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Abstract

The boundary element method (BEM) is a technique based on the principle of the conversion of the
governing differential equation to the boundary integral equation with consequent reduction by one in
the dimension of the problem. In this work, quadratic boundary elements and thus BEM have been
applied to neutron diffusion calculations to render the treatment of curved boundaries possible. The
results of the developed computer program BENDQ has been compared to the analytical solutions and
validated.
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1. Introduction

The boundary element method (BEM), a method used in the solution of boundary value problems in
mathematical physics, is capable of reducing differential equations to boundary integral equations and, thus,
restricting the unknowns solely to the system boundary. BEM, which have been used for obtaining numerical
solutions in various branches of science since 1980’s, have also been utilized in neutron diffusion calculations
of reactor physics [1]. BEM is based on the principle of subdivision of the system boundary into a finite
number of boundary elements and on the assumption that the unknown function is a low degree interpolatory
Lagrangian polynomial within each element. If the unknown function is assumed to be constant or linear, the
approximation is taken as a constant or linear BEM, respectively. If the system boundary is not a polygon
and is curved (e.g. circle, ellipse), it is not possible to model the system boundary geometrically in an
efficient way, using constant or linear BEM. Since BEM restricts the unknowns only to systems boundaries,
the number of unknowns and the dimension of the resulting linear system is reduced dramatically compared
to alternative methods of solution, i.e. finite difference and finite element methods in which unknowns
must be defined throughout the nodes inside the system volume. This reduction in linear system size and
the capability of representing curved boundaries exactly via quadratic elements represent the superiorities
of the proposed method compared to its alternatives. In this work, using the isoparametric quadratic
BEM, a formulation has been developed which can solve the neutron diffusion equation efficiently, even in
the presence of curved boundaries. The formulation is implemented in the developed computer program
BENDQ from which quadratic BEM solutions are obtained. Via comparisons with analytic solutions, the
proposed formulation is validated.
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2. Formulation
For a homogeneous nuclear system with volume V, the neutron diffusion equation is:

∇2Φ(~r)− k2Φ(~r) = −s(~r)
D

,~r∈V. (1)

Here, Φ, s, D and k represent the neutron flux, the neutron source, the diffusion constant and the inverse
diffusion length, respectively. The outer boundary of the system S = Sr∪SV and is subject to the following
boundary conditions: Φ(~r) = 0, ~r∈SV

∂Φ
∂n

(~r) = 0, ~r∈Sr. (2)

On the other hand, the fundamental solution G(~r, ~ρ) is determined by
∇2G(~r, ~ρ) − k2G(~r, ~ρ) = −δ(~r − ~ρ) (3)

If Eqn.(1) is multiplied by G(~r, ~ρ) and integrated over the volume of the system, Green’s second identity
and Eqn.(3) could be utilized along with the integration property of Dirac delta functions and the definition
of the normal component of the neutron current,

J = −D∂Φ
∂n

, (4)

to obtain the boundary integral equation [1]:

c(~ρ)Φ(~ρ) +
∫
Sr

Φ(~r)
∂G

∂n
(~r, ~ρ)dS +

∫
SV

G(~r, ~ρ)
D

J(~r)dS =
∫
V

s(~r)
D

G(~r, ~ρ)dV. (5)

If ~ρ is within the system volume, c(~ρ) = 1; and if ~ρ is on the system boundary with a continuous tangent,
c(~ρ) = 1/2. For quadratic BEM application, the boundary of the system, which is assumed to be two-
dimensional in this work, is divided into Ne boundary elements and the neutron flux and current are
assumed to be continuous functions on the system boundary and are restricted to be quadratic interpolatory
Lagrangian polynomials within each boundary element. Each of the Ne boundary elements possesses three
nodes, one at each end and one at the geometric center; thus, the number of nodes at the system boundary is
N = 2Ne. If Ψj(~r) denotes the basis function of the j’th node, and is a quadratic interpolatory Lagrangian
polynomial within the boundary elements to which node j belongs and zero elsewhere; and Φj and Jj
represent the value of the flux and current at node j, respectively, we can write

Φ(~r) =
N∑
j=1

Ψj(~r)Φj (6)

J(~r) =
N∑
j=1

Ψj(~r)Jj . (7)

If we require Eqn.(5) to be valid for each node j under the assumptions of (6) and (7), we obtain the equation

N∑
j=1

(hijΦj + gijJj) = fi, (8)

where
hij =

1
2
δijδiR +

∫
Sr

Ψj(~r)
∂G

∂n
(~r, ~ρi)dS (9)

gij =
∫
SV

G(~r, ~ρi)
D

Ψj(~r)dS (10)

fi =
∫
V

s(~r)
D

G(~r, ~ρi)dV. (11)
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δiR equals unity if the flux is an unknown at node j, otherwise it vanishes. Due to Eqns.(2) and (4), either
flux or current vanishes at each node. If the flux is zero at node j, we take aij = gij and uj = Jj, and if the
current is zero at node j we take aij = hij and uj = Φj and rewrite (8) as

N∑
j=1

aijuj = fi, (12)

an N-dimensional linear system. After solving (12) and determining the boundary distribution, ~ρ in (5) can
be taken as the position vector of any desired internal point and fluxes within the system interior could be
determined. This work is restricted to two-dimensional systems and thus the fundamental solution,

G(~r, ~ρ) =
1

2π
K0(k|~r − ~ρ|), (13)

is expressed as a zeroth order modified Bessel function of the second kind.

3. Application

The proposed formulation is implemented in the FORTRAN computer program BENDQ, which is ca-
pable of solving one-group neutron diffusion equations both with external neutron sources and and critical
eigenvalue search by fission source iteration. To exemplify the capability of the program in producing solu-
tions for system with curved boundaries, we consider an infinite bare, homogeneous cylindrical system with
radius R=30 cm. One-group constants are taken as: D=1.77764 cm, νΣf = 0.0262573 cm−1 Σa = 0.0143676
cm−1. The analytical effective multiplication factor of this system (keff ) is given by:

keff =
νΣf

Σa + D(2.4048
R )2

(14)

and is calculated as 1.01657 with the given data. Because of system symmetry, BEM discretization is applied
to an octant of the system. In Figure, the system boundary is divided into 8 quadratic boundary elements;
and the internal mesh, which consists of 8 isoparametric finite elements, is used only for numerical evaluation
of the elements of right hand side vector in Eqn. (12). The system boundary is divided into varying number
of quadratic elements and BENDQ runs are carried out. The obtained keff values and the errors associated
with them relative to the analytical value are presented in Table. As the number of boundary elements is
increased, the fraction of errors decrease and the convergence to the analytical value is evident. For further
development along these lines, the method is in the process of extension for application to multiregion
systems.
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Figure. Sample Mesh
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Table. Variation of the keff With Respect to the Number of Boundary Elements

No.of Boundary Elem. keff Per Cent Error
8 1.01043 0.604
15 1.01313 0.337
23∗ 1.01494 0.160
46∗ 1.01597 0.0590

* Only with 1/16 of the system is disretized using system symmetry
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