Off-diagonal Matrix Elements and Sum Rules involving Coulomb and Isotropic Oscillator Functions

Harry A. MAVROMATIS
Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi-ARABIA
e-mail: harrym@kfupm.edu.sa

Received 12.11.2001

Abstract

Off-diagonal matrix elements and sum rules for the Coulomb and isotropic oscillator systems are obtained from a study of relations between the off-diagonal matrix elements of a general recursion relation.

Key Words: recursion relations, off-diagonal matrix elements, sum rules, Coulomb system, isotropic oscillator system

1. Introduction

In a recent paper [1], a general matrix element recursion relation was obtained without recourse to specific properties of the eigenstates (i.e. the Hamiltonian) involved. This result is as follows:

$$
\begin{align*}
& \frac{k\left(k^{2}-(2 l+1)^{2}\right)}{2(k+1)}<m l\left|r^{k-2}\right| n l>-\frac{2(p+2 k+2) M}{(k+1) \hbar^{2}}<m l\left|r^{k} V(r)\right| n l> \\
& +\frac{2 M\left(E_{n l}+E_{m l}\right)}{\hbar^{2}}<m l\left|r^{k}\right| n l>+\frac{2 M^{2}\left(E_{m l}-E_{n l}\right)^{2}}{(k+1)(k+2) \hbar^{4}}<m l\left|r^{k+2}\right| n l>=0, \tag{1}
\end{align*}
$$

where given a general Hamiltonian H of the form $H=T+A r^{p}, H\left|s l>=E_{s l}\right| s l>$, and the derivation is valid for diagonal as well as off-diagonal matrix elements. Expression (1) is clearly not valid for $k=-1,-2$, for which values one obtains zero denominators. In the present study we use two non-problematic values of k, namely $k=0,1$. In the derivation of expression (1) the integration by parts procedure followed assumes that the functions $u_{s l}(r)=r R_{s l}(r)$ vanish at the origin and at infinity. This in turn imposes conditions on $V(r)=A r^{p}$. In this paper we study the potentials $p=-1,2$ and for these two potentials the resulting bound-state functions $u_{s l}(r)$ vanish at both these limits.

2. Sum Rules

We are interested in the off-diagonal matrix elements of Eq. (1). The diagonal matrix elements for the Coulomb (Kramers' relations) potential $(p=-1)$, the isotropic oscillator ($p=2$), and the bouncer problem ($p=1$), all of which can be solved analytically, have already been extensively discussed in the literature [2-5]. The off-diagonal matrix elements for the bouncer have also been reported [5]. We therefore concentrate in this note on the Coulomb and isotropic oscillator off-diagonal matrix elements.

If $k=0$ Eq. (1) reduces, for $m \neq n$, to

$$
\begin{equation*}
<m l|V(r)| n l>=\frac{M}{\hbar^{2}} \frac{\left(E_{n l}-E_{m l}\right)^{2}<m l\left|r^{2}\right| n l>}{2(p+2)} \tag{2}
\end{equation*}
$$

If $k=1$, one obtains from Eq. (1) that:

$$
\begin{align*}
& l(l+1)<m l\left|r^{-1}\right| n l>=-\frac{M(p+4)}{\hbar^{2}}<m l|r V(r)| n l>+\frac{2 M}{\hbar^{2}}\left(E_{n l}+E_{m l}\right)<m l|r| n l> \\
& +\frac{M^{2}\left(E_{m l}-E_{n l}\right)^{2}}{3 \hbar^{4}}<m l\left|r^{3}\right| n l>=0 \tag{3}
\end{align*}
$$

The first of these results is of immediate interest since it involves a two-term relation. Thus, for the Coulomb system with $V(r)=-Z e^{2} /\left(4 \pi \epsilon_{0} r\right), p=-1, \mid s l>$ the Coulomb basis states, and $E_{n l}=$ $-Z^{2} \alpha^{2} M c^{2} /\left(2 n^{2}\right)$, Eq. (2) becomes

$$
\begin{equation*}
\langle m l| \frac{1}{r}|n l\rangle=-\frac{1}{8}\left(\frac{M c \alpha Z}{\hbar}\right)^{3}\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{2}\langle m l| r^{2}|n l\rangle \tag{4}
\end{equation*}
$$

where the ratio of the matrix elements

$$
\frac{\langle m l| \frac{1}{r}|n l\rangle}{\langle m l| r^{2}|n l\rangle}
$$

is independent of the angular momentum due to the degeneracy of the energy with respect to l.
If one pre-multiplies Eq. (4) by its complex conjugate, this implies that:

$$
\begin{align*}
& \sum_{m \neq n} \frac{\left.\left|\langle n l| \frac{1}{r}\right| m l\right\rangle\left.\right|^{2}}{\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{4}}+\int d k \frac{\left.\left|\langle n l| \frac{1}{r}\right| k\right\rangle\left.\right|^{2}}{\left(\frac{1}{n^{2}}+\left(\frac{\hbar k}{M c Z \alpha}\right)^{2}\right)^{4}} \\
& \left.\left.=\left.\frac{1}{64}\left(\frac{M c \alpha Z}{\hbar}\right)^{6}\left[\sum_{m \neq n}\left|\langle n l| r^{2}\right| m l\right\rangle\right|^{2}+\int d k\left|\langle n l| r^{2}\right| k\right\rangle\left.\right|^{2}\right] \\
& =\frac{1}{64}\left(\frac{M c \alpha Z}{\hbar}\right)^{6}\left[\langle n l| r^{4}|n l\rangle-\langle n l| r^{2}|n l\rangle^{2}\right]=\frac{1}{64}\left(\frac{M c \alpha Z}{\hbar}\right)^{6}\left[\left(\Delta r^{2}\right)^{2}\right] \tag{5}
\end{align*}
$$

Many other sum rules may be obtained for this system. For instance, if one instead premultiplies Eq. (4) by $\langle n l| \frac{1}{r}|m l\rangle$, this leads to:

$$
\begin{align*}
& \sum_{m \neq n} \frac{\left.\left|\langle n l| \frac{1}{r}\right| m l\right\rangle\left.\right|^{2}}{\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{2}}+\int d k \frac{\left.\left|\langle n l| \frac{1}{r}\right| k\right\rangle\left.\right|^{2}}{\left(\frac{1}{n^{2}}+\left(\frac{\hbar k}{M c Z \alpha}\right)^{2}\right)^{2}} \\
& =-\frac{1}{8}\left(\frac{M c \alpha Z}{\hbar}\right)^{3}\left[\sum_{m \neq n}\langle n l| \frac{1}{r}|m l\rangle\langle m l| r^{2}|n l\rangle+\int d k\langle n l| \frac{1}{r}|k\rangle\langle k| r^{2}|n l\rangle\right] \\
& =-\frac{1}{8}\left(\frac{M c \alpha Z}{\hbar}\right)^{3}\left[\langle n l| r|n l\rangle-\langle n l| \frac{1}{r}|n l\rangle\langle n l| r^{2}|n l\rangle\right] \tag{6}
\end{align*}
$$

For the isotropic oscillator system, the off-diagonal Eq. (2) yields an identity, namely, with $H=T+$ $1 / 2 M \omega^{2} r^{2}, \quad E_{s l}=(2 s+l+3 / 2) \hbar \omega, \quad \mid s l>$ the isotropic oscillator basis states, and $p=2$,

$$
\begin{equation*}
<m l\left|\frac{r^{2}}{2}\right| n l>=\frac{(m-n)^{2}}{2}<m l\left|r^{2}\right| n l> \tag{7}
\end{equation*}
$$

i.e. either $n-m= \pm 1$ or, $\langle m l| r^{2}|n l\rangle=0$.

Eq. (3) is, as mentioned above, more complicated since it generally involves four terms. For both the Coulomb and the isotropic systems it involves only three terms if $n \neq m$ and, for the special case $l=0$, it reduces to two terms. Thus, for the Coulomb system,

$$
\begin{equation*}
\langle m 0| r|n 0\rangle=\frac{1}{12}\left(\frac{M c \alpha Z}{\hbar}\right)^{2} \frac{\left(\frac{1}{n^{2}}-\frac{1}{m^{2}}\right)^{2}}{\left(\frac{1}{n^{2}}+\frac{1}{m^{2}}\right)}\langle m 0| r^{3}|n 0\rangle, \tag{8}
\end{equation*}
$$

which again leads to sum rules if one premultiplies by appropriate matrix elements and uses closure.
For the isotropic oscillator, the $k=1$ expression for $l=0$ becomes

$$
\begin{equation*}
<m 0|r| n 0>=\frac{M \omega}{6 \hbar} \frac{(3-2 m+2 n)(3+2 m-2 n)}{3+2 m+2 n}<m 0\left|r^{3}\right| n 0> \tag{9}
\end{equation*}
$$

One has only discrete states for this system, so for instance, for $n=0$ one directly obtains from Eq. (9) the following sum rules:

$$
\begin{align*}
\langle 00| r^{2}|00\rangle & =-\frac{3 \hbar}{M \omega} \sum_{m} \frac{\langle 00| \frac{1}{r}|m 0\rangle\langle m 0| r|00\rangle}{m-\frac{3}{2}} \tag{10}\\
\langle 00| r^{4}|00\rangle & =-\frac{3 \hbar}{M \omega} \sum_{m} \frac{\langle 00| r|m 0\rangle\langle m 0| r|00\rangle}{m-\frac{3}{2}} \tag{11}\\
\langle 00| r^{6}|00\rangle & =-\frac{3 \hbar}{M \omega} \sum_{m} \frac{\langle 00| r^{3}|m 0\rangle\langle m 0| r|00\rangle}{m-\frac{3}{2}} \tag{12}
\end{align*}
$$

or generally:

$$
\begin{equation*}
\langle 00| r^{2 q+2}|00\rangle=-\frac{3 \hbar}{M \omega} \sum_{m} \frac{\langle 00| r^{2 q-1}|m 0\rangle\langle m 0| r|00\rangle}{m-\frac{3}{2}} \tag{13}
\end{equation*}
$$

where $q=0,1,2 \ldots$
If one expands both sides of Eqs. (10), (11), (12) they lead to series for π, namely

$$
\begin{gather*}
\pi=\frac{16}{3}-\frac{8}{3}+\frac{2}{5}+\frac{1}{21}+\frac{1}{72}+\frac{1}{176}+\cdots \tag{14}\\
\pi=\frac{32}{15}+\frac{16}{15}-\frac{4}{75}-\frac{2}{525}-\frac{1}{1260}-\frac{1}{3960}+\cdots \tag{15}\\
\pi=\frac{128}{105}+\frac{64}{35}+\frac{16}{175}+\frac{8}{3675}+\frac{1}{3675}+\frac{1}{16170}+\cdots \tag{16}
\end{gather*}
$$

The sums of the first six terms on the right hand side of Eqs. (14), 15), and (16) are respectively 3.1339, 3.1418 , and 3.1416 respectively. This indicates that the convergence improves as q increases in Eq. (13).

3. Conclusions

The off-diagonal results discussed in this paper are Eqs. (2) and (3). For the Coulomb system these become Eq. (4) for any l and Eq. (8) for $l=0$, while for the isotropic oscillator they become Eq. (7) for any l and Eq. (9) for $l=0$. Illustrative sum rules obtained from these expressions by premultiplying by appropriate matrix elements, and using closure, are Eqs. (5) and (6) and Eqs. (10) - (12).

The author would like to thank KFUPM for its support in this research.

MAVROMATIS

References

[1] H. A. Mavromatis, "Diagonal and Off-Diagonal Recursion Relation for the General Potential $V(r)=A r^{p}$," Int. Journ. of Theor. Phys. 40, (2001) 1665-1670.
[2] A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961), Vol. 1, p. 431.
[3] S. Balasubramanian, "A simple derivation of the recursion relation for $<r^{N}>$," Am. J. Phys. 68, (2000) 959-960.
[4] H. Beker, "A simple calculation of $<1 / r^{2}>$ for the hydrogen atom and the three-dimensional harmonic oscillator," Am. J. Phys. 65, (1997) 1118-1119.
[5] D. M. Goodmanson, "A recursion relation for matrix elements of the quantum bouncer. Comment on "A quantum bouncing ball," by Julio Gea-Banacloche[Am. J. Phys. 67 (9), 776-782 (1999)]", Am. J. Phys. 68, (2000) 866-868.

