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Abstract

In this work we have studied the electronic mobility µ within a completely dis-
ordered lattice system by using the strong interatomic hopping potential V (r) =
(− r

ao
) exp(−r/ao) for site representation of the Hamiltonian. It is shown that a

metallic system of a completely disordered lattice first goes insulating and then goes
back to metallic again at higher atomic density ρ.
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1. Introduction

Anderson model and Anderson transition concept have played and continue to play
important roles in the understanding of disordered systems. The physics of disordered
systems is a vast subject with an extensive literature. In three dimensions (3D) it is
believed that some of the electronic states are localized, which has important implications
on transport coefficients. Intuitively, one expects that if the Fermi level falls into a range
of localized states, the conductivity will decrease as the temperature is lowered in contrast
to the behavior of pure crystalline material in which it increases due to the freezing out of
phonon scattering. On the other hand, if all the states that arise are localized there is the
important characteristic behavior of completely disordered conductors where the system
goes from a metallic to an insulating state as the disorder is increased. The disorder
of the system arises from either lattice irregularity [1] or site-energy randomness [2] or
both [3]. In order to examine the transition regime, we first define a disorder parameter
wherein by changing this parameter we vary the randomness of the system. So we obtain
its value when the system goes from a metallic to an insulating state, which is the so-
called Anderson transition. For this purpose there are different methods in literature.
For example Debney used the Ioffe-Regel condition KL=1, through calculating the mean
free path L from first order perturbation theory to find the Anderson transition [4]. Fertis
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et al. used the L(E) localization test of Economou and Cohen [5,6], whereas Logan and
Volynes used the Fredholm equation technique of Abou-Chacra et al. [7,8]. On the other
hand, Vollhard and Wolfle used correlation function technique, directly looking at the
transport coefficients [9,10]. In this work we apply the mobility formula of Unal et al.
[11]

µ =
1
6
eN

α
′′

r

(α′r)
2 (1)

to a completely disordered lattice. Here, e is the electronic charge, N is total number of
electrons and α′r, α

′′
r are the frequency derivatives of the force-force correlation function

αr (ω), given by

αr (ω) = −2π
3

∑
k,q

h̄q2|Uq |
2
n′kδ (h̄ω −∆E′) . (2)

The meaning of each term in this expression will be defined during the evaluation of
α′r, α

′′
r in the following sections and in Appendix. In this work we consider the density of

medium ρ to be the randomness parameter of the system. If we increase the parameter
we find that the mobility goes to zero.

2. The Model Hamiltonian

In this paper we study the scattering of electrons in a completely disordered system in
which the atomic site positions ~Ri have no regularity [1,4]. At the beginning we assume
that the density of the considered system is very low, which means the atoms are far apart
from each other. Each atom is assumed to have an effective Bohr radius a0 and gives a 1s
electron to the medium. The mean atomic distance a is given by a3 = Ω

N = ρ−1, where
Ω and N show the volume and the number of atoms, respectively. We assume that the
interatomic hopping potential between two sites r distance apart has the form

V (r) = − r

a0
e−r/a0 . (3)

This expression contains the prefactor r/a0 besides the exponential term exp (−r/a0),
and therefore is called the modified exponential interaction. The pure exponential inter-
action case was studied in ref [12], here we want to see the effect of its modifications on
the system properties through employing the potentials V (r) given by Eq. (3). In the
quasi-momentum representation the system Hamiltonian H = H0 + U is given by

H0 =
∑
k

HkkC
+
k Ck (4)
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U =
∑
k,k′

Hk,k′C
+
k′Ck (5)

where Hk,k′ = 〈k′|H |k〉, ~k′ = ~k + ~q, and C+
k , Ck are creation and annihilation operators

for the electrons with momentum k; h̄ = 1 units are used throughout. Replacing the
diagonal elements of H by their averages, 〈Hkk〉 = N

Ω V (k) = − ∈ (k), where V (k) is the
Fourier transform of Eq. (3) and ∈ (k) has the form

∈ (k) = −
A3
(
3− a2

0k
2
)

8 (1 + a2
0k

2)3 , (6)

with A3 = 64 (a0/a)3
π. The mobility expression given by Eq. (1) contains the terms

α′r, α
′′
r , and by taking derivatives with respect to frequency ω and then setting ω = 0 we

can easily obtain these expressions from Eq. (2) in the form

α′r =
2π
3

∑
k,q

h̄2q2|Uq |2n′kδ′ (∆E′) (7)

α′′r = −2π
3

∑
k,q

h̄3q2|Uq |2n′kδ′′ (∆E′). (8)

Here, ∆E′ = Ek+q − Ek and n′k stands for the derivative of occupation number n′k
with respect to energy Ek. Later in the calculation of Eqs. (7)-(8) we shall need |Uq |2
showing the departure of the system from its unperturbed state. Making use of Debney’s
work [4] this is found to be

|Uq |2 =
∈2
k

2
+
∈2
k′

2
+ 3

A3

64
+ 3A3

(
4− a2

0

∣∣∣~k + ~k′
∣∣∣2)(

4 + a2
0

∣∣∣~k + ~k′
∣∣∣2)4

. (9)

3. Evaluation of α′r and α′′r

In order to evaluate the sums in Eqs. (7), (8) we must turn into integrations by using
the following relations:

∑
q

→ V

(2π)3

∫
d3q,

∑
k

→ V

(2π)3

∫
d3k, (10)
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If we denote the angle between the vectors ~k and ~q by α, with θ = π − α, cos θ = ν ,
the energy difference ∆E′ becomes

∆E′ = − h̄
2kq

m
ν +

h̄2q2

2m
. (11)

Here we assume that there is no meaning of energy wavevector relation in disordered
lattices; therefore we have replaced ∆E′ = Ek+q − Ek by its parabolic band value us-
ing this energy difference, the necessary integrals can be done easily (see Appendix for
details). The results α′r, α

′′
r are

α′r = C1

[
16π3x5

(
3− π2x2

)2

3 (1 + π2x2)6
−

16π5x7
(
3− π2x2

)
3 (1 + π2x2)6

−
16π5x7

(
3− π2x2

)2
(1 + π2x2)7

+
π2x2

4
− 3

16
+

7
(
1 + π2x2

)
24

+

(
1− π2x2

)
6

−
(
1 + π2x2

)2
8

−
(
1 + π2x2

) (
1− π2x2

)
8

−
(
1− π2x2

)
24 (1 + π2x2)3 +

1
48 (1 + π2x2)2

]
, (12)

α′′r = C2

[
4096π3x5

(
3− π2x2

)
(1 + π2x2)6 −

12288π3x5
(
3− π2x2

)2
(1 + π2x2)7

− 2048π5x7

(1 + π2x2)6 −
24576π5x7

(
3− π2x2

)
(1 + π2x2)7

−
43008π5x7

(
3− π2x2

)2
(1 + π2x2)8 + 24

(
1 + π2x2

)
−

24
(
1− π2x2

)
(1 + π2x2)4

]
. (13)

Here, C1, C2 are constants and x is the disorder parameter of the system defined as
x = a0/a and depends on material density by x = a0ρ

1/3. If we substitute Eqs. (12),(13)
into Eq. (1) we obtain the mobility expression µ as a function of x. As mentioned at the
beginning, we have considered first a system whose density is very low. In this case the
mean interatomic distance a is large, corresponding to small value of x. in other words
the atoms in the system are far apart from each other and we expect that the probability
of the scattering of an electron should be small. The mobility will then have a large value.
If we increase the disorder parameter, x, corresponding to the small distances between
the atoms, the scattering of an electron with atoms will take place more effectively. So,
the value of mobility will start falling during the process. If we go on changing the
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randomness parameter x still further, we normally expect the value of α′′r to become zero
at some point xc and hence µ to become zero also. While carrying these changes we
should observe that α′r never goes to zero, because it stays in the denominator of Eq.
(1). Indeed our α′r satisfies this requirement and gives no root as a function of x. In Fig.
1 we have drawn α′′r against x, but this time it has given double transition effect, first
going to insulating phase at xc1 = 0.23 and then at xc2 = 0.34 going back to metallic
case again and remaining so at higher densities. This unusual behavior will be explained
in the next section in terms of the potential V (r).
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Figure 1. Behavior of α′′r as a function of x

4. Conclusion

As we mentioned in the introduction, Anderson transition changes markedly the trans-
port properties of condensed matter, therefore this effect may be taken up via studying
transport coefficients. There are different methods and techniques for calculating these
coefficients. One of them has been developed by Unal et al. [11] is and given by Eq. (1),
which depends on the correlation function technique [9,10]. This formula was applied to
a dilute system with pure exponential interactions before, and a result of about xc = 0.31
[12] is obtained for the ones existing in literature for the Anderson transition. In this
paper we applied it to the completely disordered structure with a modified exponential
interaction of the type given by Eq. (3) to see effect of changing the potential parameters.
The hopping potential presently at hand differs from the previously considered ones in
that it becomes zero in the limit of small interatomic distance r → 0. This is due to
the fact that r appears as multiplied by the exponential e−r/a0 . Now if we choose a pair
of atoms, one being fixed, completely disordered lattice model requires that the other
atom can be found anywhere inside the system including the position of the first atom,
this allows r to be zero. Considering different configurations of our system, this second
atom may be viewed as moving around the fixed one. When the atomic density is low,
the moving atom prefers mainly the large distances r, V (r) is then small so its scatter-
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ing effect is sufficiently weak to make the system metallic. For high atomic densities on
the other hand, small values of r becomes highly probable, V (r) is again small and its
scattering effect is also small, hence in this limit too the system should be metallic. The
above mentioned behavior of potential V (r) explain why the system cannot stay in the
insulating phase forever after the first transition at xc1 as the density is increased. In the
pure exponential case [12] the system remained insulating once a transition had taken
place at xc, because that potential did not behave as the present one for higher density.
In this work we have shown that double transition effect may occur in certain interatomic
hopping potentials which is a new result within the Anderson transition concept.

Appendix
In order to calculate α′r, first of all we put the expressions |Uq |2 and ∆E′ given by

Eqs. (9) and (11) into Eq. (7). We have

α′r =
2π
3

∑
k,q

h̄2q2

[
∈2
k

2
+
∈2
k′

2
+

3
64
A3 + 3A3

[
4− a2

0

(
4k2 + q2 − 2kqν

)]
[4 + a2

0 (4k2 + q2 − 2kqν)]4

]

·
[
1−

(
dA

d ∈k

)]−1

δ (∈f − ∈k) δ′
(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
(A.1)

for the n′k we have used the result taken from Ref. [13]. In the calculation of αr we write
it in the form α′r = α′r1 + α′r2 + α′r3 + α′r4. Each term is given by the following:

α′r1 =
2π
3

1
1− A′

1
2

∑
k,q

h̄2q2 ∈2
k ·δ (∈f − ∈k) δ′

(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
(A.2)

α′r2 =
2π
3

1
1− A′

1
2

∑
k,q

h̄2q2 ∈2
k′ ·δ (∈f − ∈k) δ′

(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
(A.3)

α′r3 =
2π
3

3A3

64
1

1− A′
8
(

1 + a2
0k

2
f

)4

A3
(
−20a2

0kf + 4a2
0kfa

2
0k

2
f

)
·
∑
k,q

h̄2q2δ (h̄k − h̄kf) δ′
(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
(A.4)
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α′r4 =
2π
3

3A3

1−A′
8
(

1 + a2
0k

2
f

)4

A3
(
−20a2

0kf + 4a2
0kfa

2
0k

2
f

)
·
∑
k,q

h̄2q2δ (h̄k − h̄kf ) δ′
(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
(A.5)

To evaluate the above Eqs. (A.2), (A.3), (A.4) and (A.5), first the sums over ~q are turned
into integrals in the usual way and for integration over dν we use the property

δ′
(
− h̄kh̄q

m
ν +

h̄2q2

2m

)
= − m2

h̄2k2h̄2q2
δ′ (ν − ν0)

with ν0 = h̄q
2h̄k

. For the calculation of the d (h̄q) integration we employ the technique used
in Ref. (11). Finally, d3 (h̄k) integration is carried out to obtain

α′r =C1

[
16π3x5

(
3− π2x2

)2
3 (1 + π2x2)6 −

16π5x7
(
3− π2x2

)
3 (1 + π2x2)6

−
16π5x7

(
3− π2x2

)2
(1 + π2x2)7 +

π2x2

4
− 3

16
+

7
(
1 + π2x2

)
24

+

(
1− π2x2

)
6

−
(
1 + π2x2

)2
8

−
(
1 + π2x2

) (
1− π2x2

)
8

−
(
1− π2x2

)
24 (1 + π2x2)3 +

1
48 (1 + π2x2)2

]
. (A.6)

Evaluation of α′′r is carried out in a similar way.
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[9] D. Vollhardt and P. Wölfle, Phys. Rev., B22 (1980) 4666.

[10] W. Götze, Phil. Mag., B43 (1981) 219.
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