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Abstract

In this paper we systematically investigate the length and time scales of an interstellar molecular
cloud for collapse under the influence of self–gravity, magnetic field and Coriolis forces. We used Mag-
netohydrodynamic (MHD) equations in linearized form in order to explore the dynamical evolution of
perturbations. We found that both the Lorentz force and the Coriolis force support the cloud against
self contraction, i.e., they introduce stabilizing effect against gravitational instability. Of the two cloud
types with the same physical size, only those threaded by an interstellar magnetic field without rotation
or those rotating without magnetic field will survive against gravitational collapse.
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1. Introduction

Giant Molecular Clouds (GMCs) in the Milkyway and in other galaxies are believed to be the birth places
of stars. A widely accepted view is that portions of molecular clouds go through gravitational collapse and
initiate star formation. But, there is yet to be found actual kinematic evidence of collapse. It is essential to
test the theoretical pictures with observational data. Some of the models, such as the “inside–out collapse
model” [1, 2], make testable predictions about the density and velocity fields. Testing these predictions in
simple clouds like small globules is a prerequsite for comprehending star formation in more massive clouds.
Early optical studies based on star count techniques showed that many small globules have central density
structures [3, 4]. These findings supported an early suggestion that gravitational collapse is going on in
these globules [5]. Martin & Barret [6] suggested that molecular line studies indicate that some globules
were unstable against gravitational collapse. Far infrared observations of B335 revealed direct evidence of
star formation in this widely studied globule [7]. The IRAS data base has provided more evidence for star
formation in globules [8, 9].

Typical masses of molecular clouds are in the range 103−104M�. If these were free falling their lifetimes
would have been unrealistically short, and the implied star formation rate would be much higher than
observed [10, 11]. There must be some force or forces supporting these clouds against their self gravity.
Mouschovias [12] showed that thermal pressure forces alone could not support these clouds for Bonnor
– Ebert (≈ Jeans) critical mass is less than 10M�. Supersonic turbulence may be regarded as another
mechanism supporting larger masses. And it is certainly true. However, supersonic turbulence dissipates in
such a short time scale compared to cloud lifetimes to be of significance [13]. Magnetic fields, no matter how
weak, have been shown to give support against gravity in dense, massive clouds [11, 14-16].
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2. Self–Initiated Star Formation

We systematically present, with progressively more realistic physical inputs, the length and time scales
of collapse in self–gravitating, isothermal, magnetically supported rotating molecular clouds in its initial
state. In subsection 2.1 we review the well – known cloud collapse by self–gravity alone. For a homogeneous
gas, an analysis due to J. H. Jeans can be found in Scheffler & Elsasser [17]. Subsection 2.2. deals with
the same problem with a new physical ingredient, i.e., rotation. The effects of Coriolis forces to self–gravity
is treated in subsection 2.2. Finally, in subsection 2.3. we investigate the more general problem of cloud
collapse under the influence of self–gravity, rotation and the magnetic field. Summary and Conclusion is
presented in Section 3.

2.1. Cloud Collapse by Self–Gravity

Dynamical evolution of the cloud is investigated by hydrodynamic equations given below. Equation (1)
is the mass conservation equation; Equation (2) is the equation of motion taking into account the pressure
gradient and the self gravitational potential of the cloud; Equation (3) is the Laplacian of the gravitational
potential; and Equation (4) is the definition of sound speed in an isothermal homogeneous gas:

∂ρ

∂ t
+∇ · (ρv) = 0 (1)

ρ
D v

D t
≡ ρ∂ v

∂ t
+ ρ (v · ∇) v = −∇P − ρ∇Φ (2)

∇2Φ = 4π ρG (3)

P = c2sρ. (4)

Here, v, ρ , P ,cs and Φ denote the velocity, density, pressure and speed of sound in an isothermal medium
and gravitational potential respectively. D/D t ≡ ∂/∂ t + v · ∇ is the convective derivative.

Now, let us imagine a homogeneous interstellar molecular cloud. In steady state, (∂/∂t = 0), ρ = ρ0 =
const.; P = P0 = const; Φ = Φ0 = 0; v = v0 = 0. Let us suppose that the steady state is perturbed, say,

by self–initiation of the accumulation of matter at certain point or points. Let us assign the subscripts “0”
and “1” to denote the steady state and perturbed quantities, respectively. We treat the perturbation in
linearized form, i.e., ρ = ρ0 + ρ1;P = P0 + P1; Φ = Φ0 + Φ1; v = v0+v1 . In linear approximation, it
is assumed that |ρ1| << ρ0|, |P1| << |P0|, etc.; on the other hand, the multiplication of two perturbed
quantities are also assumed to be vanishingly small, i.e., ρ1P1 = ρ1Φ1 = P1v1 = Φ1v1 = etc. = 0. Under
these approximations, the linearized forms of Equations (1) – (4) are given as follows:

∂ρ1

∂ t
+ ρ0∇ · v1 = 0 (5)

∂ v1

∂ t
= − 1

ρ0
∇P1 −∇Φ1 (6)

∇2Φ1 = 4π ρ1G (7)

290
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P1 = c2sρ1. (8)

If perturbed quantities ρ1, Φ1, P1, v1 grow in time then the medium is said to be unstable. In an unstable
medium the internal energy become free and drives the system to a new stable state. In what follows, we
inquire about the conditions for marginal stability. To this end, we take the divergence of Equation (6); the
value of P1 taken from Equation (8) is also substituted into Equation (6):

∇ · ∂ v1

∂ t
= −∇2

(
c2s
ρ1

ρ0
+ Φ1

)
. (9)

Now, the time derivative of Equation (5),

∂2ρ1

∂ t2
= −ρ0∇ ·

∂ v1

∂ t
, (10)

is also substituted into Equation (6). If the term∇ · ∂ v1/∂ t is eliminated from Equations (9) and (10) and
Equation (7) is used, we get the dispersion relation for the perturbation as follows:

∂2ρ1

∂ t2
= 4π ρ0ρ1 G+ c2s∇2ρ1. (11)

Space and time variation of Fourier components of the perturbed quantities is assumed to be of the form,
exp [i (ω t − k x)]for a one dimensional case. With this assumption, the dispersion relation is reduced to:

ω2 = k2c2s − 4π ρ0 G. (12)

If there is to be self–gravity, then ρ1 should grow in time. A necessary condition for this is ω2 < 0. But
it is not sufficient. At the same time, the purely imaginary ω should be negative, i.e., ωi < 0. Because only
then a multiplicative contribution from the phasor factor comes to the amplitude of the perturbation. The
later condition ensures the growth of density perturbation in time. ω2 < 0 is equivalent to k2 < 4π ρ0G/c

2
s.

We define the threshold wave number kg of the perturbation, 4π ρ0 G/c
2
s = k2

g. Put in other words, in order
for perturbation to drive an instability, the perturbation wavelength should be larger than the threshold
value, i.e., λ (= 2π/k) > λg (= 2π/kg), where λg is the threshold value of the perturbation wavelength. The
dimension L of the contracted region is half the perturbation wavelength, i.e L = λ /2 [17]. Thus the Jeans
criterion for instability becomes

Lg > LJ =

√
π c2s

4ρ0 G
=

√
π kB T

4ρ0G µ̄mH
=

7.822
µ̄

√
T

NH
pc, (13)

where LJ is often called the Jeans length; kB is the Boltzmann constant; T is the temperature; NH is the
number density of H atoms; mH is the proton mass; and µ̄ is the mean molecular weight. Equation (13)
indicates that, if a molecular cloud is to initiate a self collapse, its physical dimension should be greater than
the Jeans length.

2.2. Magnetized Cloud Collapse by Self Gravity

Magnetic fields are shown to play a decisive dynamical role in regions of star formation (see [18] for the-
oretical arguments and [19] for observational data). Magnetic fields support the clouds against gravitational
contraction in two ways. One is the pressure of static magnetic field perpendicular to the field lines [14]. The
other magnetic support mechanism involves fluctuating fields associated with MHD waves at sub–Alfvenic
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yet supersonic speeds. MHD waves may persist longer than purely hydrodynamic turbulence and supports
the cloud in both parallel and perpendicular (to magnetic field) directions [13].

In this subsection we take the hitherto neglected Lorentz force into account and find the “modified”
Jeans length. The linearized form of the equation is as follows:

∂ v1

∂ t
= − 1

ρ0
∇P1 −∇Φ1 −

1
8π ρ0

∇B2 +
1

4π ρ0
(B · ∇) B, (14)

where the third and the fourth terms on the right hand side of Equation (14) come from the expansion of the
Lorentz force, J×B .; and where J is the current density and B is the magnetic flux. The choice of uniform
magnetic field is widely used in the literature (see, e.g., Fig. 4 in [23] ). If the magnetic field is assumed
initially uniform, i.e. there is no variation of the field strength along the field lines, then B · ∇B = 0 and
the equation (14) is reduced to

∂ v1

∂ t
= − 1

ρ0
∇P1 −∇Φ1 −

1
8π ρ0

∇B2. (15)

We assume that the magnetic field is “frozen” into the gas. Only a critical ionization level can justify
this assumption. With now the assumption of the frozen-in condition, the magnetic induction equation can
be written as

∂B
∂ t

= ∇× (v ×B) . (16)

The expansion of Equation (16) with the help of triple vector product,

∇× (C×D) = C (∇ ·D)−D (∇ ·C) + (D · ∇) C− (C · ∇) D, (17)

gives the linearized form of the magnetic induction equation as below:

∂B1

∂ t
= B0 · ∇v1 −B0 (∇ · v1) . (18)

Equations (15), (5), (7), (8) and (18) form a closed set of equations. We may combine Equations (5) and
(18) as

∂B1

∂ t
= B0 · ∇v1 +

B0

ρ0

∂ ρ1

∂ t
. (19)

In deriving Equation (15) we assumed that B · ∇B = 0. This implies that, due to the absence of the
mirror force, particles cannot accelerate in space along magnetic field lines. This fact in turn implies that
B0 · ∇v1 = 0. Elimination of this term from Equation (19) brings the induction equation into a new form:

∂B1

∂ t
=

B0

ρ0

∂ ρ1

∂ t
. (20)

Let us recall that space and time variation of Fourier components of the perturbed quantities is assumed
to be of the form, exp [i (ω t− k x)]. Equation (20) becomes

B1 =
B0

ρ0
ρ1. (21)
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Now, assuming that the order of time ∂/∂ t and space operators (∇·) is interchangeable, let us take the
divergence (∇·) of Equation (15):

∂

∂ t
∇ · v1 = − 1

ρ0
∇2P1 −∇2Φ1 −

1
4π

B0

ρ0
∇2B1. (22)

Then take the time derivative (∂/∂ t) of Equation (5)

∂2ρ1

∂ t2
= −ρ0

∂

∂ t
∇ · v1. (23)

Let us substitute Equations (23), (7), (21) and (8) into Equation (22), from which we get

− 1
ρ0

∂2ρ1

∂ t2
= − 1

ρ0
∇2c2sρ1 − 4π ρ1G−

B0

ρ0

1
4π
∇2B1. (24)

Applying the Laplacian operator to Equation (21), we get the following relation:

∇2B1 =
B0

ρ0
∇2ρ1. (25)

If we substitute Equation (25) into Equation (24) we get an equation for ρ1 :

− 1
ρ0

∂2ρ1

∂ t2
= − 1

ρ0
∇2c2sρ1 − 4π ρ1G−

1
4π

B2
0

ρ2
0

∇2ρ1. (26)

Let us recall once more that the perturbations vary as exp [i (ω t− k x)]; then we get the following
equation for ρ1 :

ω2

ρ0
=

1
ρ0
c2sk

2 − 4πG+
1

4π
B2

0

ρ2
0

k2. (27)

We then finally get the dispersion relation for the perturbation:

ω2 =
(
c2s +

B2
0

4π ρ0

)
k2 − 4π ρ0G. (28)

Following the same line of reasoning as we did in subsection 2.1., we write the condition for marginal
instability, as ω2 < 0. If this condition is fulfilled then the cloud will start collapsing under the force of
self-gravity. The result is:

k2 <
4π ρ0G

c2s + B2
0

8π ρ0

. (29)

Equation (29) gives us the Jeans length Lg+B , where subscripts denote the presence of both the gravi-
tational potential and the magnetic field:

Lg+B >

√
π (c2s + v2

A)
4ρ0G

, (30)

whereB2
0 /8π ρ0 is the square of the Alfven speed, i.e.,v2

A.
If we compare Equations (13) and (30) we see that Lg+B > Lg . This comparison clearly shows that

magnetized clouds are supported by magnetic field against collapse by self–gravity. Indeed, any initiation of
self contraction is resisted by magnetic pressure. In other words, of two interstellar clouds with exactly the
same physical parameters, the one threaded by a uniform magnetic field requires greater dimensions (L) in
order to collapse.

293
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2.3. Rotating, Magnetized Cloud Collapse by Self Gravity

Observations have not yet revealed any massive cloud, as opposed to a core, rotating at such a rate that
Coriolis forces would be important in its dynamical evolution. Even for the most rapidly rotating protostellar
cores, the observed angular velocities imply angular momenta significantly smaller than those expected from
angular momentum conservation. Moreover, rotating protostellar cores exhibit angular velocities consistent
with theoretical predictions [20].

With the inclusion of Coriolis forces, the linearized version of the equation of motion becomes

∂ v1

∂ t
= − 1

ρ0
∇P1 −∇Φ1 −

1
8π
B0∇B1 − 2Ω× v1, (31)

where Ω is the angular velocity. Now, Equations (5), (7), (8), (20) and (31) form a closed set of equations,
by means of which self contraction of rotating and magnetized cloud may be investigated.

Take the divergence (∇·) of Equation (31):

∇ · ∂ v1

∂ t
= − 1

ρ0
∇ · ∇P1 −∇ · ∇Φ1 −

1
4π
B0∇ ·∇B1 − 2∇ · (Ω× v1) . (32)

Expand the last term on the right hand side of Equation (32) in accordance with the vector relation

∇ · (A×B) = B · (∇×A) −A · (∇×B) (33)

so that it may be written as

∇ · ∂ v1

∂ t
= − 1

ρ0
∇ ·∇P1 −∇ · ∇Φ1 −

1
4π
B0∇ · ∇B1 − 2[v1 · (∇×Ω) −Ω · (∇× v1)]. (34)

At the initial state, for the sake of simplicity, we assume that the cloud shows no differential rotation,
but instead rotates like a solid body. This implies that ∇×Ω = 0. If we substitute Equations (23) and (8)
into Equation (34) we get

∂2ρ1

∂ t2
= c2s∇2ρ1 + ρ04π ρ1G+

B2
0

4π ρ0
∇2ρ1 − 2ρ0Ω ·

∣∣∣∣∣∣
i j k
∂/∂ x ∂/∂y ∂/∂ z
v1x v1y v1z

∣∣∣∣∣∣ . (35)

In the previous subsection we showed that the magnetic field resists contraction through magnetic pres-
sure. Here, we are interested in the perturbation v1 velocity of which has a perpendicular component to
the magnetic field (see below). We work in Cartesian coordinates, such that the axis of rotation is along
the z direction, Ω = Ω ẑ and the uniform magnetic field is in the x direction B = B x̂ where x̂ and ẑ
are the unit vectors of the x and z directions, respectively. There is no harm in repeating that the choice
of uniform magnetic field is widely used in the literature. In order that the Coriolis force be effective, the
perturbation velocity should have components in x and y direction, i.e., v1 = v1xx̂+ v1yŷ; where ŷis the
unit vector of the y direction. In that case, the last term on the right hand side of Equation (35) becomes
−2ρ0Ω (∂ v1y/∂ x− ∂ v1x/∂ y). Since perturbation quantities are assumed to vary with x only, then ∂v1x/∂y
vanishes. On the other hand, the linearized form of the mass conservation equation is

∂ ρ1

∂ t
+ ρ0∇ · v1 = 0 ⇒ iω ρ1 + ρ0

∂ v1x

∂ x
= 0. (36)

With this in mind, we should investigate as to whether the derivative ∂ v1x/∂ x could be expressed in
terms of v1y. For this, the reader is asked to refer to Figure 1. A spherical cloud is viewed along the
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rotation axis (z ). The uniform magnetic field is along the x direction. The velocity vector with its x and
y components is drawn from a fiducial point which is involved in a corotation together with the rest of the
cloud. The line joining the center of the circle to the tangent point of the velocity vector makes an angle α
with the x axis. In that case,

v1x

v1y
v

y

x

B

B

B

Figure 1. The projection of a spherical cloud onto xy plane.

v1x = vsinα

v1y = vcosα.
(37)

At the initial state the cloud is supposed to rotate like a solid body. Therefore the relation between the
instantaneous velocity, radial vector and the angular velocity is,

v = Ω× r. (38)

Or, due to the solid body rotation, v = Ωr. Since the projection of the spherical cloud onto the xy plane
is a circle, x2 + y2 = r2 and v = Ω

√
x2 + y2 . Substituting into Equations (37) we get

v1x = Ω
√
x2 + y2sinα

v1y = Ω
√
x2 + y2cosα

, (39)

from which the spatial derivatives are

∂ v1x
∂ x = Ωsinα x√

x2+y2

∂ v1y
∂ x = Ωcosα x√

x2+y2

. (40)

Squaring them and taking the average during one rotational period, we get

(
∂ v1x
∂ x

)2
= Ω2 x2

x2+y2 sin
2α(

∂ v1y

∂ x

)2

= Ω2 x2

x2+y2 cos
2α

(41)

If A = x2

x2+y2 then,
2π∫
0

Asin2αdα = A
2

and, similarly,
2π∫
0

Acos2α dα = A
2

. Thus
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∣∣∣∣∂ v1x

∂ x

∣∣∣∣ =
∣∣∣∣∂ v1y

∂ x

∣∣∣∣ ⇒ ∂ v1x

∂ x
= ∓∂ v1y

∂ x
. (42)

Variations of v1x and v1y with x show just the opposite tendency, that is to say, in all four quadrants
of Fig. 1. v1y, for example, gets smaller and smaller while v1x becomes larger and larger. Therefore, in
Equation (42) the one with the minus sign is the real solution. Now, if we substitute Equation (42) bearing
the minus sign into Equation (36), we get,

iω ρ1 − ρ0
∂ v1y

∂ x
= 0. (43)

Now, the equation of motion can be written as

∂2ρ1

∂ t2
= c2s∇2ρ1 + ρ04π ρ1G+

B2
0

4π ρ0
∇2ρ1 − 2ρ0Ω

∂ v1y

∂ x
. (44)

Substitute Equation (43) into (44) and take the space and time derivatives,

(iω)2 = c2s (ik)2 + ρ04πG+ v2
A (ik)2 − 2 iω Ω, (45)

and finally rearrange (45) to get the dispersion relation for the perturbation as follows:

ω2 = c2sk
2 + v2

Ak
2 − ρ04πG+ 2iω Ω. (46)

As above, the necessary condition for the perturbation to grow in time is ω2 < 0.
But it is not sufficient; ωi < 0 condition should also be satisfied. We rearrange Equation (46) in ascending

order of ω ,

ω2 − 2iωΩ− c2sk2 − v2
Ak

2 + ρ04πG = 0. (47)

If the solution to (47) is to yield a root of ω as ω = iωi,then the determinant of the quadratic should be
zero:

∆ = b2 − 4ac = −4Ω2 − 4
(
−c2sk2 − v2

Ak
2 + ρ04πG

)
= 0. (48)

From this condition we get a relation between the wave vector of the propagating perturbation and the
physical parameters of the cloud, i.e.,

k2 =
ρ04πG+ Ω2

c2s + v2
A

, (49)

where k = 2π / λ , by definition. Substituting this definition into Equation (49),

4π2

λ2
<
ρ04πG+ Ω2

c2s + v2
A

, (50)

and remembering that L = λ /2, we get the relation below:
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(
λ

2

)2

= L2
g+B+Ω >

π2
(
c2s + v2

A

)
ρ04πG+ Ω2

, (51)

where Lg+B+Ω is the Jeans length in the presence of self gravity, magnetic field and rotation. And finally,
Jeans length for marginal instability is found as

Lg+B+Ω >

√
π (c2s + v2

A)
ρ04πG+ Ω2

. (52)

Recall that ω2 < 0 is only a necessary but not a sufficient condition for gravitational instability. In
addition, the solution to the Equation (47) should yield a negative value for ω, which cannot! To see this, we
get back Equation (48) which gives −Ω2 = −c2sk2−v2

Ak
2 +ρ04πG. If we put this relation back into Equation

(47) we get ω2 − 2iω Ω−Ω2 = 0 which yields a solution as ω = iΩ. For Ω is always a positive quantity, we
may conclude that, in the presence of rotation, there can be no gravitational instability. Therefore Equation
(52), as derived from the necessary condition ω2 < 0 , itself has no meaning at all. In such clouds with
even a small amount of rotation, gravitational contraction is severely limited by a centrifugal barrier [21].
This result of ours is also supported by Shu’s [22] conclusion that no gravitational instability can arise in
the presence of wave propagation perpendicular to the rotation axis.

2.4. Time Scales for Collapse

In order to find the time scales for collapse we refer to Equations (13) and (30). For LJ is the length scale
for marginal stability, c2sis the square of the ratio of the length scale to the time scale for the same stability,
i.e., c2s = L2

J/τ
2
J where τJ is the time scale for the gravitational collapse. Substituting this into Equation (13),

we get τJ ∼= 1/
√
Gρ0. For a cloud whose dynamical properties are determined by gravitational potential

and Lorentz forces, we have to inquire about two extremes, that is, if the stresses within the cloud are
predominantly acoustic, then the c2s >> v2

A approximation applies; if the reverse is true, i.e., the dominant
stresses are magnetic, the v2

A >> c2s aproximation is justified. With any one of these approximations we go
to Equation (30) and find the collapse time scale for the cloud.

3. Summary and Conclusion

Molecular clouds with masses ∼ 103 − 104M� cannot go through free fall, otherwise star formation rate
would be higher than observed. Forces resisting the initiation of self contraction may be listed as thermal
pressure forces which balance gravity along field lines; while magnetic, Coriolis and thermal pressure forces
do so perpendicular to the field lines.

We reviewed the case in subsection 2.1. wherein self–gravity and thermal pressure forces determine the
dynamical evolution of a cloud. Inclusion of Lorentz forces clearly showed that the magnetic pressure forces
support the cloud against self contraction. This fact manifested itself through the Jeans length. Comparison
of marginal stability length scales showed that of two identical clouds the one threaded by a uniform magnetic
field requires greater dimensions to collapse. Rotating clouds are even more strongly stable against collapse
by self–gravity. Jeans length derived in the presence of self–gravity, magnetic field and rotation should be
viewed critically. Because, the term introduced by Coriolis force into the dispersion relation ensures the
stability of the cloud almost permanently. One should be extra cautious in interpreting the case wherein
Coriolis force is taken into account. In later case, both the necessary and sufficient conditions are to be
considered and due assesment is to be given.
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