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Abstract

The sensitivity of c → uγ decay in the recently proposed gluino-axion model is analyzed for a light
sbottom in a restricted parameter space. The decay rate enhances up to 3% with respect to the SM
result in a moderate range of tan β values.

1. Introduction

In the standard electroweak theory (SM) the single phase in the CKM matrix θCKM is a unique source
for both flavour and CP violations. In the supersymmetric (SUSY) extensions of the standard model, there
exist novel sources for both flavour and CP violations coming from the soft supersymmetry breaking mass
terms [1]. The new sources of CP violation can be probed via the flavour conserving processes such as
the Higgs system [2] and the electric dipole moments (EDM) [3] of the particles. On the other hand, a
searching platform for flavour violation is the flavour–changing processes generally arising at one and higher
loop orders [4,5,6].

It is now a well–known fact that mixing [7,8] and decays [9,10] of D mesons, as well as K and B meson
processes [11] are very important tools in searching for the new physics effects via the loops of the new
particles. In this work, our main interest will be the radiative charm decays. The radiative decay D → πγ,
which is represented by the radiative decay c → uγ, at the parton level, has been analyzed using different
methods and levels of precision [12,13]. In Ref. [14], the sensitivity of this decay is analyzed in detail in the
context of minimal SUSY standard model (MSSM). In Ref. [15], the analysis of c→ uγ has been also done
in the same context, but in a restricted parameter space with the light scalar bottom quark [16,17]. For
such ∆F = 1 decays, the charginos contribute in a manner with no need for flavour-changing mixing [18].
Therefore, with the aim of saturating the existing EDM bounds, the sfermions of the first two generations are
assumed to be heavy enough(≥ TeV) and approximately degenerate such that their contributions decouple
for any loop of interest. Within such an approximation, it is clear that the contribution of the chargino-squark
loops will be the only essential ones.

It has been observed in Ref. [16] that the light sbottom (̃b1) could be as light as the bottom quark itself.
Moreover, the corresponding parameter space favours the light stop to be degenerate with the top quark
itself:

Mt̃1 = 175 GeV and Mb̃1
= 5 GeV . (1)

The compatibility of a light bottom squark in the unconstrained MSSM has been recently studied in Ref. [17],
where the renormalization group flow up to Grand Unification Scale is considered. Unlike Ref. [17], in
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Ref. [15] only chargino, charged Higgs and W-boson loops give contribution to the underlying model, whereas
the gluino mass is not included. In this work, however, we will make our analysis in the recently proposed
gluino-axion model [19,20].

The supersymmetric (SUSY) theories, which are designed to solve the hierarchy problems, possess two
hierarchy problems: One concerning the strong CP problem, also existing in the S.M, whose source is the
neutron EDM exceeding the present bounds by nine orders of magnitude and the other is the µ puzzle,
concerning the Higgsino Dirac mass parameter µ, which follows from the superpotential of the model. A
simultaneous solution to these two hierarchy problems is achieved in Ref. [19] in the context of supersymmetry
with a new kind of axion [21,22] which couples to the gluino rather than to quarks. In the gluino-axion model
the invariance of the SUSY Lagrangian and all supersymmetry breaking terms under U(1)R is guaranteed
by promoting the ordinary µ parameter to a composite operator involving the gauge singlet Ŝ with unit R
charge. When the scalar component of the singlet develops vacuum expectation value (VEV) around the
Peccei–Quinn scale ∼ 1011 GeV, an effective µ parameter µ ∼ aTeV is induced. Besides, the low energy
theory is identical to minimal SUSY model with all sources of soft SUSY phases. Due to all these abilities of
the model of Ref. [19], in solving the hierarchy problems, in the analysis below we will adopt its parameter
space.

Assuming that all the sfermions of the first two generations are heavy enough to decouple and all gen-
eration changing entries of the sfermion mass matrices vanish, in what follows, we will analyze Γ(c → uγ)
in units of the SM result. In doing this: (i) the Wilson coefficients are evolved down to the mesonic mass
scale for a phenomenologically sensible description; (ii) all the supersymmetric contributions, as well as the
the contributions of the charged Higgs and W-boson loops, are calculated at the weak scale; (iii) due to its
restricted parameter space, we work in the gluino-axion model [19], where the soft masses needed for this
analysis are expressed in terms of the µ parameter through appropriate flavour matrices

The organization of this work is as follows. In Sect. 2, starting from the low energy Lagrangian of the
model, we define the soft masses which we need for this analysis. We work on the sbottom and chargino
contributions in Sects 2.1 and 2.2. In Sec. 2.3, armed with full diagonalization of the squark and chargino
sectors, we discuss the one-loop contributions to the Wilson coefficients. A numerical study of the theoretical
predictions in comparison with that of the SM is performed in Sec. 3. We summarize our conclusions in
Sec. 4.

2. The Model

In the gluino-axion model of Ref. [19], the soft terms of the low energy Lagrangian are identical to those
in the general MSSM:

LsoftMSSM = Q̃†M2
QQ̃+ ũc

†
M2
ucũ

c + d̃c
†
M2
dc d̃

c + L̃†M2
LL̃

+ ẽc
†
M2
ec ẽ

c +
{[
AuQ̃ ·Hu ũc + AdQ̃ ·Hd d̃c

+ AeL̃ ·Hd ẽc
]

+ h.c.
}

+M2
Hu |Hu|2

+ M2
Hd |Hd|2 + (µ BHu ·Hd + h.c.)

+
{
M3λ̃

a
3λ̃

a
3 +M2λ̃

i
2λ̃
i
2 + M1λ̃1λ̃1 + h.c.

}
, (2)

except for the fact that the soft masses are proportional to the the µ parameter via appropriate flavour
matrices. (Note that here, and in what follows, we will neglect the effects of axion, axino and saxino
interactions as their couplings are severely suppressed [19].) The flavour matrices form the sources of CP
violation and intergenerational mixings in the squark sector. The phases of the trilinear couplings (Au,d,e),
the gaugino masses (M3,2,1), and the effective µ–parameter

µ ≡ v2
s/MPl × e−iθQCD/3 ∼ a TeV × e−iθQCD/3, (3)

are the only phases which contribute to CP violation observables. In this formula for µ parameter, vs ∼
1011 GeV is the Peccei–Quinn scale, and θQCD is the effective QCD vacuum angle. In the gluino-axion model
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all the soft masses are expressed in terms of the µ parameter. In our analysis only the chargino and bottom
squark loops contribute to the process, so that we will not need to express all the soft masses in terms of the
µ parameter. Instead we will only need to specify the bottom squark soft masses, and the gaugino masses,
namely:

(i) the bottom squark soft masses:

M2
Q̃

= k2
Q |µ|2 , (4)

where kQ is a real parameter;
(ii) the gaugino masses:

M2 = k2 µ , (5)

where k2 is a complex parameter.

2.1. Sbottom Sector

We start by analyzing the squark sector where the elements of the sbottom mass matrix M̃2
b,ij can be

expressed in the weak basis (b̃L, b̃R) as follows:

M̃2
b =

(
M̃2
b,11 mb(Ab − µ tanβ)

mb(Ab − µ tanβ) M̃2
b,22

)
, (6)

where

M̃2
b,11 = k2

Q |µ|2 + m2
b + cos 2βM2

Z (T bz − Qb sin2 θw) ,

M̃2
b,22 = k2

Q |µ|2 + m2
b + cos 2βM2

Z Qb sin2 θw , (7)

with Qb = −1/3, T bz = −1/2 and sin θw = (1 −M2
W /M

2
Z)1/2. Moreover, the sbottom soft masses M2

Q̃
are

expressed in terms of the µ parameter(4). Additionally, the mass-squared eigenvalues are given by

M2
b̃1(b̃2)

=
1
2

{
2k2
Q |µ|2 + 2m2

b + T bz cos 2βM2
Z

−(+)

√[
cos 2βM2

Z (T bz − 2Qb sin2 θw)
]2

+ 4m2
b(Ab − µRb)2

}
. (8)

In the present scenario the light stop and sbottom masses are known, which allows one to solve one of
the unknowns in (8) in terms of these known masses. We choose to solve the sbottom left–right entries
(Ab − µ tanβ), that is:

(Ab − µ tanβ) =
1
m2
b

[(
M2
b̃1
− k2

Q |µ|2 −m2
b − (1/2) T bz cos 2βM2

Z

)2

− 1
4

(
cos 2βM2

Z (T bz − 2Qb sin2 θw)
)2
]
. (9)

One notes that the LR mixing parameter depends only on the sbottom soft mass M̃2
Q which is proportional

to the µ parameter (4). As usual, the sbottom matrix M̃2
b can be diagonalized via the unitary rotation:(

b̃L
b̃R

)
=
(

cos θb sin θb
− sin θb cos θb

)
·
(
b̃1
b̃2

)
, (10)

which relates the weak basis (b̃L, b̃R) to the mass eigenstates (b̃1, b̃2), whereas the mixing angle θb is defined
as

cos θb =
mb(Ab − tanβµ)√

m2
b(Ab − tanβµ)2 + M̃2

b,11 −M2
b̃1

, (11)
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where M̃2
b,11 is the 11–matrix element of M̃2

b defined in (7), M2
b̃1

is given by (8), and the numerator and the
denominator of (11) are expressed in terms of (9).

2.2. Chargino Sector

We start with the 2 × 2 mass matrix [23] of the charginos which are the mass eigenstates of charged
gauginos and Higgsinos:

MC =
(

k2µ −
√

2MW cos β
−
√

2MW sinβ µ

)
, (12)

where the gaugino masses M2 are expressed in terms of the µ parameter (5). The mass matrix of the
charginos (12) can be diagonalized via the biunitary transformation:

C†RMCCL = diag(mχ1 , mχ2) , (13)

where CL and CR are 2× 2 unitary matrices and mχ1 , mχ2 are the masses of the charginos χ1, χ2 such that
mχ1 > mχ2 . For convinience, the following explicit parametrization can be chosen for the chargino mixing
matrices:

CL(R) =
(

cos θL(R) sin θL(R)

− sin θL(R) cos θL(R)

)
, (14)

where the angle parameters θL(R) can be determined from 13. After a straightforward calculation, one gets:

tan 2θL(R) =

√
8MW

√
k2

2 µ
2 cos2 β + µ2 sin2 β + µ2k2 sin 2β

k2
2 µ

2 − µ2 − (+)2M2
W cos 2β

, (15)

and finally, the masses of the charginos are given by

m2
χ1(2)

=
1
2

{
k2

2 µ
2 + µ2 + 2M2

W + (−)[(k2
2 µ

2 − µ2)2 + 4M2
W cos2 2β

+ 4M2
W (k2

2 µ
2 + µ2 + 2k2 µ

2 sin 2β)]1/2
}
. (16)

Following the full diagonalization of the sbottom and the chargino sectors, in what follows, we will start
working on the contributions to the Wilson coefficients from the chargino, charged Higgs and W-boson loops.
Between these three types of contributions, the first one is of SUSY origin in which chargino and sbottom
loops contribute while the other two are of S.M.

2.3. One Loop Contributions to The Wilson Coefficients

Analysis of the c→ uγ decay follows closely that of the b→ sγ decay [11,24]. The effective Hamiltonian,
describing a ∆F = 1 transition, is defined at the scale µ = MW with the standard quark operators

Heff = −GF√
2

8∑
i=1

CiOi , (17)

where Oi=1,···,8 are the standard quark operators [25]. For a phenomenologically sensible description, the
Wilson coefficients Ci are evolved down to the mesonic mass scale and, in solving the the Wilson coefficients,
two successive steps are followed: first the Wilson coefficients are evolved from µ = MW down to µ = mb

level using five active quark flavors, then these coefficients are run down to µ = mc level for four active quark
flavours. The details of this analysis, at m = mc level, are studied in Ref. [15]. However, we summarize our
calculational procedure in Appendix A for completeness.
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As all other radiative flavour–changing decays, c → uγ decay is described in terms of the coefficient C7

evaluated at µ = mc:

C7(mc) = C
(0)
7 (mc) + C2(MW )C(2)

7 (mc) + C7(MW )C(7)
7 (mc)

+C8(MW )C(8)
7 (mc). (18)

The explicit expressions of each term in (18) are defined in Appendix A. One notes that C7(mc) depends
on three Wilson coefficients: C2(MW ), C7(MW ) and C8(MW ) and the determination of these short-distance
coefficients reflects the properties of the model under consideration. Here, C2(MW ) = 1, and C7(MW ) and
C8(MW ) can be expressed as follows:

C7(8)(MW ) = Cχ7(8)(MW ) + CH
±

7(8)(MW ) + CW7(8)(MW ). (19)

Clearly, these coefficients receive contributions from chargino, charged Higgs and W-boson loops. Cχ7(8)(MW )

is the pure supersymmetric contribution, where chargino (χ±) and bottom squark (b̃) loops contribute to the
process. CH

±

7(8)(MW ) and CW7(8)(MW ) are the charged Higgs, and W–boson loop contributions respectively.
The chargino contribution to C7(8)(MW ) can be expressed as

Cχ7(8)(MW ) =
2∑
i=1

2∑
k=1

M2
W

m2
χi

m2
χi

M2
b̃k

[
CL1iSb1k +

hb
g2
CL2iSb2k

]
[(

CL1iSb1k +
hb
g2
CL2iSb2k

)
K

7(8)
1 (rki) −

ht
g2

mχi

mt
CR2iSb1kK

7(8)
2 (rki)

]
, (20)

where

ht =
mtg2√

2MW sinβ
,

hb =
mbg2√

2MW cos β
, (21)

and

rki =
m2
χi

M2
b̃k

. (22)

The contributions of charged Higgs bosons are given by:

CH
±

7(8)(MW ) = −1
2
rh

[
K̄

7(8)
1 (rH) + tan2 βK̄

7(8)
2 (rH)

]
, (23)

where

rH =
m2
b

M2
H±

. (24)

Finally, the standard W-boson contributions lead to

CW7(8)(MW ) = −3 rW K̄
7(8)
1 (rW ) , (25)

where

rW =
m2
b

M2
W

. (26)

The loop functions K7(8)
1 (20), (23) and K̄

7(8)
1 (25) are defined in Appendix B.
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Table 1. The maximum values of Ri(%) for different k2 and kQ in a moderate range of tan β values. One notes
that, for tan β = 4, µ starts from 95 GeV whereas for tan β = 10 and tan β = 15, the lowest bounds of µ are 88 GeV
and 87 GeV respectively.

tanβ k2 kQ µ1 R1(%) µ2 R2(%) µ3 R3(%)
4 2.5 1 95 GeV 2.431 88 GeV 87 GeV
4 2.5 1.25 95 GeV 2.261 88 GeV 87 GeV
4 2.5 1.5 95 GeV 1.863 88 GeV 87 GeV
4 2.5 1.75 95 GeV 1.470 88 GeV 87 GeV
4 2.5 2 95 GeV 1.125 88 GeV 87 GeV
10 2.5 1 95 GeV 1.723 88 GeV 2.557 87 GeV
10 2.5 1.25 95 GeV 1.815 88 GeV 2.662 87 GeV
10 2.5 1.5 95 GeV 1.647 88 GeV 2.460 87 GeV
10 2.5 1.75 95 GeV 1.394 88 GeV 2.099 87 GeV
10 2.5 2 95 GeV 1.133 88 GeV 1.724 87 GeV
15 2.5 1 95 GeV 1.240 88 GeV 1.869 87 GeV 2.031
15 2.5 1.25 95 GeV 1.393 88 GeV 1.905 87 GeV 2.032
15 2.5 1.5 95 GeV 1.371 88 GeV 1.939 87 GeV 2.082
15 2.5 1.75 95 GeV 1.207 88 GeV 1.731 87 GeV 1.860
15 2.5 2 95 GeV 0.997 88 GeV 1.456 87 GeV 1.567

3. Numerical Analysis

As mentioned in the Introduction, we analyze c → uγ decay in the light of recent experimental data,
which requires Mt̃1 = 175 GeV and Mb̃1

= 5 GeV so that in the present scenario, light sbottom and the
stop masses are known, allowing one to solve the LR mixing entry (9) in terms of the known masses.

A convinient way to observe the new physics effects is via the dimensionless quantity defined by

R =
Γ(c→ uγ)MSSM

Γ(c→ uγ)SM
− 1, (27)

which measures the fractional enhancement or suppression in the decay rate with respect to the SM value.
One notes that R has been based on real parameters, namely real gaugino mass and the µ parameter. The
phases of these parameters are very important in determining the CP asymetry of the decay. However, since
the CP asymetry of this decay has not been measured yet, and only for the numerical analysis of R , the
parameters k2 and µ are taken as real.

Using the formulae in the previous section, we will now perform a numerical study of R in the allowed
range of the µ parameter and analyze the variation of this quantity with the positive and negative values
of µ. As a reflecting property of the underlying model all the soft masses are expressed in terms of the µ
parameter. Since the µ parameter is stabilized to the weak scale, as a consequence of the naturalness, all
dimensionless parameters are expected to be O(1). Therefore, we take the dimensionless quantities k2 and
kQ in O(1) and let |µ| vary from |250| GeV to |80| GeV. Moreover, we will study in a moderate range of
tanβ values, namely, tanβ = 4, tanβ = 10, tanβ = 15, tanβ = 20 to illustrate the variation of R with
the µ parameter, for different values of k2 and kQ. Depicted in Table 1 is the variation of R(%) for µ > 0
with different values of k2 and kQ. One notes that the allowed range of the µ parameter, and so as the
lowest value of µ, depends on tanβ as well as the the other parameters of the model under consideration.
For instance, for tanβ = 4, the lowest bound of µ starts from 95 GeV, whereas for tanβ = 10 the bound is
lowered to 88 GeV and for tanβ = 15, to 87 GeV. Although not shown in the table, the starting value of µ
for tanβ = 20 is 86 GeV.

It is observed that for the cases k2 = 1 and kQ = 1 and k2 = 1.5 and kQ = 1.5, there are no solutions for
R(%) since in both cases chargino masses are imaginary. The solutions for R(%) start only when k2 = 2,
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Figure 1. Variation of R(%) with µ < 0 for tan β = 4 (solid curve), tan β = 10 (dashed curve), tan β = 15(dotted
curve), tanβ = 20 (dot-dashed curve) with k2 = 2.5 and kQ = 1.25.

but for convinience, we summarize the data starting from k2 = 2.5 for different values of kQ in Table 1. It
is also noticable that for values of k2 larger than 3, the data for R(%) are not favorable.

In Fig. 1, the variation of R(%) is shown for µ < 0 , with four different values of tanβ = 4 (solid curve),
tanβ = 10 (dashed curve), tanβ = 15 (dotted–curve) and tanβ = 20 (dot–dashed curve). In between the
different values of k2 and kQ, we concentrate on one particular k2, kQs pair and make our analysis for the
case where k2 = 2.5 and kQ = 1.25. Moreover, since R(%) remains constant at about ∼ 0.1% in the range
between −500 GeV to −250 GeV, we discard this region of the parameter space which does not make sense
for our analysis. Instead, we concentrate on the interval as µ ranges from −250 GeV to −80 GeV. One
notes that as µ increases, the supersymmetric contribution decreases in accordance with the decoupling of
the supersymmetric contribution.

As the figure suggests, for tanβ = 10 (dashed curve) R increases from ∼ 0.2% up to ∼ 3% level, and for
tanβ = 4 (solid curve) it increases up to ∼ 2.5% level as µ ranges from −250 GeV to −80 GeV. Though
the behaviour is similar, for larger tanβ, R decreases faster. Indeed it can be at most ∼ 2% for tanβ = 15
and ∼ 1.25% for tanβ = 20. It is observed in this analysis that for larger tanβ values, tanβ > 20, the
enhancement in the rate remains always below 1%, thereby leaving a small window of observation.

As is noted immediately from the figure, although the maximum value of R(%) decreases with increasing
tanβ, the maximum value of R(%) for tanβ = 10 is greater than the one for tanβ = 4. This effect can
be easily understood by observing the dependency of tanβ on the lowest value of µ as noted before. (The
maximum value of R is 2.7 for 88 GeV, it decreases to 1.8 at 95 GeV for tan β = 10, whereas for tanβ = 4,
its value at 95 GeV is 2.4 but for 88 GeV there is no solution).

Fig. 2 is similar to Fig. 1, except for the choice of positive µ parameter. Being an approximate mirror
of Fig. 1, R again decreases with increasing µ.

From the analysis of these two figures showing the variation of R(%) in a moderate range of tanβ values,
in general, one can arrive at a conclusion that theoretically, this region is favorite since the enhancement is
more than 1% for most of the parameter space, that is, b→ sγ decay is as well in the allowed band of CLEO
data.

4. Conclusions

In this work, we have analyzed c → uγ decay in the gluino-axion model for a light scalar bottom
quark. The scalar bottom quark enters the chargino contribution, and thus, influences the decay rate. For
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Figure 2. The same as Fig. 1 but µ > 0.

a moderate range of tanβ values (where there is no danger of violating the CLEO result on b → sγ decay
rate), we find that the rate is enhanced up to ∼ 3% with respect to the SM.

Before closing, we would like to point out that:

• Although the numerical analysis of the branching ratio based on real parameters, namely real gaugino
mass and the µ parameter, in general the phases of these parameters are crucial for determining the
CP asymetry of the decay. The phases of these parameters contribute to direct CP violation as well
as D0− D̄0 mixing as in the Kaon and B-meson systems. However, the CP asymetry of this decay has
not been measured yet, so the complex parameters are not analyzed in this work.

• Besides such direct measurements, another important clue for CP violation in charm-quark systems
(e.g D-meson) is the formation of P-wave charmoniums; especially the phases of the trilinear couplings,
the A-parameters defined in (2), can be directly probed by the observation of such CP odd charmonium
levels at lepton colliders [26]. Moreover, it is known that the A-parameters are never constrained by
any other observable such as the Higgs system and EDMs.
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Appendix A
The solutions of the QCD renormalization group equations (RGE) can be expressed as:

Ck(µ) = U
5(4)
kl (µ,MW )Cl(MW ), (28)

where U5
kl and U4

kl are the evaluation matrices defined in five and four flavour contexts, respectively, and
can be determined by the following expressions [27]:

U5(mb,MW )kn = Okl

[
η ~alb

]
O−1
kn ,

ηb =
αs(MW )
αs(mb)

,

U4(mc, mb)kn = Okl

[
η ~albc

]
O−1
kn ,

ηbc =
αs(mb)
αs(mc)

. (29)

In the above expression, ~al ≡ γDll
2β0

with β0 = 11−2nf
3

, in which f can be taken as 4(5) as needed, and
γD = O−1γ(eff)TO is the diagonalized 8× 8 anamolous dimension matrix.

The explicit expressions for each term in (18) can be obtained after the solution of (29):

C
(0)
7 (mc) =

8∑
i=1

ηaib fi(ηbc) , (30)

where the numbers ai are given by

ai =
(

0.609 , 0.696 , −0.423 , 0.261 , 0.146 , −0.522 , −0.899 , 0.409
)
, (31)

and

f1(ηbc) = 2.2996 η0.640
bc , f2(ηbc) = −1.09 η0.640

bc ,

f3(ηbc) = −0.001 η−0.845
bc + 0.027 η−0.420

bc − 0.0004 η0.132
bc

−0.032 η0.347
bc + 0.483 η0.560

bc − 0.516 η0.640
bc ,

f4(ηbc) = 0.0002 η−0.845
bc − 0.0006 η−0.420

bc − 0.0010 η0.132
bc

+0.4 η0.240
bc + 0.107 η0.347

bc − 0.546 η0.560
bc − 0.388 η0.640

bc ,

f5(ηbc) = +0.00004 η−0.845
bc − 0.00009 η−0.42

bc − 0.0057 η0.132
bc

+0.006 η0.347
bc + 0.084 η0.560

bc − 0.091 η0.640
bc ,

f6(ηbc) = +0.017 η−0.845
bc + 0.016 η−0.420

bc + 0.00042 η0.132
bc

+0.032 η0.347
bc − 0.084 η0.560

bc − 0.038 η0.640
bc ,

f7(ηbc) = 0.0065 η−0.845
bc + 0.00044 η−0.420

c + 0.00006 η0.132
bc

+0.004 η0.347
bc − 0.267 η0.560

bc + 0.238 η0.640
bc ,

f8(ηbc) = −0.0004 η−0.845
bc + 0.00096 η−0.420

bc + 0.0008 η0.132
bc

+0.728 η0.347
bc − 3.744 η0.560

bc + 2.365 η0.640
bc . (32)

The second term C
(2)
7 (mc) is given by

C
(2)
7 (mc) =

2∑
i=1

ηribcgi(ηb) , (33)

and the numbers ri read as

ri =
(

0.560 , 0.640
)
, (34)
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and

g1(ηb) = 0.304 η−0.899
b − 0.466 η−0.423

b − 0.111 η0.146
b

+4.872 η0.409
b − 4.599 η0.609

b ,

g2(ηb) = −0.304 η−0.899
b + 0.466 η−0.423

b + 0.111 η0.146
b ,

−4.872 η0.409
b + 4.599 η0.609

b . (35)

For the third term, C(7)
7 (mc), in (18) we find

C
(7)
7 (mc) = C7(MW )η0.696

b η0.640
bc . (36)

Finally, C(8)
7 (mc) in (18) is given by:

C
(8)
7 (mc) = C8(MW )

2∑
i=1

ηsibchi(ηb) , (37)

where

si =
(

0.560 , 0.640
)
, (38)

and

h1(ηb) = −5.333 η0.609
b ,

h2(ηb) = 2.667 η0.609
b + 5.333 η0.609

b − 2.667 η0.696
b . (39)

Appendix B
The loop functions K7

1 (r) and K7
2 (r) are defined as:

K7
1(2)(r) = I1(2)(r) −

1
3
J1(2)(r) ,

K8
1(2)(r) = J1(2)(r) . (40)

where the functions I1(r), I1(r) and J1(r), J2(r), can be expressed as:

I1(r) =
1

12(1− r)4
(2 + 3r − 6r2 + r3 + 6rlnr) ,

I2(r) =
1

12(1− r)3
(−3 + 4r− r2 − 2lnr),

J1(r) =
1

12(1− r)4
(1− 6r + 3r2 + 2r3 − 6r2lnr),

J2(r) =
1

12(1− r)3
(1− r2 + 2rlnr) . (41)

K̄7
1(2)(r) = J1(2)(r) −

1
3
I1(2)(r) ,

K̄8
1(2)(r) = I1(2)(r) . (42)
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