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Abstract

The convolution, or folding, theorem related to Fourier transforms is applied to the evaluation of
interaction integrals of certain extended bodies for the specific purpose of nuclear applications The
integrals give analytical results for a class of functions when chosen from among uniform sharp and
leptodermous spheres, delta-points, Yukawa, and Coulomb shapes. Such shapes are convenient to use as
models for source density and point-point interaction.

1. Introduction

The main purpose of this work is to demonstrate a property of the so-called convolution/folding operation
as a method to evaluate interaction integrals in physics. Many problems in physics involve the construction
of the expression for the interaction between two extended charge (not necessarily electrical), or rather source
distributions which generate potentials as per their functional forms and related two-body/point interactions
(see, e.g., [1]). We shall apply these results to obtain a “realistic-looking” surface-interaction potential for
two nuclei: a nucleon-nucleus potential [2, 3], and the potential energy contribution to the total energy of a
nucleus in a further publication. We exhibit here the forms of the results in a series of figures (Figures 2-4),
using some representetive parameters appropriate to two medium-sized nuclei, shown in Table.

The convolution/folding operation is defined as

(f ∗ g)r ≡ (2π)−3/2

∫∫∫
f(r− r′)g(r′) dυ ′ = (g ∗ f)r (1)

and appears in the study of Fourier and similar transformations. This has the following important and very
useful property that [4]

(F−1(Ff × Fg)k)r = (f ∗ g)r, (2)

where F denotes the Fourier or similar transform operator. The integrals involved in these can easily be
converted to take the same form as the very same folding process:
∗Part of the Ph.D. thesis, “Folding-model Calculation of Nuclear Potential Energy” by Ş. K., unpublished, Boğaziçi Uni-

versity Physics Department, 2003.

91



KEHNEMİ, AKYÜZ

U(r) = (ρ1 ∗ V12 ∗ ρ2)r, (3)

where r is the displacement between the centers of two extended body distributions, ρ1 and ρ2, and V12 is
the two-body or point-point interaction potential responsible for the interaction. As mentioned above, in
this work, we use the form in (2) to evaluate integrals such as (3). Conventionally, however, such problems
have been usually treated by the method of multipole expansion (see, e.g., [4]). And though this method is
certainly not without good purpose-it is an approximation method that has found success in more general
distribtions-it has limitations wheras the distributions and interactions chosen in this work results give exact
results.

2. Interactions and Distributions

We consider contact or point-delta, Yukawa and Coulomb-like potentials as two-body interactions as
illustrative examples. For extended sahapes, on the other hand, we use the density distributions “uniform
hard” and so-called “leptodermous” spheres. The latter are uniform hard spheres “softened” by folding-in
a Yukawa shape which results in a shape quite similar to that of so-called Fermi distribution [4]: f(r) =
1/{1 + exp[(r − c)/a]}. Such a shape has been in wide use as a model for leptodermous nuclear density
distributions (Figure 1). (For similar works related to spherical distributions see, e.g., [5]). The reason
why we have chosen the distributions and interactions in equations (4−9) below is because all the integrals
involved in evaluating (3) by means of (2) result in exact analytical expressions.

Table.

R1= 3.00 fm A1= 40 κ1 = 1.45 fm−1

R2= 4.20 fm A2= 60 κ2 = 1.50 fm−1

C = e2

4πε0
= 1.44 MeV-fm Zi = Ai/2

w/κ = −58.33 MeV-fm κ = 0.8333 fm−1 J = −1519 MeV-fm

∗The parameters used for Figures 2-4 are comparable to those relevant to some medium-size atomic nuclei. Note

that A1,2 and Z1,2 enter only to the normalization of ρ). (All figures are produced through Mathematica r© 4.0)

dashed line : A leptodermous sphere. Vertical line corresponds to R2.
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Figure 1. Two equivalent leptodermous distributions [3]. The best fit between a Yukawa-folded uniform sphere

(solid line) and a “Fermi distribution” (dashed line).

The expressions for the above-mentioned spherically symmetric particle distributions, or density func-
tions, are as follows:
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A- The uniform sphere,

ρR(r) = ρ0ΘR(r) (4)

where,

ΘR(r) = 1 : 0 ≤ r ≤ R;

0 : r > R,

and,

B- The leptodermous sphere,

ρκ(r) = ρ0
κ2

4π
(ΘR ∗ Yκ)r ≡ ρ0Fκ(R, r), (5)

where,

Fκ(R, r) ≡ 1− (1 + κR)e−κR Sκ(r)
κ : r ≤ R

≡ Γ(κR)Yκ(r)
κ

: r ≥ R

Sκ(r) ≡ sinh(κr)
r

,Γ(x) ≡ x coshx− sinhx,

and

Yκ(r) ≡ e−κr/r.

C- Point-delta distribution, to complete the list, to represent a particle,

ρp(r) = δ(r). (6)

One very interesting and useful feature of (5) is that its complete space integral is independent of κ and
equal to that of (4), namely of a uniform sphere: ρ04πR3/3. This is quite advantageous in evaluating the
normalization factors, i.e., ρ0, which, for almost all of the conventional distributions (see, e.g., [6]), can only
be calculated numerically and/or approximately.

The model two-body interactions we consider are:

a- Contact interactions,

VP = Jδ(⇀r), (7)

b- Yukawa-like interactions,

VY =
w

κ
Yκ(r), (8)

c- Coulomb-like interactions,

VC = C
1
r
. (9)

(Here, it is good to remember that the Fourier transform of (9) is usually obtained as the long-range, i.e.,
the limit κ → 0 of the Fourier transform of Yκ(r) (see, e.g., [7]).) We give below results for some model
combinations of these interaction forms.
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3. Details and Results

Using the relation (2) we derive the interaction of a uniform sphere and leptodermous sphere, individually,
in contact with Yukawa and Coulomb-like potentials (Eqns. (7-9)). We then apply relation (3) to two uniform
hard spheres (i.e., Eqn. (4)) and to two leptodermous spheres (i.e., Eqn. (5)), each pair interacting through
on of the two-body interactions described in Eqn.s (9), (8) and (9).

Two uniform hard spheres would result in interaction potentials for pairs of two similar extended distri-
butions, and the point-delta and leptodermous sphere would result in interaction potentials for a particle
and an extended distribution. Furthermore, for two identical distributions, one half of the interaction po-
tential at r = 0 would obviously give the internal potential energy of that distribution. The results of items
1 to 3 above are listed below (and depicted in Figures 2-4, where for comparison curves for uniform and
leptodermous spheres are shown together).

It is, however, important to mention here that the integrations leading to the results below, although
straightforward using residue theorem, are neither trivial nor short –tens of hand written pages. So, in order
to save space we have not included the details of the integrations.

Note that in all the relevant expressions below, R2 ≥ R1 and G(x) ≡ cosh x− x sinhx.

1) Contact interaction of two uniform hard spheres (see also Figure 2a):

(ρR1 ∗ VP ∗ ρR2)r = ρ10Jρ20
4πR3

1
3 : r ≤ R2 −R1

= ρ10Jρ20π[ 1
12r

3 − 1
2 (R2

1 +R2
2)r − (R2

2 − R2
1)2 1

4r

+2
3
(R3

1 +R3
2)] : R2 −R1 ≤ r ≤ R1 + R2;

= 0 : r ≥ R1 +R2

2) Yukawa interaction of two uniform hard spheres (see also Figure 3a):

(ρR1 ∗ VY ∗ ρR2 )r = ρ10
w
κ ρ20

8π2

κ2 { 2
3R

3
1 −

(κR2+1)
κ4 [e−κ(R1+R2)(κR1 + 1)

+e−κ(R2−R1)(κR1 − 1)]Sκ(r)} : r ≤ R2 − R1;

= ρ10
w
κ
ρ20

4π2

κ2 { 2
3
(R3

1 +R3
2) + 1

r
[ 2
κ4 − 1

4
(R2

2 − R2
1)2 − (R2

1+R2
2)

κ2 ]

+[ 1
κ2 − 1

2
(R2

2 + R2
1)]r + r3

12

+ 2
κ4 {(κ2R1R2 cosh κ(R2 − R1)

−G[κ(R2− R1)]}Yκ(r)

−2e−κ(R1+R2)

κ4 (κR1 + 1)(κR2 + 1)Sκ(r)} : R2 − R1 ≤ r ≤ R1 +R2;

= ρ10
w
κ ρ20

16π2

κ6 Yκ(r)Γ(κR1)Γ(κR2) : r ≥ R2 +R1.

3) Coulomb-like interaction of two uniform hard spheres (this well known form constitutes a check on
Yukawa results in the limit: κ → 0) (see also Figure 4a):

94



KEHNEMİ, AKYÜZ

(ρR1 ∗ VC ∗ ρR2 )r = ρ10Cρ20
8π2

3
(R3

1R
2
2 − 1

5
R5

1 −−1
3
R3

1r
2) : r ≤ R2 −R1;

= ρ10Cρ20
4π2

3 [(R3
1R

2
2 +R2

1R
3
2)− 1

5(R5
1 + R5

2)

− 3
8r

(R2
1R

4
2 + R4

1R
2
2) + 2

3r
R3

1R
3
2 + 1

24r
(R6

1 + R6
2)

+3
8 (R2

2 − R2
1)2r − 1

3(R3
1 + R3

2)r2

+1
8 (R2

1 + R2
2)r3 − 1

120r
5] : R2 − R1 ≤ r ≤ R1 +R2;

= ρ10Cρ20R
3
1R

3
2

16π2

9r
: r ≥ R1 + R2;

4) Contact interaction of two leptodermous spheres (see also Figure 2a):

(ρR1 ∗ Vp ∗ ρR2 )r = ρ10Jρ20κ
2
1κ

2
22π{ 2R3

1
3κ2

1κ
2
2
− (κ1R2+1)

κ6
1(κ2

2−κ2
1)
Sκ1 (r)[e−κ1(R2+R1)(κ1R1 + 1)

+e−κ1(R2−R1)(κ1R1 − 1)]− (κ2R2+1)
κ6

2(κ2
1−κ2

2)
Sκ2 (r)[e−κ2(R2+R1)(κ2R1 + 1)

+e−κ2(R2−R1)(κ2R1 − 1)]} : r ≤ R2 − R1,

= ρ10Jρ20κ
2
1κ

2
2π{

2(R3
1+R3

2)

3κ2
1κ

2
2
− (R2

1+R2
2)(κ2

1+κ2
2)

κ4
1κ

4
2r

− (R2
2−R

2
1)2

4κ2
1κ

2
2r

+2(κ2
1+κ2

2)2

κ6
1κ

6
2r
− 2

κ4
1κ

4
2r
− (R2

1+R2
2)r

2κ2
1κ

2
2

+ (κ2
1+κ2

2)r

κ4
1κ

4
2

+ r3

12κ2
1κ

2
2

+ 2
κ6

1(κ2
2−κ2

1)
[Yκ1(r){(R1R2κ

2
1 coshκ1(R2 − R1)

−G[κ1(R2 − R1)]

−e−κ1(R1+R2)(κ1R1 + 1)(κ1R2 + 1)Sκ1 (r)]

+ 2
κ6

2(κ2
1−κ2

2)
[Yκ2(r){(R1R2κ

2
2 coshκ2(R2 − R1)

−G[κ2(R2 − R1)]

−e−κ2(R1+R2)(κ2R1 + 1)(κ2R2 + 1)Sκ2 (r)]} : R2 − R1 ≤ r ≤ R1 +R2

5) Yukawa interaction of two leptodermous spheres (see also Figure 3a):

(ρR1 ∗ Vp ∗ ρR2 )r = ρ10
w
κ ρ20κ

2
1κ

2
28π2

×{ 2R3
1

3κ2κ2
1κ

2
2
− (κR2+1)

κ6(κ2
1−κ2)(κ2

2−κ2)
Sκ(r)

×[e−κ(R2+R1)(κR1 + 1) + e−κ(R2−R1)(κR1 − 1)]

− (κ1R2+1)
κ6

1(κ2−κ2
1)(κ2

2−κ2
1)
Sκ1(r)

×[e−κ1(R2+R1)(κ1R1 + 1) + e−κ1(R2−R1)(κ1R1 − 1)]

− (κ2R2+1)
κ6

1(κ2−κ2
1)(κ2

2−κ2
1)
Sκ2(r)

×[e−κ2(R2+R1)(κ2R1 + 1) + e−κ2(R2−R1)(κ2R1 − 1)]} : r ≤ R2 −R1,
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= ρ10Jρ20κ
2
1κ

2
24π[ Γ(κ1R1)Γ(κ1R2)

κ6
1(κ2

2−κ2
1)

Yκ1 (r) + Γ(κ2R1)Γ(κ2R2)
κ6

2(κ2
1−κ2

2)
Yκ2 (r)] : r ≥ R1 + R2

= ρ10
w
κ
ρ204π2κ2

1κ
2
2{

2(R3
1+R3

2)

3κ2κ2
1κ

2
2

+ r3

12κ2κ2
1κ

2
2
− (R2

1+R2
2)r

2κ2κ2
1κ

2
2

+ (κ2κ2
1+κ2

2κ
2
1+κ2κ2

2)
κ4κ4

1κ
4
2

[r− (R2
1+R2

2)
r ]− (R2

2−R
2
1)2

4κ2κ2
1κ

2
2r

+2(κ2κ2
1+κ2

2κ
2
1+κ2κ2

2)2

κ6κ6
1κ

6
2r

− 2(κ2+κ2
1+κ2

2)

κ4κ4
1κ

4
2r

−2(κR1+1)(κR2+1)e−κ(R1+R2)

κ6(κ2
1−κ2)(κ2

2−κ2)
Sκ(r)

−2(κ1R1+1)(κ1R2+1)e−κ1(R1+R2)

κ6
1(κ2−κ2

1)(κ2
2−κ2

1)
Sκ1 (r)

−2(κ2R1+1)(κ2R2+1)e−κ2(R1+R2)

κ6
2(κ2−κ2

2)(κ2
1−κ2

2)
Sκ2 (r)

+2[κ2R1R2 coshκ(R2−R1)−G[κ(R2−R1)]
κ6(κ2

1−κ2)(κ2
2−κ2)

Yκ(r)

+2[κ2
1R1R2 coshκ1(R2−R1)−G[κ1(R2−R1)]

κ6
1(κ2−κ2

1)(κ2
2−κ2

1)
Yκ1(r)

+2[κ2
2R1R2 coshκ2(R2−R1)−G[κ2(R2−R1)]

κ6
2(κ2−κ2

2)(κ2
1−κ2

2)
Yκ2(r)} : R2 − R1 ≤ r ≤ R1 +R2

= ρ10
w
κ
ρ2016π2κ2

1κ
2
2[ Γ(κR2)Γ(κR1)
κ6(κ2

1−κ2)(κ2
2−κ2)

Yκ(r)

+ Γ(κ1R2)Γ(κ1R1)
κ6

1(κ2−κ2
1)(κ2

2−κ2
1)
Yκ1 (r)

+ Γ(κ2R2)Γ(κ2R1)
κ6

2(κ2−κ2
2)(κ2

1−κ2
2)
Yκ2 (r)] : R1 +R2 ≤ r

6) Coulomb-like interaction of two leptodermous spheres (see also Figure 4a):

(ρR1 ∗ VC ∗ ρR2)r = ρ10Cρ208π2κ2
1κ

2
2

×{R
3
1R

2
2−

1
5R

5
1

3κ2
1κ

2
2
− 2R3

1(κ2
1+κ2

2)

3κ4
1κ

4
2
− R3

1r
2

9κ2
1κ

2
2

+ (κ1R2+1)
κ8

1(κ2
2−κ2

1)
[(κ1R1 + 1)e−κ1(R1+R2) + (κ1R1 − 1)e−κ1(R2−R1)]Sκ1 (r)

+ (κ2R2+1)
κ8

2(κ2
1−κ2

2)
[(κ2R1 + 1)e−κ2(R1+R2) + (κ2R1 − 1)e−κ2(R2−R1)]Sκ2 (r)} :

r ≤ R2 − R1

= ρ10Cρ204π2κ2
1κ

2
2×

{ 1
κ2

1κ
2
2
[ 1
3 (R3

1R
2
2 + R2

1R
3
2)− 1

15 (R5
1 + R5

2) − κ2
1+κ2

2
κ2

1κ
2
2
{ 2

3(R3
1 + R3

2) + 1
12r

3

−1
2 (R2

1 +R2
2)r − (R2

2−R
2
1)2

4r } − r5

360 + 1
24(R2

1 +R2
2)r3 − 1

9 (R3
1 + R3

2)r2

+1
8 (R2

2 −R2
1)2r + R6

1+R6
2

72r + 2R3
1R

3
2

9r − (R2
1R

4
2+R4

1R
2
2)

8r

+κ4
1+κ4

2+κ2
1κ

2
2

κ4
1κ

4
2

(R
2
1+R2

2
r − r)− κ6

1+κ4
1κ

2
2+κ2

1κ
4
2+κ6

2
κ6

1κ
6
2

2
r ]

+2 (κ1R1+1)(κ1R2+1)e−κ1(R1+R2)

κ8
1(κ2

2−κ2
1)

Sκ1 (r) + 2 (κ2R1+1)(κ2R2+1)e−κ2(R1+R2)

κ8
2(κ2

1−κ2
2)

Sκ2 (r)
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−2κ
2
1R1R2 coshκ1(R2−R1)−G[κ1(R2−R1)]

κ8
1(κ2

2−κ2
1)

Yκ1 (r)

−2κ
2
2R1R2 coshκ2(R2−R1)−G[κ2(R2−R1)]

κ8
2(κ2

1−κ2
2)

Yκ2 (r)} : R2 − R1 ≤ r ≤ R1 +R2

= ρ10Cρ2016π2κ2
1κ

2
2[ R

3
1R

3
2

9κ2
1κ

2
2r
− Γ(κ1R1)Γ(κ1R2)

κ8
1(κ2

2−κ2
1)

Yκ1 (r)

−Γ(κ2R1)Γ(κ2R2)
κ8

2(κ2
1−κ2

2)
Yκ2(r)] : R1 + R2 ≤ r.

7) Contact potential of a uniform sphere (see also Figure 2b):

(VP ∗ ρR)r = Jρ0 : r ≤ R

= 0 : r ≥ R.
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Figure 2. a) Contact interaction between two extended distributions. Solid line : Two uniform hard spheres; dashed

line : Two leptodermous spheres. The vertical line pairs represent the positions corresponding to R2 – R1 and R2 +

R1. b) Contact potential between an extended distribution and a particle. Solid line : A uniform hard sphere; dashed

line : A leptodermous sphere. Vertical line corresponds to R2.

8) Yukawa potential of a uniform sphere (see also Figure 3b):

(Vκ ∗ ρR)r =
w

κ
ρ0

4πFκ(R, r)
κ2

.
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Figure 3. a) Yukawa interaction between two extended distributions. Solid line: Two uniform hard spheres;
dashed line: Two leptodermous spheres. The vertical line pair represent the positions corresponding to R2 –
R1 and R2 + R1. b) Yukawa potential between a leptodermous sphere and a particle. Solid line: A uniform
hard sphere; dashed line: A leptodermous sphere. Vertical line corresponds to R2.
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9) Coulomb potential of a uniform sphere (these well-known results −obtained here by the same method
as the others− are included for completeness, comparison, and a check.)

(Figure 4b):

(VC ∗ ρR)r = Cρ0
4πR2

3
1
2
(3− r2

R2 ) : r ≤ R

= Cρ0
4πR3

3r : r ≥ R.
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Figure 4. a) Coulomb interaction between two extended distributions. Solid line : Two uniform hard spheres; dashed

line: Two leptodermous spheres. The vertical line pairs represent the positions corresponding to R2 – R1 and R2 +

R1. b) Coulomb potential between a leptodermous sphere and a particle. Solid line : A uniform hard sphere.

10) Contact potential of a leptodermous sphere (Figure 2b):

(VP ∗ ρκ1)r = Jρ10Fκ1(R1, r).

11) Yukawa potential of a leptodermous sphere (Figure 3b):

(VY ∗ ρκ1)r =
w

κ
ρ10

4π
(κ2 − κ2

1)
[
Fκ1(R1, r)

κ2
1

− Fκ(R2, r)
κ2

].

12) Coulomb potential of a leptodermous sphere (Figure 4b):

(VC ∗ ρκ1)r = Cρ104π[R
2
1

2 −
r2

6 −
Fκ1 (R1,r)

κ2
1

] : r < R1

= Cρ104π[R
3
1

3r −
Fκ1(R1,r)

κ2
1

] : r ≥ R1.
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