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Çanakkale Onsekiz Mart University, 17100 Çanakkale-TURKEY
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Abstract

We study the consequences of the existence of timelike and spacelike Ricci collineation vectors (RCVs)
for string fluid in the context of general relativity. Necessary and sufficient conditions are derived for a
space-time with string fluid to admit a timelike RCV, parallel to ua, and a spacelike RCV, parallel to
na. In these cases, some results obtained are discussed.
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1. Introduction

The introduction of a symmetry (i.e. collineation) is most conveniently studied if the Lie derivative of
the field equations is taken with respect to the symmetry vector. More specially, the Lie derivative of the
Ricci and independently the energy momentum tensor can be computed by the symmetry. So, the field
equations can be obtained as Lie derivatives along the symmetry vector of the dynamical variables.

Previous works on RCVs have been undertaken by several authors. Oliver and Davis, who gave necessary
and sufficient conditions for a matter space-time to admit an RCV, ηa = ηua, with ua = uaD where uaD is
the dynamic four-velocity [1, 2]. Tsamparlis and Mason have considered Ricci collineation vectors (RCVs)
in fluid space-times (perfect, imperfect and anisotropic) [3]. Duggal have also considered timelike Ricci
inheritance vector in perfect fluid space-times [4]. Carot et al. have discussed space times with conformal
Killing vectors [5].

The study of string fluid has aroused considerable interest as they are believed to give rise to density
perturbations leading to the formation of galaxies [6]. The existence of a large scale network of strings in
the early universe is not in contradiction with present day observations of the universe [7]. Also, the present
of strings in the early universe can be explained using grand unified theories (GUTs) [6, 7]. Thus, it is
interesting to study the symmetry features of string fluid.

Recently, work on symmetries of the string has been done by Yavuz and Yılmaz, and Yılmaz et al. who
have considered inheriting conformal and special conformal Killing vectors, and also curvature inheritance
symmetry in the string cosmology (string cloud and string fluids), respectively [8, 9]. Yılmaz has also
considered timelike and spacelike Ricci collineations in the string cloud [10]. Baysal et al. have studied
conformal collineation in the string cosmology [11].

The theory of spacelike congruences in general relativity was first formulated by Greenberg, who also
considered applications to the vortex congruence in a rotational fluid [12]. The theory has been developed
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and further applications have been considered by Mason and Tsamparlis, who also considered spacelike
conformal Killing vectors and spacelike congruences [13].

A space-time admits a Ricci collineation vector (RCV) ξa if

£ξRab = 0, (1)

where Rab is the Ricci tensor and £ξ denotes Lie derivative along ξa. A conservation law, valid for any
RCV, was established by Collinson [14]. If ξa is an RCV, then it can be verified that

(Rabξb);a = 0, (2)

and if Einstein’s field equations

Rab = T ab − 1
2
Tgab, (3)

are satisfied, then [
(T ab − 1

2
Tgab)ξb

]
;a

= 0. (4)

Equation (4) plays an important role as one of necessary and sufficient conditions for a space-time to admit
an RCV, ξa.

It is important to establish a connection between timelike or spacelike RCVs and material curves in the
string fluid.

In this paper, we will investigate the properties of RCVs, ηa = ηua, parallel to the string fluid unit
four-velocity vector ua:

uau
a = −1, η = (−ηaηa)1/2 > 0,

and spacelike RCVs, ξa = ξna, orthogonal to ua:

nan
a = +1, nau

a = 0, ξ = (ξaξa)1/2 > 0.

We will express the necessary and sufficient conditions for string fluid space-time to admit a timelike RCV
parallel to ua and a spacelike RCV parallel to na in terms of the kinematic quantities of the timelike
congruence of world-lines generated by ua and the expansion, shear, and rotation of the spacelike congruence
generated by na, respectively.

The energy-momentum tensor for a string fluid can be written as [8, 15]

Tab = ρs (uaub − nanb) + qPab, (5)

where ρs is string density and q is ”string tension” and also ”pressure”.
The unit timelike vector ua describes the fluid four-velocity and the unit spacelike vector na represents

a direction of anisotropy, i.e., the string’s directions. Also, note that

uau
a = −nana = −1 and uana = 0. (6)

This paper may be outlined as follows. In section 2, necessary and sufficient conditions for string fluid
space-time to admit a timelike RCV parallel to ua are derived. In section 3, the basic aspects of the theory
of spacelike congruences required in this paper are briefly reviewed. Also, necessary and sufficient conditions
for a string fluid space-time to admit a spacelike RCV parallel to na are given. Finally, concluding remarks
are made in section 4.
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2. Timelike Ricci Collineation Vectors

If Einstein’s field equation (3) are satisfied, then string fluid with energy-momentum tensor (5) admits
an RCV, ηa = ηua, if and only if

hcah
d
b γ̇cd = −2

3
[
(2ρs − q)σab − γcdσcdhab + θγab

]
− 2σc(aγcb) − 2ωc(aγcb), (7)

q [u̇a − (lnη);a − θua] = 0, (8)

(ηqua);a = 0, (9)

where θ is the rate-of expansion, σab is the rate-of-shear tensor, ωab is the vorticity tensor of the timelike
congruence generated by ua, hab = gab + uaub and γab = (ρs + q)

(
1
3hab − nanb

)
.

Proof: From the definition of the Lie derivative it follows that

£ηuRab = η
{
Ṙab + 2ucRc(a(ln η),b) + 2Rc(auc;b)

}
(10)

which, using Einstein’s field equation (3) for string fluid, may be rewritten as

£ηuRab = η

{
q̇uaub + 1

3(2ρ̇s − q̇)hab + 4
3(ρs + q)u̇(aub) + γ̇ab

−2qu(a(ln η),b) + 2
3 (2ρs − q)u(a;b) + 2γt(aut; b)

}
. (11)

Suppose first that ηua is an RCV. Then (1) holds and the right-hand side of (11) vanishes. By
contracting (11) in turn with uaub, uahbc, hab, and hach

b
d − 1

3h
abhcd and by using the expansion

ua;b = σab + ωab +
1
3
θhab − u̇aub, (12)

we obtain, respectively,

q̇ + 2q(ln η)· = 0, (13)
q [u̇a − (ln η),a − (lnη)·ua] = 0, (14)

2ρ̇s − q̇ +
2
3

(2ρs − q)θ + 2γabσab = 0, (15)

and Equation (7).
The energy momentum conservation equation will also be required. For string fluid, the momentum

conservation equation, which follows from Einstein’s field equations, is

ρ̇s = −2
3

(ρs + q)θ − γabσab. (16)

(i) Condition (7) was derived directly in the decomposition of (11).

(ii) In order to determine condition (8), we first obtain an expression for q(ln η)· by eliminating ρ̇s and q̇
from (13). Substituting from (16) for ρ̇s into (15) gives

q̇ = −2qθ, (17)

and using (16) for ρ̇s and (17) for q̇, Equation (13) becomes

q(ln η)· = qθ. (18)

Condition (8) is derived immediately from (14) and (18).
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(iii) In order to derive condition (9), we observe that (13) may be written as

q̇ + q(ln η)· + q(lnη)· = 0. (19)

If (18) is used to replace one of the terms q(ln η)· in (19), then (19) becomes

q,aηu
a + q(η,aua + ηua;a) = 0, (20)

from which (9) follows directly. Conditions (7)- (9) are therefore necessary conditions if ηua is an
RCV.

Conversely, suppose that conditions (7)- (9) are satisfied. Then if (7) for γ̇ab is substituted into (11),
and (12) is used to expand ua;b and ut;b, (11) becomes

£ηuRab = η

{
(q̇ + 2qθ)uaub +

1
3

[
2ρ̇s − q̇ +

2
3

(2ρs − q)θ + 2γcdσcd

]
hab

}
. (21)

Now, ρ̇s is given by the energy conservation Equation (16). In order to obtain an expression for q̇, we first
observe that (9) can be expanded as

q̇ + qθ + q(ln η)· = 0. (22)

But, by contracting (8) with ua, (18) is again obtained and by eliminating q(lnη)· from (22), Equation
(17) for q̇ is again derived.

By using (16) for ρ̇s and (17) for q̇ it is easily verified that the coefficients of uaub and hab in (21)
vanish and therefore ηua is an RCV.

3. Spacelike Ricci Collineation Vector

Before we discuss the calculation some general results can be presented for convenience on spacelike
congruences that will be used in this work. Let ξa = ξna where na is a unit spacelike vector (nana = +1)
normal to the four velocity vector ua. The screen projection operator Pab = gab + uaub − nanb projects
normally to both ua and na . Some properties of this tensor are:

P abub = P abnb = 0, P ac P
c
b = P ab , Pab = Pba, P aa = 2.

The na;b can be decomposed with respect to ua and na as follows:

na;b = Aab+
∗
na nb − ṅaub + ua

[
ntut;b + (ntu̇t)ub − (nt

∗
ut)nb

]
, (23)

where
∗
s
...

...= s ...... ;an
a and Aab = P caP

d
b nc;d. We decompose Aab into its irreducible parts

Aab = Sab + Wab +
1
2
∗
θ Pab, (24)

where Sab = Sba, S
a
a = 0 is the traceless part of Aab,

∗
θ is the trace of Aab, and Wab = −Wba is the rotation

of Aab. We have the relations:

Sab = P caP
d
b n(c;d) −

1
2
∗
θ Pab, (25)

Wab = P caP
d
b n[c;d] ,

∗
θ = P abna;b. (26)

It is easy to show that in Equation (23) the ua term in parenthesis can be written in a very useful form as
follows:

−Na + 2ωtbnt + P tb ṅt,
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where the vector

Na = P ba(ṅb−
∗
ub) (27)

is the Greenberg vector. Using (27), Equation (23) becomes

na;b = Aab+
∗
na nb − ṅaub + P cb ṅcua + (2ωtbnt −Nb)ua. (28)

The vector Na is of fundamental importance in the theory of spacelike congruences. Geometrically the
condition Na = 0 means that the congruences ua and na are two surface forming. Kinematically it means
that the field na is ”frozen in” along the observers ua.

Having mentioned a few basic facts on the spacelike congruences we return to the computation of the
Lie derivative of the Ricci tensor using the field equations.

If Einstein’s field equation (3) are satisfied, then string fluid with energy-momentum tensor (5) admits
an RCV, ξa = ξna if and only if

qωatn
t =

1
2
ρsNa, (29)

ρsSab = 0, (30)

q
[∗
na +(ln ξ),a − (ntu̇t)na

]
= 0, (31)

q
∗
θ= 0, (32)

(ξqna);a = 0. (33)

Proof: From the definition of the Lie derivative it follows that

£ξnRab = ξ
[ ∗
Rab +2ncRc(a(ln ξ),b) + 2Rc(anc;b)

]
(34)

which, using Einstein’s field equation (3) for string fluid, may be rewritten as

£ξnRab = ξ

{
∗
q (uaub − nanb)+

∗
ρs Pab − 2(ρs + q)

∗
n(a nb) − 2qn(a(ln ξ),b)

+2(ρs + q)
[∗
u(a ub) − ntu(au

t
;b)

]
+ 2ρsn(a;b)

}
. (35)

Suppose first that ξna is an RCV. Then Equation (1) is satisfied. The right-hand side of Equation (35) is
therefore zero and by contracting it in turn with uaub, uanb, uaP bc, nanb, naP bc, P ab, and P acP bd− 1

2
P abP cd

the following seven equations are derived:

∗
q +2qnau̇a = 0, (36)

q
[
(ln ξ)·+

∗
na u

a
]

= 0, (37)

ρsP
b
a ṅb − (ρs + q)P ba

∗
ub +qP ban

tut;b = 0, (38)
∗
q +2q(ln ξ)∗ = 0, (39)

qP ba

[∗
nb +(ln ξ),b

]
= 0, (40)

∗
ρs +ρs

∗
θ= 0, (41)

ρsSab = 0. (42)

The energy momentum conservation equation will also be required. For string fluid, the momentum
conservation equation, which follows from Einstein’s field equations, is

∗
ρs= −(ρs + q)

∗
θ . (43)
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(i) Condition (29) is derived from (38). We have

ntut;b = 2ntu[t;b]+
∗
ub= −2ωbtnt − (ntu̇t)ub+

∗
ub, (44)

and by substituting from (44) into (38), (29) follows directly.

(ii) Condition (30) is given by Equation (42).

(iii) To derive condition (31), we first expand (40) and use (37); this gives

q
[∗
na +(ln ξ),a − (ln ξ)∗na

]
= 0. (45)

If we subtract (39) from (36), then we have

q(ln ξ)∗ = qnau̇
a. (46)

If we substitute Equation (46) into quation (45), then we have condition (31).

(iv) To derive condition (32), we substitute equation (43) into (41), then we have condition (32).

(v) Consider the final condition (33). From (26), we have

nau̇
a = na;a−

∗
θ . (47)

Substitute (47) into (46); this gives

q(ln ξ)∗ = q(na;a−
∗
θ). (48)

If one of the terms q(ln ξ)∗ into Equation (39) is replaced by (48) and used condition (32), then (39)
may be written as

q,aξn
a + q(ξ,ana + ξna;a) = 0, (49)

from which (33) follows directly.

Hence, if ξa = ξna is an RCV then conditions (29)- (33) are satisfied.
Conversely, suppose that (29)-(33) are satisfied and Einstein’s field equations hold. Using (28) for

n(a;b), (30) and (31) for q(ln ξ),a Equation (35) becomes

£ξnRab = ξ

{
∗
q uaub − (

∗
q +2qntu̇t)nanb + (

∗
ρs +ρs

∗
θ)Pab

+2q
[∗
u(a ub) − ntu(au

t
;b)

]
− 2ρsN(aub)

}
. (50)

Further, by using (44) for ntut;b and (29) for qωatnt and by replacing
∗
θ by ntu̇t with the aid of (26), (50)

reduces to
£ξnRab = ξ

{(∗
q +2qntu̇t

)
(uaub − nanb) + (

∗
ρs +ρs

∗
θ)Pab

}
. (51)

Now,
∗
ρs is given Equation (43). To obtain

∗
q in terms of ntu̇t we use the remaining condition (33), which

may be expanded as
∗
q +q(ln ξ)∗ + qna;a = 0. (52)

But if (31) is contracted with na, Equation (46) is again derived. Therefore (52) becomes

∗
q +2qntu̇t = 0. (53)

It easily verified with the aid of (43), (53), and condition (32) that the right-hand side of (51) vanishes
and therefore ξa = ξna is an RCV.
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4. Results and Conclusions

In the case of timelike Ricci collineation vectors parallel to ua, we have the following results:

(a) In this case, it is easily verified that condition (9) is the conservation law (4) with ξb = ηub.

(b) Condition (8) may be rewritten alternatively either q = 0 or u̇a = (ln η),a + θua. If, q = 0 the
energy-momentum tensor reduces

Tab = ρs(uaub − nanb)
which is pure string.

In the case of spacelike Ricci collineation vectors orthogonal to ua, we have the following results:

(a) In this case, it is easily verified that (33) is the conservation law (4) for the string fluid with ξb = ξnb.

(b) From Equation (30), we have
either ρs = 0 or Sab = 0. (54)

(c) When ω = 0, Equation (29) reduces to
ρsNa = 0, (55)

and hence either ρs = 0 or Na = 0. When Na = 0, the integral curves na are material curves and
string fluid form two surface. When ρs = 0, strings disappear.

(d) When ω 6= 0, Equation (29) reduces to

qωatn
t =

1
2
ρsNa. (56)

(i) If Na = 0, then Equation (56) reduces to
qωatn

t = 0 (57)

and hence if q 6= 0 then ωatn
t = 0 and since ωat = ηatrsω

rus we find by contracting (57) with
ηabcdωcud that

na =
[
(ωtnt)/ω2

]
ωa. (58)

Since both na 6= 0 and ωa 6= 0 it follows that na = ±ωa/ω.

(ii) If the integral curves of na are material curves in the fluid then Na = 0. Hence, since q 6= 0, from (46)
ωatn

t = 0 and na = ±ωa/ω.

(iii) If na = ±ωa/ω and q 6= 0 then from Equation (56), Na = 0 and the integral curves of na are material
curves.
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[3] M. Tsamparlis, D.P. Mason, J. Math. Phys. 31, (1990), 1707.

[4] L.K. Duggal, Acta Applicandae Mathematicae 31, (1993), 225.

[5] J. Carot, A.A. Coley, A. Sintes, Gen. Rel. Grav. 28, (1996), 311.

[6] Ya. B. Zeldovich, Mon. Not. R. Astr. Soc. 192, (1980), 663.

[7] T.W.S. Kibble, J. Phys. A9, (1976), 1387.
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