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Abstract

An effective pair potential φ(r) for liquid alkali metals close to their melting points is extracted from an
experimental structure factor using the inverse method based on the variational modified hypernetted-
chain integral equation theory of liquids (VMHNC). The first order pair potential according to the
procedure suggested by de Angelis and March is also presented for comparison. It has been found that
the inverted pair potentials of liquid alkali metals scale well.
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1. Introduction

As is well known, the effective pair potential plays an important role to explain the properties of liquid
metals. The assumption of a pair potential implies that n-body contributions to the potentials with n > 2
are negligible or can be successfully averaged into effective pair potential. The effective pair potential of
the liquid alkali metals can be obtained by the pseudopotential perturbation theory based on the nearly-
free electron (NFE) model at their melting points and its applicability is limited. Another approximate
procedure, the so-called inverse problem for deriving the pair potentials from experimental liquid structure
factor has been proposed by Johnson and March [1,2]. The accuracy of the inverse method has been improved
to obtain a reliable pair potential of the system [3-6]. One of the routes applied to derive the effective pair
potentials from measured structural data has been utilized by a number of workers [7,8], which is based on
the formalism developed by de Angelis and March from the Born-Green-Yvon hierarchy. This is the so-called
approximate inversion formula [3]. Some integral equation theories, the Percus-Yevick (PY), Hypernetted
Chain (HNC), Mean Spherical approximation (MSA) and Modified Hypernetted Chain (MHNC) equation
[9] are studied for solving the inverse problem. The molecular-dynamics simulation for model fluids has
provided a testing ground for these theoretical methods [10-14]. Related to this, other integral equation
theories successfully applied to the metallic systems can be found in the literature [15,17]. Researchers show
that the variational hypernetted chain theory (VMHNC) is widely used to predict static structure factors and
thermodynamic properties of liquid metals in direct calculations [17]. It is for these reasons that we choose
the VMHNC integral-equation method based on the Ornstein-Zernike equation for our inverse calculations.

The inversion schemes that rely on such rearrangements of the closure equation are often called “single-
step” inversions. Our first aim in this paper is to apply the single-step VMHNC inversion to extract the pair
potential. For this purpose, the MHNC equation is solved for a fluid of particles interacting through the
inverse potential using the variational criterion. This is the so-called VMHNC approximation [17]. At the
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level used in the present work, the VMHNC has accuracy comparable to the local MHNC procedure proposed
by Lado et al. (LFA) [18]. The deficiency of LFA comes from the analytic behaviour of the hard sphere
parametrized bridge functions used. Our second aim is to extract the pair potentials from experimental
structure data using the approximate inversion formula of de Angelis and March [3], which is used for some
liquid metals [7,8]. In this paper, it is to be used as a test case to check our results using VMHNC.

In practice the inverted potentials depends on the quality of the data and on the method for its handling.
The smoothing and iterative transform techniques are often used for inversion of experimental structure factor
data. The origin of the difficulty in single-step inversions is that the fourier transform of the experimental
data S(k) is available only in a limited k region. This produces truncation oscillations in transforming S(k)
directly to pair distribution function g(r). However the systematic errors in measuring S(k) affects g(r) and
superimposed truncation oscillations at all r, and the repulsive core part of βφ(r) is rather insensitive to
these errors in S(k). We have used the iterative transform technique and a linear q expansion in the small k
region. It is shown that the accuracy of the single-step VMHNC approach is good in comparison with the
predicted inverse potentials βφ(r) for liquid alkali metals obtained employing molecular dynamics (MD)[19].
We have also compared our results with those obtained from the neutral-pseudoatom method (NPA)[20]. It
has been found that the single-step VMHNC inversion method yields more agreeable results for the inverse
potential. This work and other calculations in the inverse problem has indicated that the structure of simple
liquid metals near their melting point is mainly determined by the repulsive part of the pair potential and
the attractive part has only a small effect on the structure [11,21,22]. The inverted potentials and radial
distribution functions obtained in this work scale very well. The calculated scaled values S?(0) of liquid
alkali metals are in good agreement with others [23,24]. Hence, the validity of the proposed inversion scheme
for liquid alkali metals, which is based on the single-step VMHNC approach in the inverse problem, has been
confirmed.

The organization of this paper is as follows. We review the theoretical methods applied in this work
in section 2. In section 3 we present the results of our calculations. First, we give a brief discussion of
our inversion procedure using experimental structural data to extract the pair potentials. The scaled pair
potentials of liquid alkali metals obtained by the VMHNC and approximate inversion formula are compared
with the ab initio potentials, namely the neutral pseudoatom calculations (NPA), and MD potentials when
these are available. The scaled single-step VMHNC potentials for liquid alkali metals show that as we
progress down the column of the alkali metals we find the expected trends.

2. The Inverse Problem

The distribution function g(r) completely characterizes the static correlations in a fluid at the pair level.
It is related to the measured structure factor S(k) by

g(r) = 1 +
1

2π2ρr

∫
(S(k) − 1)k sin(kr)dk, (1)

where ρ is the number density of ions. The solution of the inverse problem, i.e. g(r)→φ(r), is based on
certain approximations.

2.1. Integral equations

In the integral equation approach, the effective pair potential φ(r) has beeen obtained using the closure
relations in terms of the pair distribution function g(r) and the direct correlation function c(r) which can be
obtained from S(k) by

c(r) =
1

2π2ρr

∫
(1 − 1

S(k)
)k sin(kr)dk. (2)

Then using the Ornstein-Zernike relation,
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g(r) − 1− c(r) = ρ

∫
(g(|r − r′|)− 1)c(r′)dr′. (3)

For convenience we list the approximate theories and relevant equations below.

2.1.1. Modified Hypernetted Chain (MHNC) Equation:

The exact MHNC equation has the form:

βφMHNC = g(r) − c(r)− lng(r) − 1 +B(r), (4)

where B(r) denotes the bridge function, for which some approximation must be made. When the bridge
function is ignored, B(r)=0, we have the hypernetted-chain (HNC) approximation. The universality hy-
pothesis of the bridge functions, as first pointed out by Rosenfeld and Ashcroft [9], is the usual approach
for choosing the bridge function. Several approximate bridge functions [25,26] for hard sphere fluids have
been proposed in parametrized form to be used in Equation (4). In this work, we follow Rosenfeld and
Ashcroft in assuming the universality of the bridge function, B(r), as described by the Percus-Yevick (PY)
approximation for the hard spheres (HS) system with packing fraction η; that is, B(r) = BPY(r, η) is given
by

BPY(r, η) = yPY(r, η)− 1− lnyPY(r, η), (5)

where η = πρσ3/6 with σ denoting the hard sphere diameter. The procedure to determine the parameter η
has led to different though closely interwoven approaches [26,9].

2.1.2. Variational Modified Hypernetted Chain (VMHNC) Theory:

The VMHNC belongs to a class of integral equation theories of liquids. This approach, proposed by Rosenfeld
[17], determines η = η(β, ρ) so as to minimize the helmholtz free energy functional fVMHNC(β, ρ, η) by the
variational condition

∂fVMHNC(β, ρ, η)
∂η

= 0. (6)

In the above equation

fVMHNC(β, ρ, η) = fMHNC (β, ρ, η)−∆φ(η), (7)

where fMHNC (β, ρ, η) is the MHNC free energy functional [17], and ∆φ is given by

∆φ =
1
2
ρ

∫ η

0

dη′
∫
drgPY(r, η′)

∂BPY(r, η′)
∂η′

− δφ(η), (8)

with δφ chosen so as to obtain the virial/compressiblity consistency. Following Rosenfeld [17], we have used

δφ = fCS(η) − fPYV(η), (9)

where fPYV and fCS are the hard-sphere expressions for the reduced Helmholtz free energies derived from
the Percus-Yevick virial and the Carnahan-Starling equations of state, respectively [22]. The choice δφ = 0
recovers the approach proposed by Lado [18].
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2.2. The Approximate Inversion Formula

This procedure is based on the formalism developed by de Angelis and March [3] in order to obtain the
higher correlation functions for a liquid metal from the Born-Green-Yvon hierarchy. It provides a systematic
iterative approach to derivation of an effective pair potential by

φ(r) = φ(r)0 + φ(r)I + φ(r)II (10)

with the potential of mean force φ(r)0,

φ(r)0 = −kBT ln(g(r)), (11)

where kBT is the Boltzman constant and

φ(r)I =
kBT

8π3ρ

∫
(S(k) − 1)2 exp(ikr)dk. (12)

The second order term φ(r)II is also possible to express in terms of S(k) by a very complicated way and it
will not be included below in discussion for s-p bonded liquid metals. This route has been used by a number
of workers [7,8,27]. It represents an explicit solution of the inverse problem. de Angelis and March [3] has
pointed out that the Born-Green, Percus-Yevick (PY) and Hypernetted Chain (HNC) equations lead to the
same results for the first order approximate formula.

3. Results and Discussion

We choose the neutron diffraction results of Olbrich et al. [28] for liquid Li at 470 K and high quality
x-ray diffraction data of Greenfield et al. [29] for liquid Na and K. The experimental structure factor Sexpt(k)
x-ray diffraction data of Waseda [21] and Hujiben et al. [23] for liquid Rb and Cs close to their melting
points, repectively, are used as input data to extract the inverse potentials for these metals. Thermodynamic
states studied in this work are given in Table 1.

Table 1. Thermodynamic states studied in this work. Scaled values of S?(0) of liquid alkali metals, as obtained

from the extrapolated experimental data and S?expt(0) from Ref. [23,24].

Metal T (K) ρ (Å−3) S?(0) S?expt(0)
Li 470 0.04451 0.450 0.443
Na 373 0.02426 0.461 0.461
K 338 0.01275 0.458 0.468
Rb 313 0.01030 0.478 0.469
Cs 303 0.00834 0.482 0.463

(i) Inversion of experimental structural data: The experimental data Sexpt(k) are available only in a limited
k region. The pair distribution function gexpt(r) obtained by Fourier transforming the original experimental
data of Sexpt(k) is nonzero in the small-r region, where the gexpt(r) should be zero physically. Therefore we
extrapolated Sexpt(k) in both larger and smaller k regions given in the Appendix. In order to obtain the
revised effective potentials accurately we removed the unphysical structure of gexpt(r) in the small-r region.
The iterative transform was continued until the direct transform of the experimental Sexpt(k) leads to a
gexpt(r) that is very flat below r0, determined by the closest approach of two atoms. The extrapolated liquid
structure factors of alkali metals scale when they are plotted against k/km, where km refers to the first peak
of the structure factor for each system are shown in Figure 1. It is also seen clearly that the extrapolated
structure factors also scale well, except Cs. This is related with the original experimental data of Hujiben et
al. Further, in the long wave limit scaled values of S?(0) = 24(2)1/2

∫
(gexpt(r?)−1)r?

2
dr?, where r? = r/rm,
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rm refers to the position of the first gexpt(r) peak. Due to the good scaling behaviour of gexpt(r), we expect
that S?(0) is constant for all members of alkali metals. In Table 1, we show the scaled values of S?(0) and
compare them with those obtained by different methods [23,24]. It is mentioned that the calculated S?(0)
values are in good agreement with others. The average value of S?(0) from proposed inversion procedure is
0.466, that is, higher than the value of 0.461 from [23,24]. It is expected that the effective pair potentials of
these metals should also scale reasonably.
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S
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0
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Figure 1. Extrapolated S(k) vs. k/km of liquid alkali metals near their melting points.

Effective Pair Potentials: The inverted potentials are extracted from the experimental data by the MHNC
equation (2.4) with the bridge function which is found by the variational condition that minimizes the free
energy. The calculated η values are 0.43, 0.446, 0.458, 0.463, 0.467 for Li, Na, K, Rb and Cs, respectively.
Figure 2 shows our calculated scaled potentials βφ(r) from the data of Olbrich et al. for lithium at 470
K , along with the corresponding experimental pair distribution gexpt(r) obtained by the fourier transform
(FT) of the experimental structure factor Sexpt(k). The predicted inverse potentials for liquid Na from
the data of Greenfield et al. at 373 K are shown in Figure 3. We also compare these effective potentials
with those obtained by Gonzalez et al. from NPA theory and inverse potential derived from the multistep
MHNC-MD calculations by Reatto et al.[10]. The potential derived from approximate inversion formula
show less damped Friedel oscillations than the oscillations of VMHNC and others. We have noted that
the height of the main peak of g(r) is unimportant for determining βφ(r). The feature of φ(r) is sensitive
to errors in S(k). The repulsive core is clearly related to the steepness with which g(r) goes to zero as r
decreases toward the atomic diameter. This must be related to the behaviour of S(k) at large k, because
of the Fourier transform relation between g(r) − 1 and S(k) − 1. We have examined the sensitivity of the
repulsive core of φ(r) to the large k region of S(k). We chose for liquid potassium at 338K, the k values
from 1 to 8.45 (Å−1, and r values from 0.74 Å to 6.283 Å. We find that the position of the minima is at
4.45 Å for the potential derived from approximate inversion formula. The minimum for potentials from the
HNC and MHNC equations is at 4.414 Å. The difference between HNC and VMHNC potentials is related
with PY-HS bridge function. In Figure 4, the scaled VMHNC and approximate inversion potentials of liquid
Cs at 303 K are shown by comparing with the NPA potential. It is observed that, as we go down column
Ia of the Periodic Table, the extracted potential becomes harder, the width increases, and the position of
the principal maximum is displaced to larger values of r/rmin where rmin is the position of the potential
minumum. As for the long-range behaviour, it is observed that the Friedel oscillations are rather marked
in Cs, slighty damped for Rb, and very similar for K and Na, although they increase in magnitude as the
atomic number increases. The variations within this group follow rather well trends suggested by others
[30].
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Figure 2. Scaled effective pair potentials for liquid Li near its melting along with the corresponding scaled experi-

mental pair distribution gexpt(r) obtained by the FT of the experimental structure factor .
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Figure 3. Scaled effective pair potentials for liquid Na at 373 K along with the corresponding scaled experimental

pair distribution gexpt(r).

VMHNC approximation yields also reasonably good results for Alkalis of low atomic number but starts
to yield unreliable results for elements of higher atomic numbers like Rb and Cs. The extracted potentials
within the limit of experimental accuracy, including the longwavelength region of the structure factor are
more reliable than previously obtained from experimental data.
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Figure 4. Scaled effective pair potentials for liquid Cs near its melting point.

Finally, it is safe to say that the inversion formula of the Angelis and March is working rather well in giving
the correct trends as far as the position and the depth of the pair potential is concerned. The Friedel
oscillations, on the other hand, still poses problems.

4. Appendix

The details of the calculation of gexpt(r) by FT of Sexpt(k) are given below.
(i) For the smaller-k region, the experimental data that has been extrapolated smoothly using

Scalc(ki) = Sexpt(0) + exp(λ1ki − λ2)
√
ki. (13)

The sum of differences between the calculated structure factor Scalc(k) and experimental structure factor
Sexpt(k) were weighted as follows to obtain a function F which was minimized

F =
N∑
i=1

fi, (14)

fi = |(Scalc(ki)− Sexpt(ki)|, (15)

where Sexpt(0) is the long-wave length limit of the experimental structure factor obtained from the isothermal
compressibility. λ1 and λ2 are constants. N is the number of data points in small-k region of Sexpt(k) which
depends on the experimental structure data of simple metal used.
(ii)As for the large-k region, Sexpt(k) has been extrapolated to 80A0 using spline functions to accurately
obtain gexpt(r) in the small-r region. We have used the fast fourier transform method. The number of grid
points and step size used in numerical integrations are 4096 points and δr = 0.041a, respectively.
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