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Abstract

A binary composite system with particulated inclusions was considered. First, thermally stimulated
depolarization (tsd) currents of the system were simulated by altering different parameters of the tsd

current equation, i.e., intrinsic dielectric properties of constituents, conductivity of inclusions, heating
rate and activation energy of inclusion conductivity and shape of inclusions. Two different methods of
finding the activation energy of tsd processes from the simulated tsd currents were discussed. Second, we
have included the Monte Carlo technique by assuming that the shape factor of inclusions were distributed.
These simulations have shown that if the inclusions were distorted spheres, the resulting tsd currents
were identical. Finally, since the classical calculations have neglected the inclusion-inclusion interactions,
the finite element method (fem) was used to include the influence of local fields (mutual interaction of
inclusions). The dielectric responses of two-dimensional systems at isothermal conditions were calculated
by the fem, and later, the tsd currents were estimated with the fem results by assuming a constant
activation energy for the relaxation processes. The comparison of the obtained results has shown that
the influence of micro-structure and mutual interaction of particles should be included in the modeling
considerations.
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1. Introduction

Predicting and understanding the dielectric properties of a medium formed from a mixture of different
dielectric materials has been a challenging problem of both theoretical and practical importance. These
heterogeneous systems composed of two or more phases show different conductive and dielectric properties
depending on the electrical properties of phases [1, 2, 3]. Even the geometrical shapes [4] and arrangements
of inclusions [5, 6] play an important role in the electrical properties of composites.

One of the techniques to study the dielectrical properties of materials is the thermally stimulated po-
larization or depolarization (TSD) current method [7, 8, 9]. In this technique, a material is polarized by
applying an uniform and constant electric field E at an elevated temperature, then the material is cooled
down in the applied field in order to freeze the polarization. Afterwards the depolarization current is recorded
under a short-circuit condition while the sample is linearly-heated. The depolarization process results as a
current in the external circuit when the frozen polarization is thermally activated.
∗Supported by the ELIS program of the Swedisk Foundation for Strategic Research (SSF).
†To whom correspondence should be addressed
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The tsd current of a composite is influenced by the micro-structure of the mixture as well as the applied
voltage and the heating rate. In the simulations, a binary composite system composed of non-interacting
conductive ellipsoidal inclusions in an insulating matrix was considered [4]. A similar approach was presented
by Vila et al. [10] where the tsd current of a mixture containing inclusions of ellipsoidal shapes were studied.

When two media are put into contact (forming an interface) and an electric field is applied, due to the
differences between the ratios of the electrical properties (conductivity and permittivity) charge polarization
occurs at the interface. This polarization is called ‘Maxwell-Wagner’ or interfacial polarization [11, 12]. The
dielectric response of the composite material with such polarization ε(ω) = ε′(ω)− ıε′′(ω) can be written as
follows in the form of a Debye model [13],

ε′(ω) =ε+
∆ε

1 + ω2τ2

ε′′(ω) =
∆εωτ

1 + ω2τ2
,

(1)

where ε is the dielectric permittivity at optical frequencies ∆ε is the dielectric strength of the interfacial
polarization, and τ is the relaxation time. Sillars [4] has introduced ellipsoidal inclusions, and has studied
the dielectric behavior of these systems when the matrix medium was insulating (σ1 � σ2). The dielectric
properties of such systems has been given by [4, 14] as

ε =ε1

[
1 + q

n(ε2 − ε1)
ε1(n− 1) + ε2

]
∆ε =

q

1− q
n2ε2

1

(n− 1)ε1 + ε2 − q(ε2 − ε1)

τ =
(n− 1)ε1 + ε2

σ2
.

(2)

Here, ε1 is the dielectric permittivity of the matrix medium, and ε2 and σ2 are the dielectric permittivity
and ohmic conductivity of the ellipsoidal inclusions, respectively. The parameters n and q are the shape
factor for the inclusions and the volume fraction of the inclusions, respectively.

When the tsd currents of the composites are considered, the conductivity σ2 in Eq. (2) can be assumed
to temperature T dependent and Arrhenius activated with an activation energy W and a pre-exponential
factor σ0 as

σ2 =σ0 exp
(
− W

kBT

)
. (3)

Here, kB is the Boltzmann constant, kB = 8.6174 × 10−5eV/K. Then, the tsd current j(T ) is expressed
as [7, 8, 9]

j(T ) =
P0

τ (T )
exp

{
−
∫ T

0

[
dT

Bτ (T )

]}
(4)

where τ (T ) is the temperature dependent relaxation time which is obtained by inserting Eq. (3) in Eq. (2).
The other two parameters in Eq. (4), P0 and B, are the total sample polarization, and the linear heating
rate in the experiments, respectively. The total polarization P0 is

P0 = ∆εE, (5)

where E is the constant applied field. In the simulations, the composite systems were considered to be
totally polarized, P0 = constant.

In this investigation, not only the shape factor but other physical parameters influencing the tsd current,
e.g., dielectric permittivities of the media, conductivity of the inclusions, activation energy of the conductiv-
ity etc. were explored. However, by altering the dielectric properties of phases and shapes of the inclusion

134



TUNCER, GUBAŃSKI
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Figure 1. Ellipsoidal inclusion considered in the simulations.

particles, the dielectric strength ∆ε of the composite system changes that which was temperature indepen-
dent in the calculations. The dielectric properties of a system with arbitrary ellipsoidal inclusions are given
in Eq. (2) with a shape parameter, n. The n-value can be obtained for different directions, as illustrated in
Fig. 1, and is given by [4, 14]

ni =
2

x1x2x3Li
, (6)

where subscript i denotes the desired axis-direction and

Li =
∫ ∞

0

dζ[
(x2
i + ζ)2(x2

1 + ζ)(x2
2 + ζ)(x2

3 + ζ)
]1/2

.
(7)

The value of Li is between 1 and infinity, 1 < Li < ∞. The index i indicates the shape factor in that
axis-direction.

For needle-like shapes parallel to the field direction, n-values are larger than 3. For spherical inclusions,
the shape factor ni is 3. For cylinderical inclusions, if the cylinder axis is perpendicular to the applied field,
shape factor is 2. And if large disks perpendicular to the applied field are considered, the shape factor is 1.

2. Simulations of tsd current

The present work begins with the shape of inclusions was assumed to be identical and spherical, n = 3.
The dielectric permittivity values of the host medium and inclusions were ε1 = 2 and ε2 = 10, respectively.
The conductivity of the inclusions was taken to be Arrhenius activated, and the matrix phase was considered
to be a perfect dielectric without any temperature dependent parameters, σ1 = 0. The concentration of the
inclusions, q, was 0.1 which is low enough to neglect the mutual interaction of inclusions. The applied field
E, pre-exponential factor for conductivity σ0, activation energy of the conductivity W and the heating rate
were 104 V/m, 100 S/m, 0.7 eV and 0.1 K/s, respectively. The tsd current-response calculated according
to Eq. (4) with these parameters is shown in Fig. 2. This response was considered as a reference tsd current
for the later simulations. The peak-temperature Tp in which the current maximum is achieved was ∼ 255 K,
and the maximum current value max[j(T )] = j(Tp) was 43 pA.
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-15

-14

-13

-12

-11

-10

-9

-8

150 200 250 300 350
T [K]

lo
g
(j
)

Figure 2. The reference tsd current curve.
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Figure 3. tsd currents of different Rε cases. (a) Rε < 1 and (b) Rε > 1. The Rε-values increase with incresing
temperature.

2.1. Intrinsic electrical properties of phases

The dielectric permittivity of the phases ε1,2 were chosen such that the ratio of the dielectric permittivities
Rε was between 0.02 and 50. To achive these values, first the dielectric permittivity of the matrix ε1 was
kept constant at ε1 = 2, and the dielectric permittivity of the inclusions were taken from an array of values,
ε2 = [4, 10, 20, 40, 100]. Later, the same procedure was repeated in which the dielectric permittivity of the
inclusions ε2 was kept constant at ε2 = 2, and the same values were used for the permittivity of the matrix
ε1.

The results are displayed in Fig. 3. It was remarkable that when Rε = ε1/ε2 < 1 the tsd current curves
had the similar width but decreasing in amplitudes for decreasing Rε (Fig. 3a). The peak-temperature of
tsd current Tp, moved to higher temperatures as the Rε became smaller. When the Rε > 1 cases were
taken into consideration, which are pre sented in Fig. 3b, first in contrast to Rε < 1 cases, the maximum
current value j(Tp) increased with increasing Rε-values. When the dielectric permittivity of the inclusions
were lower than that of the matrix phase, it was not possible to separate the influence of the inclusions in
the tsd current curves. When the temperature values were lower than 230 K, whereas, the influence of the
dielectric permittivities were significant at the higher temperature-side of the spectra.

Dependencies of maximum current j(Tp) on peak-temperature Tp are shown in Fig. 4a. The temperature
range in which the peak could be found was about ∼ 25 K, from 250 K to 275 K, showing two distinct
behaviors. First, j(Tp)-values could not be expected below ∼ 250 K shown in Fig. 4b). Secondly, both
figures showed U-shape behavior in semi-logarithmic plots. It was clear that the influence of Rε formed two
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regions where the log[j(Tp)]-points were placed.
Finally, if the change in j(Tp) as a function of the Rε were considered, the shape of the dependency

is linear-like in log-log plot, (see Fig. 5). However, the linearity was slightly deviated for the cases when
Rε < 1.

2.2. Pre-exponential factor of the conductivity

The pre-exponential factor of conductivity σ0 in Eq. (3) was altered to obtain respective tsd currents.
The activation energy W in the equation was kept constant. The σ0-values were taken between 50 S/m
and 500 S/m. The calculated tsd currents are presented in Fig. 6. The pre-exponential factor σ0 slightly
affected the shape of tsd currents and their peak current j(Tp) as well as the peak temperature Tp but not
as ambiguously as the intrinsic dielectric properties did. All the curves had similar shapes. The tsd currents
were influenced only when the σ0 < 250 S/m (Fig. 6a).

Dependence of j(Tp) on Tp is plotted for altered σ0 in Fig. 7a. The behavior was nearly-constant
in semi-logarithmic scale, showing no correlation between these parameters. The j(Tp)-values also had a
similar behavior with increasing pre-exponential factor σ0 as presented in Fig. 7b. Moreover, the range of
obtained Tp-values was ∼ 15 K. When the pre-exponential factor of conductivity of the inclusions σ0 was
increased, the tsd current peak position Tp appeared at a lower temperature (see Fig. 8). But, when the
region 250 S/m < σ0 < 500 S/m was considered, the change was smaller in amplitude than in the other
region 50 S/m < σ0 < 250 S/m. The Tp-values decreased non-linearly converging at 240 K with increasing
pre-expoential factor σ0.

2.3. Heating rate

In tsd current experiments, the heating rate B can be adjusted. The effect of this parameter on the
tsd current was considered and the calculated tsd currents are presented in Fig. 9. In the calculations, the
B-values were as follows:

B = [0.01, 0.03, 0.06, 0.1, 0.15, 2, 3, 5, 1, 2] K/s.

It was clear that an increase in heating rate increased the depolarization current, and the peak value of the
current appeared at a higher temperature. Although the curves looked different in shape, the integral of the
current with respect to time,

∫
j(T )dt, should be equal to the total polarization value. The tsd currents

showed similar characteristics where all the curves had the same initial raising stage. Only the shape of tsd

current became wider with increasing heating rate B which influenced the Tp-values. This behavior is shown
Fig. 10. The relationship between Tp and j(Tp) for altered B-values was linear in semi-logarithmic scale.
The range of the peak temperature obtained in this simulation was between 245 K and 280 K.

The activation energy of a process W may be obtained by performing measurements with different
B-values, then the activation energy W can be expressed as [15]

W =
kBTp1Tp2

Tp2 − Tp1

ln
B2T

2
p1

B1T 2
p2

. (8)

The calculated activation energy values are presented in Fig. 11a. The values were estimated using Eq. (8)
where combination of ten different heating rate values B together with their peak temperatures Tp were
used. Taking two of the B and Tp-values at a time, and inserting them into Eq. (8), 45 different activation
energy values were calculated. All of them except one were lower than the actual assigned activation energy,
W = 0.7 eV. The mean value of the activation energies 〈W 〉 was equal to 0.65 eV with standard deviation
±0.01 eV. Another way to calculate the activation W was to plot the logarithm of the tsd current as a
function of inverse normalized temperature, and to check the slope of the region where temperature is lower
than peak temperature T < Tp which is displayed in Fig. 11b. The slope is, then, equal to the activation
energy W . The activation energy estimates were W = 0.71 eV, which was close to the originally assigned
activation energy within 2% error. applicable when there exists only one activation energy. simulations,
when the slope of the natural logarithm of the tsd current was check the actual activation energy was
slightly deviated from the assigned one.
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Figure 4. (a) Maximum current j(Tp) as a function of its position in the temperature-axis Tp and (b) Tp as a
function of Rε.
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Figure 5. Change of maximum current value j(Tp) as a function of dielectric permittivity ratios Rε.
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Figure 6. tsd current as a function temperature for different σ0 values (a) when 50 < σ0 < 250 S/m and (b)
250 < σ0 < 500 S/m. The curves moved to lower temperatures for increasing σ0.
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Figure 7. (a) Maximum current j(Tp) as a function of its position in the temperature-axis Tp (b) j(Tp) as a function
of pre-exponential factor σ0.
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Figure 8. Change of peak temperature value Tp as a function of pre-exponential factor of conductivity σ0 of phases.
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Figure 9. tsd current as a function temperature for different heating rate B values (a) when B =
[0.01, 0.03, 0.06, 0.1, 0.15] K/s and (b) B = [0.2, 0.3, 0.5, 1.0, 2.0] K/s. The curves move to higher temperatures with
increasing B.
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Figure 10. Maximum current value j(Tp) of a tsd current and its position in the temperature axis Tp for different
values of σ0.
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Figure 11. Activation energies calculated for the set of heating rates B. N presents the set number, and the
solid-line is the mean activation energy value 〈W 〉 = 0.65 eV with standard deviation of 0.01 eV. (b) Boltzmann
constant times the natural logarithm of tsd current kB ln[j(T )] as a function of inverse normalized temperature
Tp/T . The slope of the line is 0.71 eV for Tp/T > 1.
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Figure 12. (a) Change in peak temperature Tp as a function of heating rate B. (b) Maximum current j(Tp) as a
function of its position in the temperature-axis Tp for altered B.
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Figure 13. tsd current as a function of temperature for different values of activation energy W (a) when
W = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] eV and (b) W = [0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5] eV. The curves move to higher
temperatures with increasing W -values.
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Figure 14. Maximum current value max[j(Tp)] of a tsd current and its position in the temperature axis Tp for
different values of W .

Finally, if the dependencies of logarithm of maximum current values, log[j(Tp)], and Tp-values on the
logarithm of the heating rate, log(B), were considered, the relationships were linear in both cases, as displayed
in Fig. 12, showing the possibility of using the altered heating rates to obtain the activation energy.

2.4. Activation energy

When the activation energy of the conductivity of inclusions W was altered, the largest span of the tsd

currents were obtained. The results are presented in Fig. 13. The W -values were assumed starting from
0.1 eV and increasing by steps of 0.1 eV up to 1.5 eV. The shapes of tsd currents were very sharp for low
W -values, as presented in Fig. 13a. The tsd current curves became wider as activation energies W were
increased as illustrated in Fig. 13b. The peak current max[j(T )] as a function of peak temperature Tp is
presented in Fig. 14. It shows a linear behavior in log-log plot. The dependencies of j(Tp) and Tp on the
activation energy W are diplayed in Fig. 15. Both dependencies were proportional to the W -values in the
log-log plots.

2.5. Shape factor of inclusions

In this part, the inclusions were assumed to be non-spherical. The shapes were generated using Eqs. (6)
and (7). First, the axis-values x1,2,3 were chosen to be constant and, later, were assumed to be Gaussian
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distributed.
The axis-values and the obtained shape factors in the applied field direction n1 are presented in Table 1,

starting with the spherical-shape as a reference. Then, the shape factor n1 of ellipsoidal inclusions, which
were assumed to be placed with all three principal axes in Cartesian-coordinates, were estimated. n2,3-
values calculated for the other two directions were the same when the ellipsoidal shape had its principle axis
perpendicular to the field direction. Moreover, the highest shape factors were obtained when the principle
axes were parallel to the applied field direction. The other cases presented in the table were needle-like shapes
with principle axis longer than that of the other two axes. When the needle was parallel to the applied field,
the shape factor n1 increased drastically. However, if the needle was supposed to be perpendicular to the field
direction x1 the n1-value, as mentioned previously, approached 2. Therefore, for two dimensional simulations
with infinitely long cylinders, n = 2 is a good approximation. We have also considered oblate-shapes (disks),
where they were assumed to be parallel and perpendicular to the applied field. The effect was similar to the
needle case when the shapes were parallel to the field direction. However, when they were perpendicular to
the applied field direction, the n1-value was between 1 and 2. In the case when the perpendicular axis-values
x2,3 were higher than that of the parallel axis x1 the shape factor approached 1 and the system became a
layered-structure.

The simulated tsd current curves with different shape factors are presented in Fig. 16. The solid-line in
the figure is the reference tsd current curve for spherical inclusions. In Fig. 16a, tsd current of a system
with ellipsoidal shapes parallel to the applied field is presented. Both the current maximum j(Tp) and peak-
temperature Tp increased with increasing shape factor. In Fig. 16b, the results obtained for the ellipsoids
perpendicular to the applied field are presented. Since the n-value did not alter, the current maximums were
all around the same peak-temperature value which was also the same for the reference tsd curve of spherical
inclusions. The only difference between the curves was a small perturbation in j(Tp). When the disk-shapes
were taken into consideration, as illustrated in Figs. 16c and 16d, the change in the tsd currents were
significant when the disks were parallel to the applied field. The tsd currents moved to higher temperatures
with increasing shape factor (see Fig. 16c). The current maximums j(Tp) also increased with the shape
factor. When the disks were perpendicular to the applied field, unlike the ellipsoidal case (Fig. 16b), the
discrepancy between the tsd currents could be distinguished, as shown in Fig. 16d. Note that for disks
or needles perpendicular to the applied field, the n1-values had much less variation than for the inclusions
parallel to the applied field.

The change in maximum current log[j(Tp)] as a function of peak temperature Tp is shown in Fig. 17 when
the shape factor n1 was altered. It was clear that there was a nonlinear functional dependency between them.
In the figure, there were two regions where the dependency showed linear tendencies in the semi-logarithm
plot, Tp < 260 K and Tp > 260 K. This behavior was significant if the dependence of Tp-values on n1 was
considered (Fig. 18). The peak-temperature was nearly-constant when 1 < n1 < 2, meaning that the change
in Tp was not severe. On the other hand if j(Tp) was taken into consideration, the result was the opposite,
where the slope was steeper in the same region. For higher values of shape factors, n > 2, the slope values
of the dependencies were larger for Tp and smaller for log[j(Tp)], respectively.

2.6. Distribution of shape parameters

An additional problem of greater complexity occures when the inclusion particles have arbitrary shapes,
as in ordinary composite materials. Therefore, a closer approach in modeling these materials should introduce
distribution of axis-values of ellipsoidal inclusions.

Systems with inclusions having many different shapes were generated, and their tsd currents were calcu-
lated. The axis-parameters x1,2,3 were chosen from a Gaussian distribution. In the simulations, ten thousand
non-interacting particles were considered where at least one of their axis-values were randomly generated [16]

R
n
xi(mxi , σxi) = mxi + σxiR

n, (9)

where Rn is a normally distributed deviate with zero mean and unit variance. The parameters mxi and σxi
are the mean and variance of the desired normal distribution. Then, the tsd current of each particle in the
matrix was calculated and added up to obtain the total tsd current. In Table 2 the mean and variance of
the considered shape parameters are shown. In the table, zero varience σxi means that the axis-value was
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Figure 15. (a) Change in peak temperature Tp as a function of activation energy W of the conductivity process.
(b) Maximum current j(Tp) as a function of its position in the temperature-axis Tp for different values of W .

Table 1. Axis-values in arbitrary units and the shape factor estimates.

case x1 x1 x1 n1

sphere
0 1 1 1 3.000

ellipsoid
1 1 2 1 2.420
2 2 1 1 5.764
3 1 1 2 2.420

needle parallel
4 5 1 1 17.976
5 10 1 1 49.916
6 50 1 1 839.852
7 100 1 1 3254.785

needle vertical
8 1 5 1 2.119
9 1 10 1 2.043
10 1 50 1 2.006
11 1 100 1 2.005

disk parallel
12 2 2 1 4.232
13 5 5 1 8.061
14 10 10 1 14.879
15 50 50 1 132.553
16 100 100 1 483.751

disk vertical
17 1 2 2 1.897
18 1 5 5 1.334
19 1 10 10 1.165
20 1 50 50 1.055
21 1 100 100 1.049
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Figure 16. tsd current of different systems with (a) ellipsoids parallel, (b) ellipsoids perpendicular, (c) disks
parallel and (d) disks perpendicular to the field direction. The solid-lines are the reference tsd currents for spherical-
inclusions. Amplitudes of the curves are increasing with increasing shape factors n1 see (Table 1).
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Figure 17. The current maximum j(Tp) as a function of peak temperature Tp when shape factor n1 was altered
from that of a sphere.
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Figure 18. Dependences of peak temperature Tp and logarithm of current maximum j(Tp) as a function of shape
factor n1.

not distributed, but it was taken to be constant: Rn
xi(mxi , 0) = mxi . The shape factor n was then calculated

in the applied field direction x1. The case 0 was the reference tsd current for spherical inclusions. First,
perturbed spherical shapes were considered which are the cases 1 and 2 in the table. Then, disk-like shapes
(cases 3 and 4) were generated. Finally in case 5, all the axis-values were distributed. The ratio of the
axis-values and their variances were also increased (cases 6-15).

In Fig. 19 shape factors n1 as a function of distributed axis and axes are presented. Only the dependency
of n1 on x1 and x2 directions were considered, and since the volume of the inclusions did not play any role in
the calculations, as the axis-values were normalized to x3. The n1-values obtained from case 1 in Table 2 are
labeled ab I in the figures. In the same way, the n1-values obtained from case 2 are presented in the figures
and they are labeled as II. Moreover, the spherical shape factor is also illustrated as a horizontal-line at
n1 = 3 in the figures. The distributed points in the figures a-b and c-d are for the cases 3 and 4, respectively.
When case 3 was considered, the n1(x1/x3)-values, as shown in Fig. 19a, demostrated a similar tendency
as case 2 but the results spread. This behavior exhibited that the inclusions were needle-like in the field
direction. However, if the same shape factors n1 were plotted against the other normalized axis-value, x2/x3

(Fig. 19b), unlike the previous distribution, there were no correlations between the axis-values and the curves
labeled with I and II. This result showed that the influence of the perpendicular axis on the shape factor
was not significant. The n1-values of the other considered case in which the x1-value was kept constant
and the other two axis-values were distributed (case 4), are presented in Fig. 19c and Fig. 19d. Since the
axis-values were normalized to x3, one could expect similar behavior as in case 3, however, the distributed
n1 values were not exactly aligned with direction II. The spread was wider and the orientation was different.
Much surprisingly, when the shape factor was plotted against the normalized x2-axis, the distribution was
horizontal-like spreading around the spherical shape factor as presented in Fig. 19d.

When all the axis-values are distributed, the shape factor is presented in Fig. 20. Once again subplots
(a) and (b) show the shape factor n1 as a function of the normalized axis-values of Rn

x1
(1, 0.1)/Rn

x3
(1, 0.1)

and Rn
x2

(1, 0.1)/Rn
x3

(1, 0.1), respectively. The labels I and II are the same as in the previous, Fig. 19. The
behavior in Fig. 20a is similar in shape to the behavior in Fig. 19a, but spread on a wider region. It
is also similar behavior if Fig. 20b and Fig. 19b were compared. As a result, if all the axis-values are
distributed over a narrow range, there is not that much difference in the shape factors between case 5 and
cases 1-4 in Table 2. This is presented in Fig. 21a. The n1-values were distributed but the variance of the
distributions were alike. The tsd current curves of the corresponding cases were the same as that of the
spherical inclusions, (see Fig. 21b).

A similar approach was extended to needle-like shapes which were parallel and perpendicular to the
field-axis. The calculated shape factors are shown in Fig. 22. The graphs display the extentions of curves I
and II in Fig. 19 where the axis-values were distributed over a wider range. In fact, the curves were obtained
using cases 1, 6 and 11, and cases 2, 7 and 12 in Table 2 for Fig. 22a and Fig. 22b, respectively. As expected,
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Table 2. Axis-values in arbitrary units where the values of mxi and σxi are used in Eq. 9.

case mx1 − σx1 mx2 − σx2 mx3 − σx3

0 1 − 0.0 1 − 0.0 1 − 0.0
1 1 − 0.0 1 − 0.1 1 − 0.0
2 1 − 0.1 1 − 0.0 1 − 0.0
3 1 − 0.1 1 − 0.1 1 − 0.0
4 1 − 0.0 1 − 0.1 1 − 0.1
5 1 − 0.1 1 − 0.1 1 − 0.1
6 1 − 0.0 5 − 1.0 1 − 0.0
7 5 − 1.0 1 − 0.0 1 − 0.0
8 5 − 1.0 5 − 1.0 1 − 0.0
9 1 − 0.0 5 − 1.0 5 − 1.0
10 5 − 1.0 5 − 1.0 5 − 1.0
11 1 − 0.0 10 − 2.0 1 − 0.0
12 10 − 2.0 1 − 0.0 1 − 0.0
13 10 − 2.0 10 − 2.0 1 − 0.0
14 1 − 0.0 10 − 2.0 10 − 2.0
15 10 − 2.0 10 − 2.0 10 − 2.0
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Figure 19. Shape factor n1 as a function of distributed axis-values Rnxi(mxi , σxi). The distributions labeled by I
and II are for case 1 and 2 in Table 2 where x1,3 and x2,3 are fixed, respectively. The horizontal line is the shape
factor for spherical incslusions n1 = 3. The points represent (a) n1 as a function of x1/x3 for case 3, (b) n1 as a
function of x2/x3 for case 3, (c) n1 as a function of x1/x3 for case 4, and (d) n1 as a function of x2/x3 for case 4.
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Figure 20. The shape factor as a function of normalized (a) x1 and (b) x2, when all the axis-values were distributed.
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Figure 21. (a) The number density of shape factors obtained in the simulations with different axis distributions.
The labels represent the cases in Table 2. (b) tsd currents of the corresponding cases converging to the same curve.
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Figure 22. The shape factor as a function of distributed (a) x1 (b) x2-values while the other two axis were kept
constant.
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Figure 23. Shape factor density distribution for needdle-like shapes (a) perpendicular and (b) parallel to the field
direction. (c) and (d) show the calculated tsd current curves together with the tsd current curve of spherical
inclusions case. The labels 0, I, II and III at (a) and (c) corresponds to cases 0, 1, 6 and 11, and the labels 0, I, II and
III at (b) and (d) corresponds to cases 0, 2, 7 and 12 in Table 2, respectively.

when the normalized x2-values became larger than the other two axis-values, the shape factor was cylindrical
and approached to 2. On the other hand, if the normalized x1 value was taken larger than that of the other
two axes, the shape factor increased linearly in a log-log scale. When the x1/x3 was small, the shape factor
approached to one, meaning the inclusions were disk-like. The number density of shape factors nd as well
as the corresponding tsd currents are displayed in Fig. 23. Again, when the inclusions were aligned with
the applied field, the influence of the shape factor on the tsd current was significant.

When cases 6-15 in Table 2 were considered, the n1-values definitely influenced the tsd current curves.
The shape factor number density nd distributions and the calculated tsd current-responses are presented
in Fig. 24. The maximum-current j(Tp) as a function of peak-temperature Tp was also investigated and is
shown in Fig. 25. The behavior was similar in shape as that in Fig. 17.

3. tsd currents of interacting inclusions in two-dimensions

3.1. Modeling procedure

Analytical calculations of electromagnetic problems using Maxwell’s equations are limited to geometri-
cal constraints. For some simple geometries with a small number of materials (regions) and symmetries,
analytical solutions can be using methods of images, orthogonal functions (Green functions) and complex
variable techniques (conformal mapping) [17, 18, 19, 20, 21]. The conformal mapping can only be applied
to two-dimensional problems in which the third spatial axis is neglected. For more complex geometries and
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Figure 24. Density of shape factors for (a) cases 6 to 10, and (b) cases 11 to 15 in Table 2. The corresponding tsd

current curves (c) for figure* (a) and (d) for figure* (b), respectively. The labels represent the cases 6 through 10 in
figure* (a) and 11 through 15 in figure* (b). The label 0 is the reference tsd current of spherical inclusions.
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Figure 25. Maximum current value, max[j(T )] as a function of peak temperature for different shape factors, n1,
obtained by distributing inclusions on axis parameters.
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Figure 26. (a) Square, (b) honeycomb, (c) hexagonal and (d) random structures. Dark circles are the inclusions
which are distributed in the host medium. The shaded areas are the primitive cells which are used in the calculations.
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Figure 27. The unit-cell of square lattice with corners at ABCD used in the calculations. Dark region is the disk
inclusion with ε2 and σ2 and the lighter region is the matrix media with ε1 and σ1.

non-homogeneous regions composed of several materials, numerical solutions of partial differential equations
and of integral equations have been developed [22], e.g., the finite difference method, the finite element
method (fem), the method of moments and the boundary element method, etc.

The frequency dependent complex dielectric permittivity ε(ω) of a binary system composed of mono-
dispersed conductive cylindrical inclusions in a less conductive matrix can be calculated using the fem [23,
24]. Indeed, the influence of the electrical properties of constituents and the concentration of inclusions on
ε(ω) can be simulated and investigated effortlessly. Here, initially, we concentrated on regularly distributed
systems, composed of infinitively long-and parallel to one another cylindrical inclusions in a host medium.
The interfacial polarization was studied by considering square, honeycomb and hexagonal structures in
two dimensions (Fig. 26). The regular distribution of inclusions in a composite is, so far, not realistic;
however, the information obtained from calculations provides an interesting case study and is a good way to
compare numerical approaches with those of analytical solutions. Random distribution of inclusions should
be more realistic since the distribution within real composites is normally highly irregular, therefore, random
structures were also included and examined.

The regular structures were chosen for symmetry reasons in the fem calculations (all the lattices, except
for the honeycomb types, lattices with a basis in two dimensions). The two-dimensional honeycomb structure
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(Fig. 26b) is not a lattice with a single-point basis, but can be presented as a lattice with a two point basis [25].
In order to use two dimensional calculations, surfaces were considered to be perpendicular to the direction of
the cylindrical inclusions in the structures, as shown in Fig. 26. Furthermore, in these structures the smallest
repeatable units, primitive cells (shaded regions in Fig. 26), were taken into consideration. Such an approach
allows for an easier assignment of boundary conditions for calculating the potential field distribution. We
have considered the expected equi-electric and equi-potential field lines on the outer boundaries of the
primitive cells, should be constant [22, 26]. The unit cell approach was used in which the boundaries of the
unit cell were equi-potential or electric field lines [27, 28]. It is worth mentioning that the geometrical model
in two dimensions may work for three dimensions just by considering the interaction between the cylinders
which can be similar as between spherical inclusions in three dimensions [29].

3.2. Numerical calculations

Numerical solutions of electrostatic problems within a non-conducting medium are based on solving
Poisson’s equation

∇ · (εε0∇φ) = −ρ, (10)

where φ, ε, and ρ denote the electrical potential, the permittivity of the medium and the total charge in
the considered region, respectively. ε0 is the permittivity of free space, ε0 = 1/36π pF/m. However, if the
medium is conductive where no free charges and sources of charges are allowed, then the solution is given
by

∇ · (σ∇φ) = 0 (11)

where σ is the conductivity of the region. When the medium is a mixture of these two cases, it consists of
dielectric and conductive components. The solution is then given by a time dependent and complex electric
potential in the region with the coupling of Eqs. (10) and (11):

∇ · (σ∇φ) +∇ ·
[
d

dt
(εε0∇φ)

]
=0

(12)

or equivalently,

∇ · [(σ + ıwεε0)∇φ] =0, (13)

where no free charges are assumed in the region. The last set of equations consists of the continuity and
Laplace equations for a medium with a complex dielectric constant.

We have used a field calculation software called ‘Ace’ [24] based on fem. As an example, the unit
cell of the square lattice is presented in Fig. 27. The boundary conditions were chosen as follows for this
particular structure: along line [AB] the potential was 0 Vrms level, along line [CD] it was 1 Vrms. The lines
[AD] and [BC] in the figure were symmetry lines in which the units were assumed to be repeating in those
directions. The calculations were performed under steady-state periodic conditions. Similar procedures
were also used in the other considered structures in which boundary conditions were applied to the outer
boundaries of the unit-cells. In the fem, the region of interest (computation domain) is divided into triangles
via adiscretization procedure also known as meshing. We have used an adaptive meshing technique which
is based on the change of the dielectric displacement vector in the domain. In order to obtain a reliable
solution, linear, quadratic and cubic solution sets were compared, and the results of the cubic solutions were
taken due to the smoothness of the resulting potential distribution.

After obtaining the potential distribution in the domain, the complex dielectric permittivity of the
medium is calculated. The complex permittivity of a heterogeneous medium can be calculated in several
ways, e.g., by using Gauss’ law and losses, using the averages of dielectric displacement 〈D〉 and electric
field 〈E〉, and using the total current density J and the phase difference θ. Here, the latter approach was
used.
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Table 3. Structures, their relaxation times and dielectric strengths.

Structure τ (ms) ∆ε
Classical 4.44 3.20
Hexagonal 6.15 4.36
Square 6.15 5.22
Honeycomb 6.96 5.36
Random 6.43 5.70

7.28 6.62
7.61 6.55
6.65 6.22

The root mean square value of the total current density and the phase are obtained from the software [24].
Therefore, the complex dielectric permittivity is expressed as

ε(ω) =
J

C0V0ω
[sin(θ) − ı cos(θ)], (14)

where C0 and ω are the geometrical capacitance and the angular frequency. V0 is the potential difference
between the voltage-applied sides.

In the previous section, non-interacting inclusions in three-dimensions were considered when the concen-
tration of the inclusions q were 0.1, in which the mutual interaction of inclusions can be neglected. In these
numerical calculations by means of fem, cylindrical inclusions were assumed, with n = 2, and accordingly,
two-dimensional field calculations were performed as presented in [30]. In the calculation, influences of not
only higher concentrations of inclusions but also their distributions were investigated.

3.3. Isothermal dielectric responses

In numerical calculations relative dielectric constants of two media were taken to be the same, ε1,2 =
4. The reason to choose them equal was that, at optical frequencies dielectric constant of the composite
structures, ε∞ had the same relative permittivity as the two media. The conductivity of the host medium
was taken to be 10−20 S/m in order to assume that it was insulating. Conductivity of cylindrical inclusions
σ2 was 10−7 S/m, and the concentration of inclusions q was 0.4. It was found that dielectric permittivities
of the structures ε′ with different inclusion distribution were different, although the inclusion concentration
was the same. This could not be obtained by classical theories.

The dielectric responses ε′obtained from field calculations and classical model [4] are presented in Fig. 28a.
The dielectric strength ∆ε of regular structures due to the interactions between the inclusions were higher
than that resulting from the classical model. Highest ∆ε was obtained for honeycomb structure, and it
was followed by square and hexagonal structures. Moreover, four random structures were also considered in
the numerical calculations. It was observed that the random structures had even higher dielectric strengths
∆ε than the regular structures. The ∆ε-values are shown in Table 3. The real parts of the dielectric
permittivities ε′ are presented in Fig. 28a. The individual responses of random structures spread over a
region in permittivity-axis that did not converge to a single static dielectric constant εs. Relaxation times
τ were calculated by taking the second derivative of log ε′(ω) with respect to angular frequency logω = 2πν
two times. These values together with the dielectric strengths ∆ε are also presented in the table. The
relaxation time τ for the classical model was lower than that of the considered structures.

3.4. Thermally stimulated depolarization currents

In tsd current calculations for all the considered structures, the applied electric field E and activation
energy W were assumed to be constants; E = 10 V/m and W = 0.5 eV. Structure dependent parameters
i.e. relaxation time τ and dielectric strength ∆ε were taken from the dielectric responses in isothermal
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Figure 28. (a) Real part of the relative dielectric constant of the structures as a function of frequency. (b) tsd

currents of the structures. The labels I, II, III, IV and V represent classical [4], hexagonal, square, honeycomb and
random structures, respectively.

conditions, Table 3. The pre-exponential factors were calculated using the relaxation times τ presented in
Table 3. It was assumed that the τ -values were Arrhenius activated and were observed at ∼ 300 K. It
was, furthermore, assumed that the structures were polarized completely with the applied field. The linear
heating rate of the tsd current B was 5 K/min. The resulting tsd currents, using Eq. (4), are presented
in Fig. 28b. The current peak-temperatures Tp were distributed around 275 K for all the structures. The
tsd current from the classical model had a lower peak temperature value Tp ∼ 270 K. The main difference
between the tsd current curves was in the peak-current j(Tp) which is directly proportional to the dielectric
strength ∆ε of the structures. Again, just like for the isothermal dielectric responses, the tsd currents of
the random structures had higher values than those of the other structures.

3.5. Discussion on higher filler concentrations

Isothermal dielectric responses and tsd currents were calculated for the structures containing 40% in-
clusions. It was observed that the four considered random structures had higher dielectric strengths ∆ε and
tsd current values j(T ) than both the other regular and classical structures. Moreover, dielectric permittiv-
ities and tsd currents of the random structures did not converge to a common value or showed a common
behavior. It was also realized that it was not an easy task to model and understand the dielectric behaviour
of composite systems with higher concentration of inclusions; since, depending on the spatial distribution of
inclusions, different dielectric properties can be achieved.

4. Conclusion

In the calculations, a model based on a single-thermally-activated process, together with the conductivity
of the inclusions, was used. Moreover, the matrix medium was assumed to be insulating. Altering only one
parameter at a time, its influence on the tsd currents was investigated. Even the shape of inclusions has
influenced the tsd currents. Therefore, it would be possible to obtain information on micro-structure of
composites using the tsd current technique. However, if the inclusions were perturbed spherical shapes,
there were no differences between the tsd spectra.

We have compared two methods previously proposed in the literature to estimate the activation energy
of a thermally stimulated process, and have showed that the activation energy estimates calculated from the
logarithm of the tsd current versus inverse normalized termperatures, are more accurate than calculating
the activation energy using altered heating rates and temperatures in which the maximum currents are
observed.
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The considered systems were assumed to be totally polarized; therefore, it was not possible to use the
other experimental parameters than the heating rate in tsd current technique, such as polarizing voltage and
polarization temperature. Introducing those parameters would make it possible to obtain more information
on materials and their electrical properties.

Using the fem field calculations in isothermal conditions, it was possible to investigate the tsd currents in
binary composite mixtures with high concentration of inclusions in which particle-particle interactions played
an important role in the resulting dielectric properties. The random structures showed higher polarization
amplitutes than the regular structures. However, in this approach, just like in the considerations in the
second section, a single-thermally-activated process was assumed. The simulations could be expanded where
both conductivities and dielectric permittivities of the inclusions and the matrix would be temperature
dependent.

Finally, in order to know much more about the physics and the processes involved in the tsd current,
more simulations and measurements on well-defined systems should be performed.
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