
Turk J Phys
27 (2003) , 121 – 131.
c© TÜBİTAK
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Abstract

Accuracy in complex dielectric permittivity calculations in binary dielectric mixtures in two-dimensions
are reported by taking into account the shape of the inclusion phase. The dielectric permittivity of the
mixtures were calculated using the finite element method, and the permittivities were estimated by two
different procedures. The results were compared with those of analytical models based on a mean field
approximation and regular arrangement of disks. We have approached the problem emphasizing the
finite-size behavior in which regular polygons with n sides were assumed to mimic the disk inclusion
phase. It was found that at low concentrations, < 30%, decagon-approximated circles (n = 10) cause
an error of < 0.1% in the effective medium quantities compared with results obtained using analytical
models.
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1. Introduction

To predict and to better design (tailor) composite materials for electrical applications, such as composite
insulators [1, 2] and elecromagetic shields [3], etc., have been a challenge of both theoretical and practical
importance [4]. In the early days of electromagnetics theory, effective electrical properties, i.e., conductivity
σ and permittivity ε of systems composed of two phases, have been calculated analytically by effective
mean field approaches [5, 6, 7, 8, 9] (ema) and regular arrangement of disks [10, 11] (rad). Nowadays,
computer simulations have become an alternative way of doing science closer to experiment than theory but
complementory to both. Moreover, with the help of new computation techniques to solve partial differential
equations, numerical simulations of more complex systems, such as systems with several components with
arbitrary shapes, can be considered and desired properties can be calculated. However, like experiments,
computer simulations produce data rather than theories and should be judged on the quality of those data.
Accodingly, the reliability of the applied technique and accuracy of the obtained results must be checked
and verified either by analytical solutions or by performing the same calculations with a different technique
or tool [12]. The latter procedure can be, for example, applications of the finite element and the finite
difference methods to the same problem. To verify a numerical result with an analytical solution is not,
on the other hand, an easy task in most cases, in which there are no analytic solutions or there are too
many approximations in the analytical solutions. Moreover, when the numerical results are taken into
∗Financed by the ELIS program of the Swedish Foundation for Scientific Research (SSF).
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consideration, there are plausible sources of errors which originate from the model. The numerical errors
can be eliminated by changing the order of the applied model or the discretization method used.

In this paper, the accuracy in the numerical calculations of effective electrical properties of a binary
dielectric mixture is reported by taking into account finite-size scaling. A field simulation software, based
on the finite element method (fem), has been used, and the effective properties has been calculated by two
different ways. The results were compared with those of two anaytical solutions, which are based on ema

and rad.

2. Electrical Properties of Binary Mixtures

Electrical properties of materials can be described by the dependence of either the complex dielectric
permittivity ε(ω) or complex (ac) conductivity ς(ω) on the frequency ω and on the external variables such
as temperature, pressure, humidity, etc. Both of these quantities can be expressed in terms of one and other.
Therefore, a general complex dielectric response of materials can be describe with the complex dielectric
susceptibility χ(ω) as

ε(ω) = ε+ χ′(ω) − ıχ′′(ω) +
σ

ıε0ω
(1)

ς(ω) = ıε0ωε(ω), (2)

where ı =
√
−1 and ε0 is the dielectric permittivity of free space, 1/36π nF/m. ε and σ are the dielectric

constant at optical frequencies and ohmic conductivity of the material, respectively. Moreover, the simplest
form of dielectric relaxation χ(ω) is oberved for dilute solutions (mixtures) and ferroelectric materials [13],
and is expressed in Debye form [14] as

χ(ω) = χ(0)[1 + ıωτ ]−1, (3)

where χ(0) and τ are the dielectric strength and relaxation time (inverse relaxation rate) of the polarization.
At frequencies much higher and lower than the inverse relaxation time τ−1, there are only three material
quantities that explicate electrical properties, ε, χ(0) and σ:

ε(ω) = ε+
σ

ıε0ω
ς(ω) = σ + ıε0εω

for ω � τ−1

ε(ω) = ε+ χ(0) +
σ

ıε0ω
ς(ω) = σ + ıε0[ε+ χ(0)]ω

for ω � τ−1.

When the analytical solutions of binary mixtures in two-dimensions are considered, the ema approach
supposes two concentric dielectric disks with dielectric permittivities ε1 and ε2 such that they are embedded
inside the effective medium with dielectric permittivity ε as presented in Fig. 1a. In the two-dimensional rad

approach, on the other hand, the composite medium is assumed to be composed of monodispersed inclusions
(disks) at square lattice sides, as illustrated in Fig. 1b. The effective complex dielectric permittivities
calculated by ema [5, 6, 9] and rad [10, 11], yield

εEMA =
ε2 ε1 + ε1

2 + ε2 ε1 q − ε1
2 q

ε2 + ε1 − ε2 q + ε1 q
(4)
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Figure 1. (a) ema and (b) rad approaches to dielectric mixtures.

εRASS = ε1
π − πΛq + 4Λ2q(A +B)
π + πΛq + 4Λ2q(A +B)

Λ =
ε1 − ε2

ε1 + ε2
, (5)

where, q is the concentration of the inclusion phases, which are denoted by subscript (2), (0 ≤ q ≤ 1). The
parameters A and B are functions of the radius of the inclusion phase, r ≡

√
q/π, and thus can be written

A = 2r3
∞∑
m=1

1
r4 − 16m4

+
∞∑
n=1

∞∑
m=1

[
r − 2m

(r − 2m)2 − 4n2

+
r + 2m

(r + 2m)2 − 4n2
+

r − 2m+ 1
(r − 2m+ 1)2 − (2n− 1)2

+
r + 2m− 1

(r + 2m− 1)2 − (2n − 1)2

]
(6)

B = 2r3
∞∑
m=1

1
r4 − (2m− 1)4

+
∞∑
n=1

∞∑
m=1

[
r − 2m

(r − 2m)2 − (n− 1)2

+
r + 2m

(r + 2m)2 − (n− 1)2

r − 2m+ 1
(r − 2m+ 1)2 − 4n2

+
r + 2m− 1

(r + 2m− 1)2 − 4n2

]
. (7)

Values of A and B converge quickly to a constant value for n = m ≥ 10.

3. Numerical Calculations

Analytical calculations of electromagnetic problems using Maxwell’s equations are limited to geometri-
cal constraints. For some simple geometries with a small number of materials (regions) and symmetries,
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analytical solutions can be found [15, 16, 11, 17, 18]. The analytical solutions are obtained using methods
of images [19, 20], orthogonal functions (Green functions) [21] and complex variable techniques (conformal
mapping) [22, 20, 15]. The conformal mapping can only be applied to two-dimensional problems in which
the third spatial axis is neglected. For more complex geometries and non-homogeneous regions composed
of several materials, numerical solutions of partial differential equations and of integral equations have been
developed [23], e.g. the finite difference method, the finite element method, the method of moments and the
boundary element method.

Numerical solutions of electrostatic problems within a non-conducting medium are based on solving
Poisson’s equation

∇ · (εε0∇φ) = −ρ, (8)

where φ, and ρ denote the electrical potential and the total charge in the considered region, respectively.
Moreover, if the medium is conductive, where no free charges and sources of charges are allowed, then the
solution is given by

∇ · (σ∇φ) = 0. (9)

When the medium is a mixture of these two cases (lossy dielectric), it consists of dielectric and conductive
components. The solution, then, becomes time dependent and is given by a complex electric potential in
the region with the coupling of Eqs. (8) and (9), which is also known as the continuity equation:

∇ · (σ∇φ) +∇ ·
[
∂

∂t
(εε0∇φ)

]
= 0 (10)

or equivalently in Fourier-space with frequency dependent properties,

∇ · {[ıε0ε(ω)ω]∇φ} = 0, (11)

where no free charges are allowed in the region, due to conductivity of the medium (lossy dielectric). Note
that ε(ω) in Eq. (11) is given in Eq. (1).

In this work, we have used a field calculation software, known as ‘Ace’, [24] based on the fem. A square
lattice unit-cell with a hard-disk inclusion was assumed, as shown in Fig. 2. The boundary conditions were
chosen as follows; along line [AB] was the ground potential level, V = 0 V, along line [CD] it was 1 V, and
the lines [AD] and [BC] were the symmetry lines (axes of reflection). The calculations were performed under
steady-state periodic conditions. The region of interest is meshed using an triangular meshing technique
in which we have limited number of triangles to ∼ 8000 elements. The minimum triangle size was selected
using the size of the considered inclusion geometry in the meshing procedure. Moreover, the quadratic shape
function was used to solve in the fem.
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Figure 2. The unit cell of square lattice with corners at ABCD used in the calculations. Dark region is the disk

inclusion with ε2 and σ2 and the lighter region is the matrix media with ε1 and σ1.

Table 1. Composite electric properties obtained from the analytical formulae.

Model q εM εµ σ/ε0 [S/F]

ema 0.1 2.28571429 2.42552966 0.13749080
rad 0.1 2.28586956 2.42602610 0.13752067

ema 0.2 2.61538462 2.95231624 0.16802403
rad 0.2 2.61743641 2.95942150 0.16845390

ema 0.3 3.00000000 3.62134985 0.20703632
rad 0.3 3.01008959 3.66005320 0.20939659

The complex permittivity of a heterogeneous medium can be calculated in several ways, e.g., (i) by using
the total current density j and the phase difference θ [25, 26, 27, 28], (ii) Gauss’ law and losses [26, 29, 30]
and lastly (iii) by using the average values of dielectric displacement 〈D〉 and electric field 〈E〉 [26, 31]. We
have used the first two ways (i & ii) to calculate the complex dielectric permittivities ε(ω) of the structures
considered. The phase parameters ε and σ were frequency and voltage independent. The values of ε and
σ are chosen such that the interfacial polarization observed has a relaxation time τ around 1 s. This is
achieved when the matrix phase has ε1 ≡ ε1 = 2 and σ1 = 1 pS/m, and the inclusion phase has ε2 ≡ ε2 = 10
and σ2 = 100 pS/m. The normalized conductivity values σ/ε0 are σ1/ε0 = 0.113 S/F and σ2/ε0 = 11.3 S/F,
respectively. We have focused on two frequencies, 2π µHz and 2π MHz which are, respectively, denoted via
subscripts µ and M for the appropriate dielectric permittivity values. At these frequencies, the influence
of interfacial polarization was negligible, | logω| � τ−1, and the composite medium can be expressed with
three parameters εM, εµ [≡ εM + χ(0)] and σ/ε0.

4. Results and Discussion

The concentration dependence of the electrical properties calculated using the analytical formulae of
Eqs. (4) and (5) differ at some concentration level. This is ilustrated in Fig. 3 by the ratio of resulting effective
parameters. For concentration values higher than 30% (q > 0.3), the effective medium quantities obtained
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from the two analytical approaches start to differ. The behavior of ratios for the dielectric permittivity at
low frequencies, εµ and the conductivity σ were similar and the change with respect to concentration, q, was
steeper compared to the ratio of the dielectric permittivity at low frequencies, εM. The difference between the
models is due to the approximations and simplifications considered in the geometries. In rad assumptions
there are neighboring inclusions whose charge distributions (polarization) influence the polarization of the
individual inclusions. However, in ema the polarization of the inclusion is only due to the interface between
the inclusion and the matrix phases. Accordingly, in the numerical simulations, three concentration levels
were selected, q = {0.1, 0.2, 0.3}, and the εM-, εµ- and σ/ε0-values were calculated. The same quantities
obtained from ema and rad are listed in Table 1 for comparison. The differences in the εM and σ/ε0 values
calculated from the analytical models are in the fourth, third and second number after the decimal point for
q = 0.1, 0.2, 0.3, respectively. However, the change in εµ is larger for both models at the same concentrations.

Figure 3. Comparison of the two analytical models. The solid (——), dashed (- - -) and dotted (· · · · · ·) lines repre-

sent the ratios of the high frequency dielectric permittivity, εM, low frequency permittivity, εµ, and the conductivity,

σ/ε0, values, respectively. The region above the thin chain (– · –) line marks the 1%.

In the simulations, we have assumed that the inclusion phase was a two-dimensional object, a regular
polygon with n sides, as displayed in Fig. 4. The polygons were generated using a circle with radius r and
a contraint on the area of the polygons, q. Then, the radius r as a function of n and q is expressed as

rn =

√
q

n sin(π/n) cos(π/n)
. (12)

The denominator inside the square root approaches π as n → ∞. The size of radius was also used for
the meshing procedure of the computation domain where rn/15 was the size of the minimum triangle.
Furthermore, this approach leads to the finite-size scaling considerations [32, 33] in which as n → ∞, the
inclusion phase is a perfect disk. As mentioned previously, two different methods were used to calculate the
electrical quantities of the binary mixture, and Table 2 presents the results. The first remark was that the
difference between the obtained εµ-values using two different approaches. The discripancy between εa

µ and
εb
µ increased as the concentration level q was increased. Moreover, when the values were compared to those

of Table 1, except εb
µ, the other calculated quantities had good agreement with the analytical models.
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Table 2. Electrical parameters calculated by the fem.

n εa
M εa

µ σ/εa
0 [S/F] εb

M εb
µ σ/εb

0 [S/F]

q = 0.1

3 2.31830984 2.55431772 0.14540117 2.31831000 2.57482200 0.14462477
4 2.29814032 2.46885006 0.14011433 2.29814046 2.48120081 0.13990578
5 2.29154397 2.44497599 0.13866220 2.29154405 2.45548560 0.13852250
6 2.28903383 2.43636313 0.13814092 2.28903405 2.44625458 0.13804715
7 2.28780142 2.43222046 0.13789067 2.28780167 2.44182314 0.13782876
8 2.28712945 2.43000429 0.13775702 2.28712965 2.43945636 0.13769620
9 2.28672438 2.42867095 0.13767662 2.28672448 2.43803276 0.13762992

10 2.28646432 2.42782513 0.13762567 2.28646448 2.43713033 0.13759796
11 2.28629434 2.42727218 0.13759236 2.28629442 2.43654060 0.13756319
12 2.28617467 2.42688644 0.13756913 2.28617471 2.43612935 0.13754747
14 2.28602947 2.42641794 0.13754093 2.28602973 2.43562974 0.13752268
16 2.28594550 2.42615013 0.13752482 2.28594567 2.43534447 0.13750994
18 2.28589649 2.42599233 0.13751533 2.28589650 2.43517637 0.13750239
99 2.28577330 2.42560592 0.13749210 2.28577345 2.43476492 0.13748560
∞ 2.28576594 2.42558544 0.13749087 2.28576605 2.43474329 0.13747696

q = 0.2

3 2.69416747 3.30221747 0.18974833 2.69416760 3.36013939 0.18911785
4 2.64801022 3.07703286 0.17563592 2.64801032 3.11023106 0.17541128
5 2.62892034 3.00133543 0.17099827 2.62892033 3.02810579 0.17088012
6 2.62304978 2.97945868 0.16966607 2.62304982 3.00451441 0.16958761
7 2.62025295 2.96934543 0.16905189 2.62025298 2.99363860 0.16899605
8 2.61869852 2.96379171 0.16871499 2.61869871 2.98767247 0.16866931
9 2.61776224 2.96046863 0.16851354 2.61776238 2.98410506 0.16847596

10 2.61716591 2.95837257 0.16838656 2.61716598 2.98185662 0.16836172
11 2.61677916 2.95701332 0.16830424 2.61677923 2.98039874 0.16827771
12 2.61650596 2.95606556 0.16824686 2.61650611 2.97938287 0.16822349
14 2.61616711 2.95488967 0.16817569 2.61616735 2.97812228 0.16815940
16 2.61598326 2.95424269 0.16813652 2.61598338 2.97742871 0.16812236
99 2.61560667 2.95293358 0.16805731 2.61560681 2.97602608 0.16806089
∞ 2.61561521 2.95297927 0.16806011 2.61561540 2.97607565 0.16805491

q = 0.3

3 3.15432863 4.44992747 0.25956453 3.15432877 4.59647254 0.25812644
4 3.07199643 3.93508366 0.22640982 3.07199661 4.00935583 0.22583378
5 3.02527912 3.72286805 0.21324951 3.02527918 3.77630766 0.21302790
6 3.01422774 3.67689028 0.21042426 3.01422781 3.72627694 0.21031765
7 3.00968689 3.65880191 0.20931774 3.00968704 3.70668244 0.20923851
8 3.00700955 3.64824288 0.20867221 3.00700972 3.69525097 0.20859681
9 3.00525073 3.64134674 0.20825088 3.00525070 3.68779013 0.20820236

10 3.00420698 3.63728448 0.20800287 3.00420720 3.68339788 0.20795785
11 3.00352151 3.63462285 0.20784042 3.00352166 3.68052130 0.20781141
12 3.00303949 3.63276735 0.20772723 3.00303968 3.67851699 0.20769857
14 3.00245464 3.63050408 0.20758916 3.00245485 3.67607184 0.20756988
16 3.00211061 3.62921448 0.20751059 3.00211061 3.67468077 0.20749301
99 3.00143716 3.62665177 0.20735438 3.00143741 3.67191430 0.20734844
∞ 3.00147224 3.62677466 0.20736184 3.00147232 3.67204654 0.20735887

a Calculated from the current and phase shift between the applied voltage and current.
b Calculated using Gauss’ law and the total losses in the medium.
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Figure 4. Finite-size scaling of the inclusion shapes (polygons).

The obtained quantities, εM-, εµ- and σ/ε0, can be described by a trivial relation, which considers the
finite-size behavior:

f(n, q)− λ ≈ a1(n− 2)α1(q) + a2(n− 2)α2(q), (13)

where λ = f(∞, q). We have also scaled the above equation with n−2 since the calculations were performed
in two-dimensions. The λ-values are presented in Table 2 as n→ ∞, except εb

µ all others were close to the
data in Table 1. In Fig. 5, an example of the finite-size behavior is shown. A critical number of sides, nc, is
defined, such that over this value, n > nc, the effective properties of medium with regular polygons as inc-

Figure 5. Normalized dependence of incrimental high frequency dielectric permittivity, |εM − λ|/λ on number of

regular polygon sides, n. The symbols open (©) and filled (•) indicate the solutions obtained using the current

density and phase shift between the applied voltage and current and using Gauss’ law and the total losses in the

medium, respectively. The solid lines (——) represents the fitted curves. nc is the critical side number for regular

polygons.
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lusions are approximately similar to those of a medium with disk shape inclusions. The analysis showed
that nc is approximately 15 regardless the concentration levels considered, q ≤ 0.3, and the error in the
calculations is < 0.01% for nc > 15, as displayed in Fig. 5. In fact, even a decagon (n = 10) can imitate a
disk in which the error in the calculated electrical quantities is less than < 0.1%. Furthermore, Eq. (13) is
divided in two:

f(n, q) − λ ∝
{

(n− 2)α1(q) n < 15
(n− 2)α2(q) n > 15

(14)

In Table 3, the parameters of this behavior, Eq. (13), as computed from a curve-fitting procedure are
presented. All calculated quantities had similar behavior as in the Fig. 5. It was clear to us that the
exponents were concentration independent, α 6= F (q). Moreover, although α1 was constant for all considered
quantities, α2 was dependent on quantities. Finally, there was no trivial relation between concentration and
obtained a values.

Table 3. Finite-size behavior modeling parameters.

q log aa
1 αa

1 logaa
2 αa

2 log ab
1 αb

1 logab
2 αb

2

εM 0.1 -1.500 -0.215 -4.174 -0.017 -1.500 -0.215 -4.172 -0.017
εµ 0.1 -0.930 -0.223 -3.530 -0.022 -0.895 -0.224 -3.487 -0.023
σ/ε0 0.1 -2.145 -0.224 -5.077 -0.010 -2.178 -0.230 -5.014 -0.003

εM 0.2 -1.104 -0.220 -3.994 -0.015 -1.104 -0.220 -3.990 -0.015
εµ 0.2 -0.492 -0.230 -3.240 -0.022 -0.455 -0.231 -3.195 -0.022
σ/ε0 0.2 -2.202 -0.230 -5.253 -0.008 -2.210 -0.233 -5.330 -0.005

εM 0.3 -0.806 -0.227 -3.724 -0.015 -0.806 -0.227 -3.722 -0.015
εµ 0.3 -0.127 -0.241 -2.970 -0.021 -0.083 -0.242 -2.926 -0.021
σ/ε0 0.3 -1.829 -0.242 -4.951 -0.011 -1.840 -0.243 -4.993 -0.009

a Obtained for values calculated by using the current and phase shift between the applied voltage and current.
b Obtained for values calculated by using Gauss’ law and the total losses in the medium.

5. Conclusions

Calculations of effective electrical properties of binary dielectric mixtures were used to evaluate number
of sides of a regular polygon in order the considered polygon to imitate a disk in computer calculations. We
assumed a meduim with inclusions as regular polygons with n sides, and calculated the electrical quantities,
i.e., dielectric permittivity and ohmic conductivity by using the fem, which were later compared to those
of analytical formulae. In the simulations the concentration of the inclusion phase was constant and the
shape of the inclusion was assumed to be regular polygons with n sides. The size of the polygon was used
to control the fem discretization of the computational domain. The analytical models were based on ema

and rad, and two different procedures were used to estimate the effective properties. It was found that
the procedure based on Gauss’ law and the total losses in the medium was not that succesfull as the other
one based on the current and phase shift between the applied voltage and current. In order to find the
polygon to mimic a disk, the finite-size scaling behavior was introduced by considering the number of sides
n in the regular polygons; in reality, a regular polygon with n sides becomes a disk as n → ∞. It was
found that for n > 15, there was no significant change in the effective electrical quantities of mixture for
low concentrations, q ≤ 0.3. Consequently, when the effective quantities of mixture with an regular decagon
inclusion was compared with those obtained from the analytical formulae for a similar mixture with a disk
inclusion, the percentage error between quantities yield less than 0.1%.

129



TUNCER

Acknowledgments

Suggestions of Dr. Steven Boggs is acknowledged. Dr. Emre Tuncer is thanked for his fruitful comments.

References

[1] E. Tuncer, Dielectric properties of composite structures and filled polymeric composite materials, Licenciate
thesis–Tech. rep. 338 L, Department of Electric Power Eng., Chalmers University of Technology, Gothenburg,
Sweden, 2000.

[2] E. Tuncer, Dielectric relaxation in dielectric mixtures, PhD thesis, Chalmers University of Technology, Gothen-
burg, Sweden, 2001.

[3] A. Priou, editor, Progress in Electromagnetics Research, Dielectric Properties of Heterogeneous Materials,
Elsevier, New York, 1992.

[4] A. Sihvola, Electromagnetic mixing formulas and applications, volume 47 of IEE Electromagnetic Waves Series,
The Institute of Electrical Engineers, London, 1999.

[5] J. C. M. Garnett, Philosphical Transactions of Royal Society of London A 203, (1904), 385.

[6] O. Wiener, Der Abhandlungen der Mathematisch-Physischen Klasse der Königl. Sachsischen Gesellschaft der
Wissenschaften 32, (1912), 509.

[7] K. W. Wagner, Archiv für Electrotechnik II, (1914), 371.

[8] R. Sillars, Journal of Institution of Electrical Engineers 80, (1937), 378.

[9] P. A. M. Steeman and F. H. J. Maurer, Colloid & Polymer Science 268, (1990), 315.

[10] L. Rayleigh, Philosophical Magazine 34, (1892), 481.

[11] Y. P. Emets, Journal of Experimental and Theoretical Physics 87, (1998), 612.

[12] A. Franklin, Physics in Perspective 1, (1999), 35.

[13] A. K. Jonscher, Dielectric Relaxation in Solids, London: Chelsea Dielectric, London, 1983.

[14] P. Debye, Polar Molecules, Dover Publications, New York, 1945.

[15] E. Weber, Electromagnetic Theory: Static Fields and Their Mappings, Dover Publications Inc., New York,
1965.

[16] Y. Emets and Y. P. Onofrichuk, IEEE Transactions on Dielectrics and Electrical Insulation 3, 87 (1996).

[17] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., Toronto, Canada, second edition, 1975.
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