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Abstract

The Thomas-Fermi (TF) model is used to calculate the equation of state of thermal polarized nuclear-
matter (NM) within a nonrelativistic Hartree-Fock (HF) scheme. The potential employed is a new
realistic version of the density-dependent M3Y effective nucleon-nucleon (NN) interaction where the
Yukawa strengths are based on the G-matrix of the Paris interaction. To study the basic properties of
asymmetric nuclear matter, this potential is generalized by introducing spin and spin-isospin components
into the original M3Y effective NN interaction. The resulting equation of state (EOS) is soft. The results
obtained are in reasonable agreement with previous theoretical estimates.

1. Introduction

In recent years, the study of the EOS of asymmetric nuclear matter has been a subject of growing interest.
The EOS is particularly connected with astrophysical problems, such as supernova explosion [1], the evolution
of neutron stars and in nuclear physics such as heavy ion (HI) collisions [2]. Microscopic calculations of the
EOS at finite temperature are quite rare. Most of these calculations consider the symmetric case, while only
few consider the asymmetric one.

In the temperature and density domains of the liquid-gas phase transition occurring in NM, the EOS
is derived from the nucleon-nucleon (NN) interaction which is the most important input in the calculation
of the properties of NM. The effective interaction can be either obtained from a sophisticated G-matrix
calculation [3] or parameterized directly as a whole in a simple form convenient for numerical calculations
such as Skyrme forces [4].

Among different kinds of effective interaction, the so-called M3Y interaction [5] has been widely used.
However, due to the attractive character of the M3Y forces, the NM binding energy increases with the
density; the saturation condition is, therefore, not fulfilled leading to NM collapse [6].

Khoa et al. [7] showed that an improved description of the NM properties can still be obtained on the
level of non-relativistic HF calculations provided an appropriate density dependence is introduced into the
original M3Y interaction.

To study asymmetric NM many authors have considered only the neutron excess parameter [7,8]. If the
spin terms are usually but relatively unimportant for determining cross sections, they become important for
polarized nuclear matter (PNM) calculations.

In the present work, we shall construct a general form of the density-dependent M3Y Paris interaction
which is suitable for PNM. This potential will contain an additional two terms to account for the spin and
spin-isospin asymmetries. This analysis is extended to the case of hot PNM by applying TF model in the
T2 approximation.
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The aim of this paper is, therefore, to investigate whether this new potential predicts different symmetry
energies and related quantities of PNM. Moreover, one would like to trace possible different trends in these
properties arising from different types of the density dependence.

A brief description of the generalized density-dependent interaction and some details of the numerical
calculations are given in section II. In section III, the results are presented and discussed.

2. Theory

The description of the ground state properties of NM in terms of a microscopic NN interaction has been
one of the major challenges in modern nuclear physics.

We shall take an extended density dependent effective interaction based on the original M3Y Paris
interaction, suggested in Ref. [7], with explicit form of the spin and spin-isospin dependent components.

The direct and exchange parts of the central NN forces for infinite NM has the following general form in
the r space:

V D(EX) = V D(EX)
o (r) + V D(EX)

σ (r)σ1 · σ2 + V D(EX)
τ (r)τ1 · τ2 +

V D(EX)
στ (r)(σ1 · σ2)(τ1·τ2) (1)

where

V Do (r) = 11061.625
e−4r

4r
− 2537.5

e−2.5r

2.5r
;

V EXo (r) = −1524.25
e−4r

4r
− 518.75

e−2.5r

2.5r
− 7.8474

e−0.7072r

0.7072r
(2a)

V Dτ = 313.625
e−4r

4r
+ 223.5

e−2.5r

2.5r
;

V EXτ (r) = −4118.0
e−4r

4r
+ 1054.75

e−2.5r

2.5r
+ 2.6157

e−0.7072r

0.7072r
(2b)

V Dσ (r) = 938.875
e−4r

4r
− 36

e−2.5r

2.5r
;

V EXσ (r) = −3492.75
e−4r

4r
+ 795.25

e−2.5r

2.5r
+ 2.615

e− 0.7072r
0.7072r

(2c)

V Dστ (r) = −969.125
e−4r

4r
+ 450

e−2.5r

2.5r
;

V EXστ (r) = −2210
e−4r

4r
+ 568.75

e−2.5r

2.5r
− 0.872

e−0.7072r

0.7072r
(2d)

These terms are determined from the singlet and triplet even and odd components of the M3Y-Paris two
nucleon forces [9].

Since the original M3Y interaction gives a wrong description of the saturation properties of cold symmetric
NM, a realistic density dependence has been introduced into Interaction (1):

V D(EX)(ρ, r) = f(ρ)V D(EX)(r) (3)

and

f(ρ) =


C(1 + αexp(−βρ)) DDM3Y type

C(1− αρβ) BDM3Y type,
(4)
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where the parameters C, α and β are adjusted to reproduce the saturation of symmetric cold NM at density
ρo = 0.17 fm−3 with a binding energy E/A ≈ 16 MeV. One may notice that for the DDM3Y type β is given
in fm3 and α is dimensionless, while for the BDM3Y type β is dimensionless and α is given in fm3.

In a HF calculation, the ground state energy of cold NM is given by:

E = Ekin + 1/2
∑
k1σ1τ1

∑
k2σ2τ2

 < k1σ1τ1.k2σ2τ2. | V D | k1σ1τ.k2σ2τ2 >

+ < k1σ1τ1.k2σ2τ2. | V EX | k2σ1τ1.k1σ2τ2 >

 , (5)

where |k1σ1τ1.> are ordinary plane waves and VD(EX) are given by Equation (3).
PNM is composed of number N↑ (N↓) of spin up (spin down) neutrons and P↑ (P↓) spin up (spin down)

protons, with corresponding ρn ↑, ρn ↓, ρp ↑, ρp ↓, respectively. Thus,

A = N ↑ +N ↓ +P ↑ +P ↓ (6)

is the total number of particles and the total density ρ is

ρ = ρn + ρp = ρn ↑ +ρn ↓ +ρp ↑ +ρp ↓ . (7)

For PNM, the following parameter are usually defined [10,11].
The neutron excess parameter is

X = (ρn − ρp)/ρ ;

the neutron spin up excess parameter is

αn = (ρn ↑ −ρn ↓)/ρ ;

and the proton spin up excess parameter is

αp = (ρp ↑ −ρp ↓)/ρ.

In this general case, there are four Fermi momenta, namely kn(λn) for neutrons with spin up (spin down)
and kp(λp) for protons with spin up (spin down).

These Fermi momenta are related to the excess parameters through

k3
n

λ3
n

}
= k3

f(1 +X ± Y ± Z) (8)

and

k3
p

λ3
p

}
= k3

f(1 −X ± Y ± Z), (9)

kf being the Fermi momentum of unpolarized symmetric NM (taken to be equal to 1.36 fm−1),

Y = αn + αp

and

Z = αn − αp
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In the present calculations, one shall use the generalized form given by Equation (3) for the interaction.
Using this form, the energy per nucleon of PNM at zero temperature can be written as:

E0 = Ev + X2Ex + Y 2Ey + Z2Ez, (10)

where

Ev =
3h̄2k2

f

10m
+
f(ρ)ρ

2
(JD0 +

∫
J2

1 (kf r)V EX0 (r)dr) (11)

Ex.y.z. =
h̄2k2

f

6m
+
f(ρ)ρ

2

{∫
−j2

1 ((kfr)V EX0 (r)dr + JDτ.σ.στ+∫
j2
1((kfr) − 2j2

1((kf r)j2(kff) + j2
2(kf r)V EXτ.σ.στ (r)dr

}
(12)

where JDi =
∫
V Di (r)dr; i = 0, τ, σ, στ

and J1(X) = 3j1(X)
X .

jn(x), is the nth order spherical Bessel function and m is the nucleon mass. Terms higher than quadratic in
X, Y and Z are neglected in Equation (10).

The pressure of a nuclear system is given by

P = ρ2 ∂E

∂ρ
(13)

and the compressibility is

K = 9
∂ρ

∂ρ
, (14)

which is valid also outside the P=0 saturation point.
Using Equation (10), one gets the pressure and the compressibility, at zero temperature as

P0=Pv + X2Px+Y
2Py + Z2Pz (15)

and

K0=Kv +X2Kx + Y 2Ky + Z2Kz. (16)

Using Equations (11) and (12) for Ev, Ex, Ey and Ez, one gets simple analytical equation for Pv(Kv),
Px(Kx), P y(Ky) and Pz(Kz).

To study the PNM at finite temperature, it is well known that the thermodynamics properties of NM
are determined completely if the free energy F is known in terms of the density ρ and the temperature T,
where

F (ρ, T ) = E(ρ, T )− TS(ρ, T ), (17)

E being the total energy and S is the entropy. The relevant equations are derived in Ref. [12] where the
reader is referred to for details. According to the Fermi liquid approximation of Landau, the entropy of the
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system can be calculated in terms of the Fermi integrals which are temperature dependent. One gets the
entropy of the PNM in the T2 approximation as:

S(ρ, T ) =
T

3
(
2m∗τ.s
h̄2

)(
3π2

2
)

1
3 ρ−2l3[1− 1

9
(X2 + Y 2 + Z2)], (18)

where m∗τ.s is the effective mass which can be readily obtained from the determination of the single nucleon
potential. One notices that the only dependence of the thermal properties of the system on the effective
interaction, is through the dependence of the entropy on the effective mass.

Therefore, the free energy can be written as

F (ρ, T ) = Eo(ρ, T = 0) +ET (ρ, T ), (19)

where Eo is given by Equation (10) and ET is the temperature dependent part of the energy and is given by

ET (ρ, T ) = −T
2

6
(
2m∗τ.s
h̄2 )(

3π2

2
)

1
3 ρ−2l3[1− 1

9
(X2 + Y 2 + Z2)]. (20)

One now obtains the pressure and the compressibility at finite temperature as follows:

P (ρ, T ) = Po(ρ, T = 0) + PT (ρ, T ) (21)

and

K(ρ, T ) = Ko(ρ, T = 0) +KT (ρ, T ), (22)

where P0 and K0 are given by Equations (15) and (16), PT and KT are directly derived from Equation (20).

3. Results and Discussion

In the present work, the PNM has been studied within the HF scheme, using a generalized density
dependent M3Y Paris interaction, which is a more realistic interaction. In the calculations reported here,
explicit form of the spin and spin-isospin dependent components of the NN Paris interaction have been
considered. One emphasizes that the motivation of the present analysis is not to reconsider the symmetric
unpolarized NM nor the asymmetric cold NM arising from the neutron excess parameter [7], but mainly to
study the effect of the spin on the asymmetric cold NM as well as hot NM and the effect of the neutron
excess parameter on PNM at finite temperature. The terms Ev and Ex for cold NM (with the corresponding
derived quantities) are only pointed out for completeness and purposes of comparison. Moreover, since the
interaction is density-dependent, the effect of the density dependent term has been also investigated. The
set of parameters C, α, and β of f(ρ) take the values given in Table 1 of Ref. [7] for the Paris interaction.

Figures 1 and 2 show the spin energy Eyand the spin-isospin energy Ez as a function of the relative
density (ρ/ρo) for the three different versions of the density dependence. While these values increased
steadily with density for the DDM3Y1 type force, those obtained with BDM3Y type forces begin to decrease
at densitiesρ>1.5ρo. This may be attributed to the fact that the exponential dependence on ρ does not
change sign as ρ increases, while for the power law dependence the sign can change for large ρ. An increasing
behavior is observed for the dependence of Ex on the density [7]. This result which is confirmed by Engvik
et al. [8] where different types of potential have been used may favor the DDM3Y1 type of interaction. The
three energies Ex, Ey and Ez at ρ = ρo are 29.72 MeV, 20.53 MeV and 26.54 MeV, respectively, for the
three types of interaction. These values are relatively smaller than those found by many authors [12,13].
However, Maheswari et al. [14], using the Seyler-Blanchard potential, found that the observed maximum
neutron star masses and the surface magnetic field are best explained with Ey = 15 MeV corresponding to
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Ex = 33.4 MeV and Ez = 36.5 MeV. In general, the values of Ey and Ez are uncertain to some extent. As an
illustration, the four terms, namely Ev, Ex, Ey and Ez, are displayed in Figure 3 for the density dependent
type interaction DDM3Y1. The pressure density isotherm at T = 0, Py and Pz are plotted in Figures 4 and
5. Here again, a similar behavior is observed concerning the effect of the different versions of the density
dependence.
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Figure 1. Spin symmetry energy as a function of the rel-

ative density ρ/ρo for cold PNM, using different density

dependent M3Y interaction.

Figure 2. The same as Figure 1 for the spin-isospin

symmetry energy.
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Figure 3. Symmetry energy Ex, spin symmetry energy

Ey , spin-isospin symmetry energy Ez, as a function of

the relative density ρ/ρo for cold PNM, together with

the volume energy Ev, using the DDM3Y1 interaction.

Figure 4. The pressure-density isotherm of the spin

symmetry pressure Py for cold PNM, using different den-

sity dependent M3Y interaction.

A plot of the four terms Pv, Px, Py and Pz is presented in Figure 6 corresponding to the DDM3Y1 type.
Clearly the saturation condition is satisfied together with the binding energy (see Figure 3). The nuclear
compressibility K plays a crucial role in the determination of the EOS. However, the value of K has been
subject to intense debate. Values have been extracted from the excitation energies of the observed giant
monopole resonance [15] and from supernova calculations [16]. The spin symmetry compressibility and the
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spin-isospin symmetry compressibility versus the relative density ρ/ρo are shown in Figures 7 and 8. The
values of Kx, Ky, Kz and Kv at equilibrium, corresponding to different types of force are listed in Table 1.
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Figure 5. The same as Figure 4 for the spin-isospin

symmetry pressure.

Figure 6. The symmetry pressure Px, the spin symme-

try pressure Py and the spin-isospin symmetry pressure

Pz as a function of the relative density ρ/ρo for cold

PNM, together with the volume pressure Pv, using the

DDM3Y1 interaction.
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Figure 7. Spin symmetry compressibility as a function

of the relative density ρ/ρo for cold PNM using a different

density dependent M3Y interaction.

Figure 8. The same as Figure 7 for the spin-isospin

symmetry compressibility.

Table 1

Type of force Kx(MeV) Ky (MeV) Kz (MeV) Kv (MeV)
DDM3Y1 169.69 146.05 188.47 176.23
BDM3Y0 150.24 137.16 171.78 218.12
BDM3Y1 128.79 127.35 154.34 270.05

The present model of calculations predicts a soft EOS (K ranging from 176-270 MeV). These values are
in agreement with those given by Myers and Swiatecki: K = 234 MeV [17] which are close to that found by
Blaizot et al.: K = 210 ± 30 MeV [18].
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Two conclusions can be deduced from the above table. First, the compressibility generally decreases
with asymmetry (the only exception is found for Kz corresponding to the DDM3Y1 interaction). The
softening of the EOS with asymmetry was predicted by many authors [8,19,20]. Second, if for Kv it was
found that, when employing the BDM3Y type of force, the larger the parameter β the harder the EOS
[6], the situation reversing for the symmetry terms of the compressibility. Therefore, for the BDM3Y type
of interaction, a strong softening occurs when going from symmetric to asymmetric NM. The dependence
of the compressibilities Kv , Kx, Ky and Kz on the density is illustrated in Figure 9, using the DDM3Y1
interaction. From the above analysis of the asymmetric cold NM, one concludes that the compressibility
K is very sensitive to the different types of interaction. This result reflects the importance of the accurate
determination of the nuclear compressibility for the study of properties of nuclei (radii, masses, .....) supernova
collapses and HI collisions.

Microscopic calculations of the nuclear EOS at finite temperature are quite few. One of these first
few semi-microscopic investigation of the finite temperature EOS was that carried out by Friedman and
Pandharipande [21] in a variational calculation.

The free energy Fv at temperature T = 5 MeV is presented in Figure 10 as a function of ρ/ρo for different
f(ρ). The results obtained are very close to that found by FP [21] and by Mansour [22] who used the Seyler-
Blanchard potential, particularly for the BDM3Y type of interaction with a little bit higher values for large
ρ. The influence of the density on the symmetry free energy Fx, the spin symmetry free energy Fy and the
spin-isospin symmetry free energy Fz at T = 5 MeV for the DDM3Y1 interaction is shown Figure 11 . The
results reported here for the free energies Fv, Fx, Fy and Fz as a function of temperature are displayed in
Figure 12 using DDM3Y1 interaction. The free energy Fv decreases with increasing temperature. This result
is in agreement with that obtained in Refs. [1,21,22.23]. The symmetry terms Fx, Fy and Fz almost increase
with temperature. Abd-Alla et al. [24] obtained the same result using a generalized Skyrme interaction.
The different dependence of the free energy function on temperature arises most probably from the opposite
sign of the entropy. The pressure-density isotherm at T = 5 MeV is plotted in Figure 13 for different types
of force. The results obtained for the BDM3Y interaction are in agreement with those predicted in Refs.
[21,22]. While the pressure-density isotherms obtained with the DDM3Y1 interaction is comparable to that
found in Ref. [24], particularly for large ρ. An increasing behavior of the pressures Px, Py and Pz with
density is observed in Figure 14, at T = 5 MeV and using DDM3Y1 interaction. The pressures Pv, Px, Py
and Pz as a function of temperature are displayed in Figure 15 for the DDM3Y1 interaction. The increase
of Pv with temperature is consistent with the calculations carried out in Refs. [1,22,24]. The compressibility
Kv
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Figure 10. Free energy as a function of the relative

density ρ/ρo at T = 5 MeV for unpolarized symmetric

NM, using different density-dependent M3Y interaction.
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as a function of the relative density, at T = 5 MeV and for different f(ρ) is presented in Figure 16. One may
notice the difference in the order of magnitude of the K values corresponding to the two different types of
interaction, namely DDM3Y and BDM3Y. Figure 17 shows a plot of the symmetry compressibilities, Kx,
Ky and Kz as a function of ρ/oρ at T = 5 MeV and using DDM3Y1 interaction. Figure 18 reflects the effect
of increasing the temperature on the compressibilities Kv, K x, Ky and Kz for the BDM3Y0 interaction.
The temperature has a little decreasing effect on Kx, Ky and Kz . The volume compressibility Kv drops
more rapidly with increasing temperature. This result is in agreement with previous works [25,26]. A
similar behavior, for the dependence of the compressibilities on temperature using DDM3Y1 and BDM3Y1
is observed. But one has chosen the BDM3Y0 type to show also the dependence of the compressibilities on
the asymmetry (see Table 1).
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Figure 12. The free energies Fx, Fy and Fz for PNM

together with Fv as a function of temperature using the

DDM3Y1 interaction.
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Figure 14. The symmetry pressure Px, the spin-

symmetry pressure Py and the spin-isospin symmetry

pressure Pz as a function of the relative density ρ/ρo
at T = 5 MeV using the DDM3Y1 interaction.
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Figure 16. The compressibility as a function of the

relative density ρ/ρo at T = 5 MeV for unpolarized sym-

metric NM using different density-dependent M3Y inter-

action.
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Figure 18. The compressibilities Kx, Ky and Kz of

PNM, together with Kv as a function of temperature,

using the BDM3Y0 interaction.

4. Summary

We have constructed a generalized and realistic explicit spin and spin-isospin dependence with density
dependences into the original M3Y effective NN interaction that were based upon the G-matrix elements of
Paris NN potentials. The values of the parameters that describe the density dependence have been fixed
so as to reproduce the saturation properties of normal NM within a non-relativistic HF scheme. This has
been applied to investigate several properties of polarized cold and hot NM with particular attention to the
influence of the different types of interaction on these properties. The results obtained are compared with
the available data.

The present calculations predict a soft EOS and a decrease of the nuclear compressibility coming from
both the temperature and the asymmetry dependence. This result is in agreement with a realistic supernova
evolution. One can say that the method and potential proposed here are quite satisfactory for the purpose
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of the present work. However, one can argue that there are still missing effects, such as three-body forces
and/or relativistic effects which are not taken into account in the present calculations and can change the
results.
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