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Abstract

Several statistical properties of the Coon-Baker-Yu (CBY) q-oscillator algebra
are discussed. Particular emphasis is given to a careful derivation of second quan-
tized particle statistics obtained via the CBY q-oscillator. It is outlined that, beside
other limiting cases, the limit q = 0 of the CBY q-oscillator gives the Cuntz oscillator
and the Fock space properties of both of these oscillators lead to various interesting
results.

In the past decade, q-deformed oscillator systems have yielded new developments in the
context of statistical physics [1-4]. These developments are mainly given in the framework
of unusual statistics rather than conventional Bose or Fermi statistics. In the meantime,
the concept of unusual statistics has shown properties completely different from those of
conventional statistics.

As is well known, the earliest example outside of Bose or Fermi statistics was intro-
duced by the work of Green [5]. In this article, Green proved the existence of generalized
statistics of identical particles and particularly showed that spin-half fields can be quan-
tized in such a way that an arbitrary finite number of particles may occupy a single
quantum state. According to this remarkable result, at most p particles with half-integer
spin may be allowed to occupy a given state. The state can even be completely sym-
metric under particle interchange. In the literature, this type of statistics is known as
parastatistics where in identical particles are referred to as parabosons and parafermions
or, simply, called parons in a unified terminology [1]. However, the algebras obeyed by
parabosons and parafermions have the form of trilinear oscillator commutation relations
[5].

Beside parastatistics, other deformed oscillator algebras are often used in anyonic
statistics which is related to non-local particles defined on two-dimensional space [6,7]
and q-deformed statistics [8]. In this study, we aim to show that starting from the
structural properties of the algebra and of the representations of a q-oscillator, Bose-
Einstein, Fermi-Dirac or Maxwell-Boltzmann statistics arises.
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The earliest multidimensional q-oscillator was postulated by Coon, Baker and Yu
(CBY) [9] and is expressed as follows:

aµa
+
ν − qa+

ν aµ = δµν , aµ |0〉 = 0, µ, ν = 1, 2, ..., d , (1)

where aµ and a+
µ are annihilation and creation operators, respectively, and q is a real

parameter. This model was used to derive an operator formalism for dual resonance model
amplitudes with nonlinear trajectories [9]. Though its SU(d)-invariance was known before
development of quantum groups, the most important property of the CBY q-oscillator is
its invariance under the group SU(d).

Quantum states belonging to the q-oscillator given in Eq. (1) can be created by
applying the creation operators on the ground state defined by aµ |0〉 = 0. For instance,
consider two and three particle states as follows:

|µν〉 = a+
µ a

+
ν |0〉 ,

|µνλ〉 = a+
µ a

+
ν a

+
λ |0〉 , (2)

and their hermitian conjugates

〈µν| = 〈0|aνaµ,
〈µνλ| = 〈0|aλaνaµ .

n-particle states can be created by successively applying the creation operators on the
ground state n-times. However, it has been proved that the CBY q-oscillator does not
definitely contain any commutation relation between any two creation (or annihilation)
operators [10]. It is now possible to make a different interpretation to this proof. The
norms and scalar products can be calculated for two particle states with µ 6= ν given in
Eq. (2) as

〈µν | µν〉 = 〈νµ | νµ〉 = 1,
〈µν | νµ〉 = 〈νµ | µν〉 = q, (3)

whereas these two particle states are orthogonal to all other states and the angle between
the states |µν〉 and |νµ〉 is

cos θ = q. (4)

Hence it turns out that deformation parameter q should be in the interval −1 ≤ cos θ ≤
+1. For the end points of this interval, the CBY q-oscillator gives a bosonic oscillator as
follows:

aµa
+
ν − a+

ν aµ = δµν for q = +1 . (5)
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Thereby it characterizes Bose statistics. Secondly, this oscillator also gives a fermionic
oscillator:

aµa
+
ν + a+

ν aµ = δµν for q = −1 . (6)

Thereby it characterizes Fermi statistics. In the intermediate points
(−1 < q < +1), one may think that this q-oscillator leads to an interesting statistical
interpretation between Bose and Fermi statistics: From Eq. (4), it is seen that the states
|µν〉 and |νµ〉 are linearly independent and, in this sense, there is no limitation related to
occupancy of the states created by applying successive creation operators on the ground
state. In fact, there is also no such limitation in the case of the group constructed by the
representations of creation operators of a state such as (a+

µ1
a+
µ2
...a+

µn) |0〉 ≡ |µ1µ2...µn〉 ,
i.e. the permutation group Sn. Namely, the representations S(a+

µ ) may involve any state.
Multiple occupancy of the quantum states is also allowed. Therefore, the states S(a+

µ ) |0〉
can be considered as consisting of bosonic and fermionic states at the same time. However,
it can be called as “Maxons” due to satisfying the Maxwell-Boltzmann statistics, if the
particles hold the limit−1 < q < +1. Therefore, there will be dn n-particle states. These
states can also be involved in mixed symmetric states and they will obey the Boltzmann
distribution function as e−β(εr−α), where α is the chemical potential, β = 1/kBT and εr
is the energy of state r. From this remarkable result, it is impossible to say that this can
be called quantum Boltzmann statistics [11] since the CBY q-oscillator does not possess
quantum group invariance. Now, it should be mentioned that in the literature, quon
algebra [3] is completely rooted through the SU(d)-invariant CBY q-oscillator algebra.
To the particles represented by this q-oscillator algebra it seems as a different algebra
due to an incomplete statistical point of view.

It is interesting to investigate the limit q = 0 of the CBY q-oscillator in addition to
the q = ±1 limiting cases:

aµa
+
ν = δµν for q = 0, µ, ν = 1, 2, ..., d. (7)

This shows the Cuntz oscillator introduced by Cuntz [12]. In the one dimensional case,
the Fock space representation of this oscillator is as follows:

a |0〉 = 0,
a |n〉 = |n− 1〉 , n = 1, 2, ... (8)

a+ |n〉 = |n+ 1〉 , n = 0, 1, 2, ...

and from these representations,

a+a |n〉 =
{

0, n = 0
|n〉 , n > 0,

(a+)2a2 |n〉 =
{

0, n ≤ 1
|n〉 , n > 1,
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...............,

(
a+
)n (a)n |n〉 = |n〉 .

Since the number operator of the Cuntz oscillator satisfies the relation N |n〉 = n |n〉 , it
turns out that

N =
∞∑
n=1

(
a+
)n
an. (9)

For the multidimensional case, the general number operator of the Cuntz oscillator is

N =
∞∑
n=1

d∑
µ1,µ2,...,µn=1

a+
µ1
a+
µ2
...a+

µnaµnaµn−1 ...aµ1. (10)

On the other hand, for the case q 6= 0, the same notion can also be thought for
the number operator of the CBY q-oscillator. For this purpose, it is useful to use the
permutations, for example

P1 = a+
µ1
aµ1 ,

P12 = a+
µ2
a+
µ1
aµ1aµ2 ,

P21 = a+
µ2
a+
µ1
aµ2aµ1 ,

which can be represented as

Pk1 = a+
µ1
aµk1

,

Pk1k2 = a+
µ2
a+
µ1
aµk1

aµk2
,

where k1, k2 is a permutation of 1, 2. The general expression for such permutations is

Pk1k2...kn = a+
µna

+
µn−1

...a+
µ1
aµk1

aµk2
...aµkn , (11)

where k1, k2, ..., kn is a permutation of 1, 2, ..., n.Hence, the number operator of the CBY
q-oscillator can be written as

N =
∞∑
n=1

∑
permutation{k1,k2,...,kn}

Ck1k2...knPk1k2...kn (12)

where Pk1k2...kn is defined by Eq. (11). It can be verified that
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C1 = 1, C12 =
1 + q2

1− q2
, C21 =

−2q
1− q2

by applying N on the states |0〉 , |µ〉 , |µ1µ2〉 . The other coefficients can be successively
found by applying N on the states |µ1µ2µ3〉, which will give 3! equations of the six
coefficients Ck1k2k3 , and extending this procedure to higher number of indices step by
step.

It can be seen from Fock space properties of the CBY q-oscillator that the norm of
states S(a+

µ ) |0〉 given before are always positive-definite. For instance,

〈µν | µν〉 = 〈0|aνaµa+
µ a

+
ν |0〉 > 0,

and the general form of this vacuum-to-vacuum matrix element can be written as

〈0|aµnaµn−1 ...aµ1a
+
µ1
a+
µ2
...a+

µn
|0〉 > 0. (13)

This result can also be represented as
∥∥S(a+

µ ) |0〉
∥∥ > 0. One can now return to investigate

the limit q = 0 of the CBY q-oscillator such that

aµa
+
ν |0〉 = δµν |0〉 for q = 0. (14)

Equation (14) holds for the Cuntz oscillator. Moreover, it is not necessary to use the
vacuum condition aµ |0〉 = 0 in calculation of vacuum-to-vacuum matrix elements for
the Cuntz oscillator states. The Cuntz oscillator also leads to the Maxwell-Boltzmann
statistics due to both Eq. (10) and Eq. (13), which state that any matrix element for
the representation of the group S(a+

µ ) will be positive. This important result is uniquely
based on the limit q = 0 of the CBY q-oscillator invariant under the ordinary SU(d) group
instead of quantum group invariant oscillator. These concluding remarks are similar to
that of [11] which found these results by using a commutation relation between number
and creation operators.

Now let us again consider the states belonging to the CBY q-oscillator. It is assumed
that a linear combination of two particle states |12〉 and |21〉 is the state |χ〉 = |12〉−η |21〉 ,
where η is some parameter. This new state can be rewritten as

|χ〉 =
(
a+

1 a
+
2 − ηa+

2 a
+
1

)
|0〉 . (15)

In quantum mechanics, all linear combinations of nonzero vectors |χ〉 should have positive
norms. By using Eqs. (1) and (15), it is straightforward to show that norm of the state
|χ〉 is

〈χ | χ〉 = 1 + η2 − 2ηq. (16)
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It is not possible to say anything about parameter η due to the states a+
1 a

+
2 |0〉 and

a+
2 a

+
1 |0〉 being linearly independent for SU(d)-invariant CBY q-oscillator (Eq. (4)). How-

ever, for −1 ≤ q ≤ +1, 〈χ | χ〉 = 0 only for η = q and q2 = 1. Then |χ〉 = 0. If one
chooses η = q, we then see that

〈χ | χ〉 = 1− q2. (17)

Hence, an interpretation to this equation can be stated as follows:

1. 〈χ | χ〉 = 1 for q = 0, is physically consistent,

2. |χ〉 = 0 for q = ±1, is physically not allowed,

3. 〈χ | χ〉 > 0 for − 1 < q < +1, is physically consistent and is exactly relevant for
the Maxwell-Boltzmann statistics.

In this paper, we have studied the algebraic and the representative properties of
both the CBY q-oscillator and the Cuntz oscillator. The different limiting cases of the
deformation parameter q of the CBY q-oscillator are discussed for the second quantized
particle statistics. In this respect, the following interesting results can be summarized:
The CBY q-oscillator in the range −1 < q < +1 coincides with the Cuntz oscillator,
in that both lead to Maxwell-Boltzmann statistics. For the multidimensional case, the
number operators for both of these oscillators are explicitly constructed. In particular,
the Cuntz oscillator has a number operator of infinite degree as shown in Eq. (10), which
is based upon Fock space properties of the oscillator. Moreover, the linear combinations
of the quantum states of the CBY q-oscillator, such as |χ〉 in Eq. (15), have a positive
norm and lead to the Maxwell-Boltzmann statistics only for the range −1 < q < +1.

As a final remark, from all calculations above the commutation relation which leads
to the Maxwell-Boltzmann statistics does not have a connection with quantum groups.
Thus, in any case, the Maxwell-Boltzmann statistics can not be worked with quantum
group invariant oscillators. This statistics is completely based on a the limit case of the
ordinary SU(d) group invariant CBY q-oscillator. Moreover, in connection with this type
of statistics, it may be important to note that some observables of the Maxwell-Boltzmann
statistics field, which are represented by operators, do not have local commutativity
property. With the above in mind, this non-locality property does not seem related to
quantum group invariant oscillators.
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