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Abstract

Theoretical of multiple transverse mode laser oscillation involving spatially vary-
ing gain and loss are investigated. The effect of gain and loss distribution on mode
competition is analyzed. A theoretical analysis of laser transverse mode competition
is investigated from the perspective of the spetial overlap of modes with a transverse
gain-loss distribution. The dominant mode of laser oscillation is the mode that is
stable under small perturbations.

Key Words: Waveguide gas lasers, Two – mode system, Transverse mode, Gain
and loss.

1. Introduction

In this study, we investigated a general analytical method to understand the interac-
tion between the modes and the medium and its effect on mode competition. In section
2.1 saturation of population inversion by multiple transverse modes is investigated [1-5].
Section 2.2 considers the spatial variation of the cavity loss and gain, and gain saturation.
Differential equations for laser mode development in time are derived. Section 2.3 studies
the stability of single-mode solutions in a two-mode system. The conditions on gain and
loss distributions for competing modes to oscillate are derived [6].

2. Theory

2.1. Saturation of Population Inversion by Multiple Transverse Modes
This analysis is based on a small-signal approximation, which is not valid in our

situation. Thus, we derive a new relation by starting from Yariv’s analysis and expand
it to mutli mode case. We investigated density matrix elements given in Yariv [1] of the
form
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d

dt
ρ21 = −iω0ρ21 + i

µ

h̄
E(t)(ρ11 − ρ22) − ρ21

T2
(1)

d

dt
(ρ11 − ρ22) = i2

µ

h̄
E(t)(ρ21 − ρ∗21) − (ρ11 − ρ22) − (ρ11 − ρ22)0

τ
. (2)

Assume a single longitudinal mode that can oscillate in any of N transverse modes.
The frequency differences among these modes are very small compared to the gain line
width. Define the linearly polarized electric field as follows:

E(t) =
1
2

N∑
j

ej0(t)e−iωj tφj(r) + c.c., (3)

where ej0(t)is a slowly varying function of time.
We can write the off-diagonal density matrix element ρ21 as follows:

ρ21(t) = σ21(t)eiωat (4)

ωa =

N∑
j
ωj

N
. (5)

Thus for σ21 we obtain an equation different from Equation (1):

σ̇21 = i (ωa − ω0)σ21 + i
µ

2h̄
(ρ11 − ρ22) ·

N∑
j

ej0φje
i∆aj t − σ21

T2
, (6)

where ∆aj is the frequency difference:

∆aj = ωa − ωj , (7)

and ωa, ωj are high-frequency oscillatory terms. High frequency Equations (6) are ignored
because their contributions to the integration average to zero over the time scale for
variations in σ21. Multiply both sides of Equation (6) by the factor e[i(ω0−ωa)+(1/T2)]t

and with some manipulation, Equation (6) becomes

∂

∂t

(
σ21e

[
i(ω0−ωa)+

(
1/T2

)]
t

)
= i

µ

2h̄
(ρ11 − ρ22) ·

N∑
j

ej0φje

[
i(ω0−ωj)+

(
1/T2

)]
t
. (8)

Assuming the rate of change of (ρ11 − ρ22) and ej0 are much slower than 1/T2
, we can

pull them out of the integration. Then we obtain by integrating Equation (8)
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σ21 = i
µ

2h̄
(ρ11 − ρ22)

N∑
j

ej0φje
i∆aj tD (T2, ω0 − ωj), (9)

where D (T2, ω0 − ωj) is defined as

D (T2, ω0 − ωj) =
1

1/T2
+ i (ω0 − ωj)

. (10)

The term ρ21 − ρ∗21 in equation (2) becomes

ρ21 − ρ∗21 = σ21(t)e−iωat − σ∗21(t)eiωat = i µ
2h̄

(ρ11 − ρ22)[
N∑
j

ej0φje
iωj tD (T2, ω0 − ωj) + c.c.

]
.

(11)

Thus, we obtain

d

dt
(ρ11 − ρ22) = i

µ

2h̄
E(t) (ρ21 − ρ∗21)− (ρ11 − ρ22)− (ρ11 − ρ22)0

τ

= −1
2

(
µ
h̄

)2 (ρ11 − ρ22)

[
N∑
j
ej0e

−iωjtφj(r) + c.c.

]
×
[
N∑
j
ej0φj(r)eiωjtD (T2, ω0 − ωj) + c.c.

]
.

− (ρ11−ρ22)−(ρ11−ρ22)0
τ

(12)
If the frequency spread of the transverse modes is small compared with the line width,
we can approximate D(T2,ω0-ωj) with D(T2,ω0-ωa). And if the rate of change of ρ11-
ρ22 is much slower than ei(ωi−ωk)t for any k 6= j, we can keep only the terms without
exponential time dependence on the right side of Equation (12):

d
dt

(ρ11 − ρ22) = −1
2

(
µ
h̄

)2 (ρ11 − ρ22) · [D (T2, ω0 − ωa) + c.c.]
N∑
j

ej0e
∗
joφ

2
j(r)

− (ρ11−ρ22)−(ρ11−ρ22)0
τ

= −1
2

(
µ
h̄

)2 (ρ11 − ρ22) 2T2
1+T 2

2 (ω0−ωa)2 ·
N∑
j

ej0e
∗
joφ

2
j(r)

− (ρ11−ρ22)−(ρ11−ρ22)0
τ .

(13)

We make the standard definitions of the normalized line shape function as follows:

g(ω) =
2T2

1 + T 2
2 (ω0 − ωa)2 ; (14)

the saturation intensity:
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Is = cnε0
h̄2

µ2τg(ωa)
=

1
η

h̄2

µ2τg(ωa)
; (15)

and the laser intensity as:

I =
1
2η

N∑
j

ej0e
∗
j0φ

2
j(r) =

N∑
j

Ij. (16)

Now we can write the steady-state expression for (ρ11 − ρ22) as

ρ11 − ρ22 =
(ρ11 − ρ22)0

1 + I
Is

(17)

From [4], the susceptibility satisfies the following:

χ = ρ11 − ρ22 (18)

and

χ = −n
2c

ω
γ, (19)

where γ is the gain coefficient of lasing medium in units of [m−1] [2].

2.2. Model and Theory

x

y

Distributed gain and loss

Figure 1. Schematic showing the general structure of the waveguide array of two channels

with distributed gain and loss [3].

We concentrate our attention onto the coupled waveguide laser array, the general form
of which is shown Figure 1 [3]. For this model, Maxwell’s equations are given by

∇×H = J + ε
∂E

∂t
+
∂

∂t
Plaser (20)
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∇× E = −µ∂H
∂t

, (21)

where the current density J is introduced to account for the loss of energy that is not in
resonance with the laser, for example, the loss aassociated with mirror transmission or
the loss introduced by the waveguide boundaries; and Plaser is the complex polarization
of the medium that resonates with the laser [7].

Using the normal mode expansion of the resonator field, the total electric and magnetic
field are given as follows:

E(r, t) =
N∑
j

ej(t)φj(r) (22)

H(r, t) =
∑
j

hj(t)χj(r), (23)

where the modal field φj(r) and χj(r) are dimensionless and are normalized to the volume
of the cavity V :

1
V

∫
V

φj(r) · φk(r)dV = δjk (24)

1
V

∫
V

χj(r) · χk(r)dV = δjk (25)

The loss and the resonant polarization become

J = σ(r)
∑
i

ej(t)φj(r) (26)

Plaser = χ(r, ωj)
∑
j

ej(t)φj(r). (27)

The formal conductivity σ(r) and the complex dielectric susceptibility χ(r) are functions
of space and are treated as constants [8]. The first of Maxwell’s equations (Eqn. 20) can
be written as∑

j

hj(t)∇× χj(r) = σ(r)
∑
j

ej(t)φj(r) + [ε+ ε0χ(r)]
∑
j

ėj(t)φj(r). (28)

Taking the time derivative of Equation (28), we obtain:∑
j

ḣj(t)∇× χj(r) = σ(r)
∑
j

ėj(t)φj(r) + [ε+ ε0χ(r)]
∑
j

ëj(t)φj(r). (29)
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The normal mode fields satisfy Maxwell’s equations for the empty, unperturbed resonator,
which is charge free, uniform, passive and lossless. Then

∇× φj(r) = −iω0µχj(r) (30)

∇× χj(r) = iω0jεφj(r), (31)

where ω0j is the normal frequency for the jth mode in the passive cavity. Substituting
the first of equations Equation (30) in the second of Maxwell’s equations (Eqn. 21), we
have

ej(t) = − i

ω0j
ḣj(t). (32)

Using Equations (30)-(31) and (32) in Equation (29), we get∑
j

−ω2
0jεej(t)φj(r) = σ(r)

∑
j

ėj(t)φj(r) + [ε + ε0χ(r)]
∑
j

ëj(t)φj(r), (33)

and rearranging the above, we obtain:

−ε
∑
j

(
ω2

0jej + ëj
)
φj(r) =

∑
j

[σ(r)ėj + ε0χ(r)ë]φj(r). (34)

Multiplying both sides of the above equation with V −1φk(r) and integrating over the
volume V , we have:

−ε
(
ω2

0kek + ëk
)

=
∑
j

(σjkėj + ε0χjkëj), (35)

where

σjk =
1
V

∫
V

σ(r)φj(r) · φk(r)dV (36)

χjk =
1
V

∫
V

χ(r)φj(r) · φk(r)dV . (37)

We may write ej(t) as

ej(t) =
1
2
ej0(t)eiωj t + c.c., (38)

where ωj is the laser oscillation frequency and ej0is the slowly varying part of the time
dependent ej(t). Because we assume ej0 varies slowly, |ëj0| << ωj|ėj0| and the second
derivation of ej(t) can be approximated as
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ëj(t) =
1
2
[
−ω2

j ej0(t) + i2ωj ėj0(t)
]
eiωj t + c.c. (39)

and equation (35) can be written as

−ε
[(
ω2

0j − ω2
j

)
ej0 + i2ωj ėj0

]
=
∑
k

[
(iωkek0 + ėk0)σkj +

(
−ω2

kek0 + i2ωkėk0

)
ε0χkj

]
.

(40)
We see from this equation that the spatial variation of the loss and gain causes a direct
coupling between different modes. Only under the conditions that the orthogonality
between the modes is not violated by the presence of χ and σ Equations (36)-(37), so
that the following inequalities are true, can the direct coupling be omitted:∣∣∣∣∫

V

φk(r).φj(r)χ(r, ωj)dV
∣∣∣∣ << ∣∣∣∣∫

V

φj(r).φj(r)χ(r, ωj)dV
∣∣∣∣∣∣∣∣∫

V

φk(r).φj(r)σ(r)dV
∣∣∣∣ << ∣∣∣∣∫

V

φj(r).φj(r)σ(r)dV
∣∣∣∣ k 6= j. (41)

This is particularly valid in the cases we are treating here, where σ(r) and χ(r) are nearly
symmetrical functions, and the kth and jth modes are of the opposite spatial symmetry.
If σ(r) and χ(r) are exactly symmetrical, then the left-hand side of equation (41) becomes
exactly zero. With this approximation, Equation (40) becomes[

i2ωj
(

1 +
χj
n2

)
+
σj
ε

]
ėj0 =

(
−ω2

0j + ω2
j +

χj
n2
ω2
j − i

ωjσj
ε

)
ej0, (42)

where n is the index of refraction of the medium in the absence of gain and σj and χj
are shorthand for σij and χij, respectively. The modal susceptibility χj can be further
written in its real and imaginary parts:

χj =
1
V

∫
V

φj(r).φj(r)χ(r, ωj)dV =
1
V

∫
V

φj(r).φj(r) (χ′ − iχ) dV . (43)

When we require ėj0 = 0 in Equation (42), we obtain the steady-state solution, which
turns into two conditions for steady-state laser oscillation, the first for phase and the
second for amplitude

ωj =
ω0j√

1 + Re(χj)
n2

; (44)

Im(χj) =
σj
ε0ωj

. (45)

We consider only homogeneously-broadened media thus the imaginary part of χj can be
written as
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Im(χj) = − 1
V

∫
V

|φj(r)|2χ(r)dV =
1
V

nc

ωj

∫
V

γ0(r)|φj(r)|2dV
1 + |E(r,t)|2

2ηIs

, (46)

where the total electric field E(r, t) is given by Equations (22)-(23), and the wave
impedance of space filled with a dielectric material of permitivity ε = εrε0 is defined
as

η =
√

µ0

εrε0
. (47)

The relationship between χ(r) and the medium gain, the definitions of small signal gain
γ0

[
m−1

]
and homogeneous saturation intensity Is

[
W
/
m2

]
, and their relations to the laser

atomic parameters for waveguide gas laser media are given in Equation (15). Solving
Equation (42) for ėjand substituting laser frequency ωj as given in the first of Equation
(45), we obtain

ėj0 =

(
Im(χj)
n2 ω2

j − i
ωjσj
ε

)
i2ωj

(
1 + χj

n2

)
+ σj

ε

ej0. (48)

For most gas laser media, it is true that |χ| << 1, thus
(
|χj |/n2

)
<< 1. If the cavity

loss is also small (σj/ε) << 2ωj, the denominator above is effectively i2ωj and Equation
(48) can be further simplified. Using these simplifications and expanding the electric field
using Equations (22)-(23) in Equation (46), finally Equation (48) becomes

ėj0 =
1
2

[
Im (χj)
n2

ωj −
σj
ε

]
ej0 =

 c

2nV

∫
V

γ0(r)|φj(r)|2dV

1 +

1
2η

∑̀
ej0e∗joφ`(r)φ`(r)

Is

− σj
2ε

ej0. (49)

Equation (49) is a differential equation for laser coefficients, each including phase and
amplitude. The intensity coefficient for the jth mode can be defined as

bj =
ejoe

∗
jo

2η
. (50)

It represents the power density [W/m2] for the jth mode, and its differential equations
is:

ḃj =
d

dt

ejoe
∗
jo

2η
=

1
2η
(
ėjoe

∗
jo + ejoė

∗
jo

)
= 2

 c

2nV

∫
V

γ0(r)|φj(r)|2dV

1 +

∑̀
bjφ`(r)φ`(r)

Is

− Lj

bj . (51)
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In deriving Equation (51), we used the fact that the square bracket terms is real [8]. We
also introduced a modal loss coefficient [9]

Lj =
σj
2ε
. (52)

2.3. Mode Stability Analysis

We may now use the results of the previous section to investigate the stability of a
given mode for when it is possible for a second mode, one with a different transverse field
distribution φj(r), to oscillate. We make the following assumptions [10].

There are only two modes that are sufficiently near the threshold to be appreciably
excited. The total field is then:

E(r, t) = e10(t)eiω1tφ1(r) + e20(t)eiω2tφ2(r). (53)

The z-dependence of the modal field is in the form of a standing wave and is the same
for all modes considered, since they have the same longitudinal mode number. Thus, the
spatial hole burning resulted from this fine standing wave pattern in the z-direction does
not favor one mode over the other and can be ignored.

The population inversion and gain are dependent not only on the transverse coordi-
nates but also on the longitudinal coordinate. Therefore, the gain does not depend on
z. Thus the integral in Equation (49) is only affected by the variations in the transverse
direction (x,y).

The loss σ(r) is divided in to a spatially varying part and a constant part:

σ(r) = σ′(r) + σ0. (54)

With these assumptions, the effects of the localized loss and the distributed loss on
laser mode competition can be separated. The modal loss is then:

Lj =
1

2εV

∫
V

σ′(r)|φj(r)|2dV +
σ0

2ε
= L′j + L0. (55)

To obtain steady-state solutions for Equation (51), we require ḃj = 0 for j=1,2. Then
on the right-hand side either the term in square brackets is zero or bj=0. All possibilities
considered, we will have three nontrivial steady-state solutions as follows:

(b1, b2) = (f, 0) , (0, g) or (p1, p2) , (56)

where (f, 0) and (g, 0) are single-mode solutions. First, consider the stability of the state
(f , 0). Under perturbation (δ1, δ2), this state becomes (f + δ1, δ2). We use Equation (51)
to find equations for the perturbation δ1 and δ2:
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δ̇1 =

 c

2nS

∫
S

γ0(x, y)|φ1(x, y)|2dxdy
1 + (f+δ1)|φ1|2+δ2|φ2|2

Is

− L1

 (f + δ1)

δ̇2 =

 c

2nS

∫
S

γ0(x, y)|φ2(x, y)|2dxdy
1 + (f+δ1)|φ1|2+δ2|φ2|2

Is

− L2

δ2. (57)

Here φ1 and φ2 are functions of (x,y), and S is the total cross-section area of the laser
cavity. Because the perturbations are very small |f | >> |δ1|, |δ2|, we can ignore all the
second order δ term in Equations (57.1)-(57.2):

δ̇1 =

 c

2nS

∫
S

γ0(x, y)|φ1(x, y)|2

1 + f|φ1(x,y)|2
Is

.

1− 2f.
δ1|φ1(x, y)|2

Is

(
1 + f|φ1(x,y)|2

Is

)
dxdy− L1

 (f + δ1) .

(58)
The fact that (f ,0) is a steady-state solution implies that the saturated gain equals

the total loss:

c

2nS

∫
S

γ0(x, y)|φ1(x, y)|2dxdy
1 + f|φ1(x,y)|2

IS

− L1 = 0. (59)

So, the equations in (57.1)-(57.2) evolve into the following form:

δ̇1 = − cf

nISS

∫
S

γ0(x, y)|φ1(x, y)|2 δ1|φ1(x, y)|2(
1 + f|φ1(x,y)|2

IS

)2 dxdy

δ̇2 =

 c

2nS

∫
S

γ0(x, y)|φ2(x, y)|2dxdy
1 + f|φ1(x,y)|2

IS

− L2

δ2. (60)

We can write Equations (60.1)-(60.2) in a matrix form by defining a vector δ:

δ =
(
δ1
δ2

)
(61)

The time derivative of δ is [11]:

δ̇ =
(
δ̇1
δ̇2

)
=
(
A B
C D

)(
δ1
δ2

)
(62)

We see from Equation (58) that the matrix elements B and C are zero. Thus, the
eigenvalues for the operating matrix are A and D. If both of them are negative, then the
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vector δ will not grow, and the steady-state (f ,0) is stable; if either A or D is positive,
(f ,0) will be unstable. We also see from Equations (60.1)-(60.2):

A = − cf

nISS

∫
S

γ0(x, y)|φ1(x, y)|4dxdy(
1 + f|φ1(x,y)|2

IS

)2
< 0 (63)

D =
c

2nS

∫
S

γ0(x, y)|φ2(x, y)|2dxdy
1 + f|φ1(x,y)|2

IS

− L2. (64)

The sign of D is not known until γ0(x, y), φ1(x, y), φ2(x, y) and σ′(x, y) are specified. We
see that because A is negative, the sign of D determines the stability of the solution (f ,0):
if it is positive or negative, this state is unstable or stable [11,12], respectively.

Similar arguments obviously apply to the other single-mode steady-state (0,g), which
becomes (δ1, g + δ2) with perturbation. The equations are

δ̇1 =

 c

2nS

∫
S

γ0(x, y)|φ1(x, y)|2dxdy
1 + g|φ2(x,y)|2

IS

− L1

δ1, (65)

δ̇2 = − cg

nISS

∫
S

γ0(x, y)|φ2(x, y)|2 δ2|φ2(x, y)|2

1 + g|φ2(x,y)|2
IS

dxdy. (66)

We define the self-saturated modal gain Sk and cross-saturated modal gain Ckj, both in
unit of s−1, as follows:

Sk =
c

2nS

∫
S

γ0(x, y)|φk(x, y)|2dxdy
1 + αk|φk(x,y)|2

IS

; (67)

Ckj =
c

2nS

∫
S

γ0(x, y)|φj(x, y)|2dxdy
1 + αk|φk(x,y)|2

IS

; (68)

k, j = 1, 2(k 6= j)(α1 = f)(α2 = g).

Then we may summarize the conditions for the existence and stability of the jth and kth
modes: for the jth mode to exist,

Sj − L′j − L0 = 0. (69)

For the kth mode to exist,

Sk − L′k − L0 = 0. (70)

The stability of the jth mode is determined by
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Cjk − L′k − L0 = 0{ <0 stable
>0 unstable. (71)

The stability of the kth mode is determined by [12]:

Cjk − L′k − L0 = 0{ < 0 stable
> 0 unstable. (72)

Thus for the laser to have single jth mode Equation (71) must be <0 and Equation (72)
must be >0, and vice versa for a single kth mode to exist.

3. Results and Discussions

A theoretical analysis of laser transverse mode competition is investigated from the
perspective of the spatial overlap of modes with a transverse gain-loss distribution. The
dominant mode of laser oscillation is the mode that is stable under small perturbations.
The conditions that this mode must satisfy were derived. In this study property of
the coupled array may be important in the understanding active super mode control.
Numerical calculations applied to waveguide lasers, with the result that a change in gain
or loss in the small coupling region between the channels of the array was capable of
switching the laser oscillation from one mode to the other. This property of the coupled
array may be important in the understanding active super-mode control.
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