

2. Theoretical Model

Néel postulated two different internal molecular fields, acting on the individual spins
arranged in two different sublattices, a and b. The fields acting on the spins in a and b
sublattices can be given as

ha = h+ αma + βmb,
and
hb = h + βma + αmb,

(1)

respectively. Here, h represents the external field, and the other two contributions are
due to the two sublattices; the coefficients α and β represent the contributions from spins
in the same sublattice and from those in the other sublattice, respectively. Furthermore,
m indicates the reduced magnetisation defined as m = M/M0 [5].

We now have the following expressions for an antiferromagnet with two sublattices:

ma = Ba(ha) = Ba(h + αma + βmb) = b1ha + b3h
3
a + ....

mb = Bb(hb) = Bb(h+ βma + αmb) = b1hb + b3h
3
b + ....,

(2)

where the factor g µbS/kT is absorbed into the definition of the Brillouin function B. In
other words, the temperature dependence of ma and mb is now contained in the coefficients
b1, b3 ... etc. of the expansion.

It is easy to show that the sum and difference of the sublattice magnetisations can be
written as:

ma +mb = {2h+ (α+ β)(ma + mb)}Γ+(ha, hb)
and
ma −mb = (α− β)(ma −mb)Γ−(ha, hb)

(3)

in which

Γ+ = b1 + b3(h2
a − hahb + h2

b) + b5(h4
a − h3

ahb + h2
ah

2
b − hah3

b + h4
b)...

and
Γ− = b1 + b3(h2

a + hahb + h2
b) + b5(ha + h3

ahb + h2
ah

2
b + hah

3
b + h4

b)...
(4)

By arranging Eq. 3 one gets

(ma + mb){1− (α+ β)Γ+} = 2hΓ+ (5a)

and

(ma −mb){1− (α− β)Γ−} = 0. (5b)
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It is seen from Eq. 5b that the condition for the difference of the sublattice magneti-
sations being different from zero, i.e. for ma–mb 6= 0, is clearly 1- (α - β) Γ− = 0, for all
values of the applied field h. However, for h = 0 one finds from Eq (5a) that (ma + mb

) = 0, excepts for 1- (α + β) Γ+ = 0, implying ma = mb = 0, and thus Γ−= Γ+ = b1,
for all temperatures down to TN given by 1- (α - β)b1 = 0.

Now we can discuss the derivatives of ma and mb in an antiferromagnet. For the
sake of clarity, we will use the notation dnm for dnm/dhn , and B′ and B′′, etc. for the
derivatives of B with respect to the arguments of it.

The first derivative of ma and mb given by Eq. 2 is :

dma = B′adha
dmb = B′bdhb.

(6)

Taking the first derivatives of Eqs. 1 with respect to h and substituting the results
into Eq. 6 one can obtain

(1− αB′a)dma − βB′admb = B′a;
−βB′bdma + (1− αB′b)dmb = B′b.

(7)

If we take h = 0, then the derivatives B′a and B′b will be (B′a )o= (B′b )o = B′o for all
the values of T, where (B′a )o and (Bb )o are even functions of (ha)o and (hb)o.

However, for T ≥ TN , we know that B′o= b1 but for T ≤ TN ;

B′o = b1 + 3b3(ha)2
o + 5b5(ha)4

o + ... = Γo+. (8)

Now Eq. 7 becomes

(1− αB′o)(dma)o − βB′o(dmb)o = B′o
−βB′o(dma)o + (1− αB′o)(dmb)o = B′o.

(9)

At temperatures above TN (T ≥ TN ) the magnetisation of two sublattices is the
same, then the solutions of Eq. 9 give

(dma)o = (dmb)o =
B′o

1− (α + β)B′o
. (10)

For T< TN the two equations are dependent, as 1 – (α - β)Γo− = 0. One then finds
from Eq. 9

(dma)o − (dmb)o =
B′o
Γo−
{(dma)o − (dmb)o}. (11)

However, since (B′o / Γo−) < 1 for T < TN , Eq. 11 implies that (dma)o=(dmb)o, just
as for the case of T > TN ; i.e.,

(dma)o = (dmb)o =
B′o

1− (α + β)B′o
. (12)
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Therefore comparison of Eq. 10 and 12 implies that there is no jump or divergence
at TN , a situation compatible with experimental observations.

Taking the first and second derivatives of Eqs. 1 and inserting them into the second
derivatives of Eqs. 2, one obtains

(1− αB′a)d2ma − βB′ad2mb = B′a(dha)2,
−βB′bd2ma + (1 − αB′b)d2mb = B′b(dhb)

2.
(13)

If h = 0, for T >TN one can obtain (B′a)o = (B′b)o= B′o and (B′a)o= (B′b)o= 0, since ha
= hb = 0. Hence, under these conditions the solutions of Eqs. 13 are (d2ma)o= (d2mb)o=
0.

On the other hand, for T< TN , (B′a)o=(B′b) = B′o and
(B′a)o= - (B′b) = B′o= 6b3(ha)o+20b5(ha)3

o +.... , since at these temperatures
ha = - hb.

Therefore, for all T

(d2ma)o = −(d2mb)o =
B′o(dha)2

o

1− (α− β)B′o
. (14)

This equation is zero for T > TN and is not zero for T < TN . The results for
T < TN is interesting, even though d2(ma+ mb )o= 0. Since 1 – (α - β)Γo− =0 and
Bo = Γo+, for T < TN , Eq. 14 can be written as

(d2ma)o = −(d2mb)o =
(α+ β)2

(α− β)
3

(ha)o
{1 +

4b5
3b3

(ha)2
o + ........}(dma)2

o. (15)

From Eq. 15 it can be immediately seen that the second derivative of the sublattice
magnetisation is inversely proportional to (ha)o. Therefore, (d2ma)o= - (d2mb)o goes to
minus infinity as (ha)o → 0, in the vicinity of T ↑ TN . This implies that the second order
sublattice susceptibility diverge (ma)−1

o , or (χa2 )h=0 α (-ε)−1/2. The implication of this
divergent behaviour probably leads to divergence of the total susceptibility
(χa2 + χb2)o = (χ2)o when the symmetry of the two sublattice is broken, as for instance,
in a randomly diluted antiferromagnet. Also, short range order correlations near TN
probably will lead to relatively strong second harmonic response.

Following the same procedure for the second harmonic derivation one can get a result
for the third harmonic response of an antiferromagnet as

(d3ma)o = (d3mb)o =
6b3

(b1)4
(dma)4

o for T > TN (16)

and,

(d3ma)o = (d3mb)o ≈
60b3 + 312b5(ha)2

o + ...

(b1)4
(dma)4

o for T < TN . (17)

The result for T > TN Eq. 16 is the same as for the ferromagnetic case [5] and can
be expected from the complete equivalence of the two sublattices. The result for T< TN
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shows the same proportionality to (dma)4
o as for T > TN but differs by a factor of 10,

for small (ha)o. This discontinuous jump at T=TN leads one to expect much stronger
effects in the higher derivatives, although one should keep in mind that a discontinuity
as a function of T does not necessarily lead to a discontinuity as a function of h.

Without giving a full calculation, we can inspect the following expressions for the
fourth and fifth derivatives:

(1− αB′o)(d4ma)o − βB′o(d4mb)o = {B′′′′o (dha)4
o + 6B′′′o (d2ha)o(dha)2

o +
4B′′o (d3ha)o(dha)o + 3B′′o (d2ha)2

o}

and

−βB′o(d4ma)o + (1− αB′o)(d4mb)o = −{B′′′′o (dha)4
o + 6B′′′o (d2ha)o(dha)2

o +
4B′′o (d3ha)o(dha)o + 3B′′o (d2ha)2

o}.

One can conclude that the last terms on the right-hand sides will lead to a stronger
divergence in the fourth derivative. Therefore the result for the total magnetisation,
d4(ma+mb) will vanish due to the symmetry of two sublattices in a perfect antiferromag-
net.

On the other hand for the fifth harmonics:

(1− αB′o)(d5ma)o − βB′o(d5mb)o = {B′′′′′o (dha)5
o + 10B′′′o (d3ha)o(dha)2

o}
{10B′′′′o (d2ha)o(dha)3

o + 15B′′o (d2ha)2(dha) +
10B′′o (d2ha)o(d3ha)o + 5B′′o (d4ha)o(dha)o}

and

−βB′o(d5ma)o + (1− αB′o)(d5mb)o = {B′′′′′o (dha)5
o + 10B′′′o (d3ha)o(dha)2

o}
{10B′′′′o (d2ha)o(dha)3

o + 15B′′o (d2ha)2(dha)o +
10B′′o (d2ha)o(d3ha)o + 5B′′o (d4ha)o(dha)o}

Again the terms in the last brackets on the right hand sides of the expressions will
show a strong divergencies for T = TN , caused by the factors (d2ha)o and (d4ha)o !

3. Conclusion

As a result for all odd order derivatives (d2n+1ma)o = (d2n+1mb)o, according to this
model the total, 5th and higher order susceptibilities will diverge for an antiferromagnet.
It is to be expected, however that the prefactor for the divergent terms will be proportional
to some (high ) power of (dma )o or to the linear susceptibility which of course is rather
small.
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On the other hand, the even order derivatives will vanish due to the symmetry of the
two sublattices in a perfect antiferromagnet. But short range ordered clusters, just above
TN will, in general, not be symmetrical for these sublattices. Due to the critical speed-
ing up of the relaxation time in antiferromagnets, this will lead to a strongly enhanced
response in all derivatives.

We should emphasise here that our meanfield theory results appearing in this arti-
cle support our measurements performed on two standard insulating antiferromagnetic
compounds, MnCl2.4H2O and Cs2MnCl4.2H2O, published elsewhere [1]. In a perfect anti-
ferromagnet the molecular fields of the different sites exactly cancel each other, therefore,
the external field cannot couple to the magnetisation. However if antiferromagnet is di-
luted, this argument does not hold and a diverging nonlinear susceptibility appears at
TN in an external field.

The third harmonics can be easily measured [1], and compared with our theory. How-
ever, it is further highly desirable to measure higher order susceptibilities, such as the
fifth harmonic χ5 , but one has to note that it will be very difficult to separate the higher
order divergent terms of χn in the measured response χn [1,5].
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