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Abstract

In this work, the contributions of anomalous magnetic moment to relativistic Landau orbits are
calculated by the method of self-field quantum electrodynamics. In addition to contributions from
positive energy states new terms from negative energy states that have not been taken into account
before are now also included. Contributions from these terms are found to be in the same order as
positive terms.

1. Introduction

In order to explain the spectra of atoms in magnetic fields, Uhlenbeck and Goudsmit [1] postulated that
the electron has an intrinsic (spin) angular momentum h̄/2 and a magnetic dipole moment eh̄/2mc, the Bohr
magneton. Later, Dirac showed that both properties of the electron are the consequences of relativisically
invariant quantum mechanics [2].

The magnitude of the electron magnetic dipole moment and spin angular momentum is e/mc, that is,
Lande g-factor for electron spin is 2 as predicted by Dirac theory which neglects coupling of the electron
to the radiation field [3]. As in the case of the Lamb shift, radiative corrections give small departure from
this prediction. Just prior to the first accurate measurements by Kusch et al. [4], Schwinger calculated the
“anomaly” (g-2)/2 as α/2π ≈ 0.00116 [5]. The experimentalists reported a value 0.00119 ± 0.00005. Like
the Lamb shift, the anomalous moment of the electron also provides one of the most sensitive tests of QED.
Accurate measured value of anomalous magnetic moment is 0.00115652188(4) and its theoretical value by
QED, up to the fourth order in the fine-structure constant α, is 0.001159652192(74) [6,7].

The self-field quantum electrodynamics is introduced to complete standard quantum electrodynamics [8].
As it is known, standard quantum electrodynamics first quantizes free fields and then takes the interactions
between the particles as perturbative effects. However, in the self-field quantum electrodynamics both
free fields and interactions are taken as a whole and quantized. No perturbation is taken into account in
this method. In this respect, the self-field quantum electrodynamics use a similar method with classical
electrodynamics. A. O. Barut et al. first used the self-field quantum electrodynamics to calculate anomalous
magnetic moment for non-relativistic Pauli equation [9, 10, 11, 12]. Here, the same method is applied to
calculate the contributions of anomalous magnetic moment to relativistic Landau orbits.

2. Action of the System

For a relativistic electron in an external arbitrary field, the action is given as
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W =
∫
dx

[
Ψ̄(x) ( γµi∂µ −M) Ψ(x) + JµAµ −

1
4
FµνF

µν

]
. (2.1)

Here, the first term is the kinetic energy of electron, the second term is the contribution from the
interaction of electron with external electromagnetic field, and the last term is the self-energy of electron.
In the first term Ψ(x) describes the electron matter field which is defined at time-position point (x0,~x),
and γµare Dirac gamma matrices. The mass and current of the electron are defined as M and Jµ(Jµ=
-eΨ̄γµΨ), respectively. Aµ is the total electromagnetic field defined as Aµ = ASelfµ + AExtµ , where AExtµ is
not a dynamical function. In the last term Fµν is a self-field tensor and is given as Fµν = ASelfν,µ −ASelfµ,ν .

If we expand the time dependence of wavefunction of electron, Ψ(x0, ~x), by a Fourier series (h̄ = 1)

Ψ(x) = Ψ(xo, ~x) =
∑
n

Ψn(~x)e−iEnxo (2.2)

(where the summation goes over all discrete and continuous states) and substitute ~π = i~∇−e ~A, ~AExt 6= 0;

Ψ̄(x)γo = Ψ†(x); Ψ̄(x)~γ = Ψ†(x)~α; γo = β; ~α =
(

0 ~σ
~σ 0

)
(where ~σ are Pauli matrices); and

ASelfµ (x) = − 1
(2π)4

∫
dy

∫
d4k

e−ik(x−y)

k2
Jµ(y) (2.3)

in Eq.(2.1) it is found that non-linear self energy part of the total action is

W1 = e2

2

∑
nmrs

2πδ(En − Em +Er −Es)
∫
d~xd~y [Ψ

†

n(~x)Ψm(~x)Ψ
†

r(~y)Ψs(~y)−

Ψ
†

n(~x)~αΨm(~x)Ψ
†

r(~y)~αΨs(~y)]
∫

d~k
(2π)3

ei
~k·(~x−~y)

[(En−Em)2−|~k|2]

(2.4)

and the linear part is

Wo =
∑
n

∫
d~x2πΨ

†

n(~x)(En − ~α · ~π − βM)Ψn(~x) (2.5)

3. The Calculation of Anomalous Magnetic Moment Contribu-

tions

In order to provide a transition from Dirac equation to Pauli equation for each labeled state we use in
Eq. (2.4) unitary similarity transformation matrix S; so, instead of Dirac wavefunction, our wavefunction
for electron takes the form

Ψ(~x) = S

(
ϕ(~x)
χ(~x)

)
= K

(
E +M −~σ · ~π
~σ · ~π E +M

)(
ϕ(~x)
χ(~x)

)
(3.1)

Thus we get

W1 = e2

2

∑
nmrs

2πδ(En −Em + Er −Es)
∫
d~xd~y

{[
S

(
ϕ
χ

)] †
n

[
S

(
ϕ
χ

)]
m

[
S

(
ϕ
χ

)]†
r

[
S

(
ϕ
χ

)]
s

−[
S

(
ϕ
χ

)]†
n

~α

[
S

(
ϕ
χ

)]
m

[
S

(
ϕ
χ

)]†
r

~α

[
S

(
ϕ
χ

)]
m

}∫
d~k

(2π)3
ei
~k·(~x−~y)

[(En−Em)2−|~k|2]
,

(3.2)

where K = 1/
√

2E(E + M)is the normalization constant.
When we expand Eq.(3.7), it is seen that some terms are proportional to the power of (~σ · ~π). Using

χ = ~σ·~π
E+M ϕ we express all terms in the expansion of Eq.(3.2) in terms ofϕ. Most of the terms in the final

expression are seen to be proportional to non-linear powers of (~σ ·~π). However we are interested only in terms
that are proportional to external magnetic field and we neglect all the other terms. Taking the properties
of Dirac-delta function into account we write the remaining terms as follows:
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3.1. Case I: n = m, r = s (Vacuum polarization)

W1 = − e2

(2π)3

∑
nm

4π
∫
d~xd~yK2

nK
2
m

{
(En +M)2ϕ†n(~x)ϕn(~x)ϕ†m(~y)(~σ · ~π)2ϕm(~x)

+(Em +M)2ϕ†n(~x)(~σ · ~π)2ϕn(~x)ϕ†m(~y)ϕm(~y)− 4(En + M)(Em + M)
×ϕ†n(~x)~πϕn(~x)ϕ†m(~y)~πϕm(~y)

} ∫
d~k

|~k|2
ei
~k·(~x−~y)

(3.3)

3.2. Case II: n = s, m = r (Lamb shift and other contributions)

W1 = − e2

(2π)3

∑
nm

4π
∫
d~xd~yK2

nK
2
m{(En + M)(Em + M)[ϕ†n(~x)ϕm(~x)ϕ†m(~y)

×(~σ · ~π)2ϕn(~y) + ϕ†n(~x)(~σ · ~π)2ϕm(~x)ϕ†m(~y)ϕn(~y)]− 2(En +M)(Em +M)
×[ϕ†n(~x)~πϕm(~x)ϕ†n(~y)~πϕm(~y)− ϕ†n(~x)(~σ × ~π)ϕm(~x)ϕ†m(~y)(~σ × ~π)ϕn(~y)]−
2(En +M)2[ϕ†n(~x)~πϕm(~x)ϕ†n(~y)~πϕm(~y)− ϕ†n(~x)(~σ × ~π)ϕm(~x)ϕ†m(~y)
×(~σ × ~π)ϕn(~y)]}

∫
d~k

(En−Em)2−|~k|2 e
i~k·(~x−~y)

(3.4)

In Eq.(3.3) and Eq.(3.4) we first used the dipole approximation (i.e., λ << ro or ei~k·(~x−~y) ≈ 1, where r0 and
λ are atomic radia and radiated wavelength, respectively); we replaced E = ε + M for energy to pass into
non-relativistic region; and, finally, we used equation (~σ · ~π)2 = π2 − e~σ · ~B to get the non-linear self-field
part of action as

W1 =
4αΛ
M2

∑
n

[〈n | e~σ · ~BExt |n〉 + 〈n| ~π2 |n〉] (3.5)

and the linear kinetic part

Wo =
∑
n

2π [ 〈n| [ε− ~π2

2M
+

e

2M
~σ · ~BExt] |n〉]. (3.6)

Summing Eq.(3.5) and Eq.(3.6) we get

W =
∑
n

2π 〈n| [ε+ ∆E − ~π2

2M

(
1− 8αΛ

2πM

)
+

e

2M
~σ · ~BExt

(
1 +

8αΛ
2πM

)
] |n〉, (3.7)

where α = e2/4π. Defining a mass renormalization as

M−1
R =

1
M

(
1− 8αΛ

2πM

)
(3.8)

and rearranging Eq.(3.7) we find

W =
∑
n

2π{〈n| [ε+ ∆E − ~π2

2MR
+

e

2MR
~σ · ~BExt(1 +

16αΛ
2πM

+O(α2))] |n〉. (3.9)

The fourth term in the above equation has the factor(
1 +

16αΛ
2πMR

+O(α2)
)
. (3.10)

where the second term is the gyromagnetic ratio. Since we are only interested in the terms that are linear
in α, we neglect all the others.
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4. Conclusion

The main contribution of this work to the previous investigations is the addition of new terms due to
negative energy states which are at the same order positive terms. If the cutoff value of the momentum
integral is chosen as Λ = MR/16 our final expression for anomalous magnetic moment is in agreement with
standard quantum electrodynamics (ae = α/2π) [12, 13].
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