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Abstract

Nuclear matrix elements (MGT ) for two-neutrino double beta transitions of selected nuclei were
calculated via a QRPA approach by considering the charge-exchange spin-spin interactions in the particle-
hole channel among nucleons. Calculations were performed for both spherical and deformed cases of
nuclei. As a result of these calculations, it has been seen that, although the value of the nuclear matrix
elements in deformation case are 2-4 times smaller when compared with that of the spherical case, it is
still 2-8 times greater than the experimental values.
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1. Introduction

Both particle and nuclear physicists have shown much interest in the double beta decay problem and in
recent years this interest has been increasing intensely. Since the double beta decay 2β is a second order weak
semi-leptonic process, its matrix element is proportional to the fourth power of the interaction constant for
nucleons with electron-neutrino field (Fermi coupling constant) G4

F [1-5], hence its probability is very small.
The double beta decay can proceed in several ways. One of them is the two-neutrino double beta decay

2β2ν

(A;Z)→ (A;Z + 2) + 2e− + 2ν̄e,

and another is the neutrinoless double beta decay (2β0ν)

(A;Z)→ (A;Z + 2) + 2e−.

The most apparent difference between neutrinoless and two-neutrino modes of double beta decay is their
emphasis to different physical points. For example, the former decay mode gives information about more
fundamental properties such as the conservation of lepton charge, effective Majarona mass of the neutrino,
and the contribution of right-handed currents to the weak interactions. On the other hand, the latter decay
mode is used to test various nuclear models since it does not depend on the structure of the neutrino.

Recently there have been some intense theoretical investigations concerning 2β2ν decay. The source of
this intensity is due to the consideration of the attractive charge-exchange interaction among nucleons in
particle-particle channel. When the interaction studied here was taken into account, it encountered some
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problems within the QRPA approach. One of them is the sensitivity of the nuclear matrix elements (NME)
to the attractive charge-exchange spin-spin interaction constant. The second problem is the situation in
which at some critical value of this interaction constant the NME approach zero (collapse of the QRPA
solution) [6-11]. It is possible to explain this phenomena from the following physical point of view: three
interactions, i.e. the attractive interaction in the particle-particle channel, the interaction in the particle-hole
channel and pairing interaction, can cancel out each other at some critical value of the attractive interaction
constant. In this case, the system behaves as if it is a one-particle system. As it is known, in a one-particle
system the value of NME is zero. Some attempts have been done to overcome the above drawbacks [12-24].

In this work, the dependence of the NME on deformation of nuclei is investigated by using the QRPA
approximation and considering the charge-exchange spin-spin interaction among nucleons in the particle-hole
channel.

2. Probability of β2ν Decay

For a two neutrino 0+ →0+ decay, if Fermi transitions are neglected, 2β2ν decay probability is given [1-2]
by

ω2ν = ln 2
T1/2

= g4
AG

4

96π7

w−me∫
me

F (z, ε1)
∣∣∣~k1

∣∣∣ε1dε1 ·
w−εe∫
me

F (z, ε2)
∣∣∣~k2

∣∣∣ε2dε2

w−εe−ε2∫
me

ν2(w − ε1 − ε2)2dν
[
K2(ε1, ν) +K2(ε2, ν) + K(ε1, ν) ·K(ε2, ν)

] (1)

with

K(ε, ν) =
∑
n

(w + 2ωn)MGT (ωn)
(w + ωn − ε− ν)(ωn + ε+ ν)

MGT (ωn) = 〈Ψf (A, Z)|~στ−|n〉〈n|~στ−|Ψi(A, Z − 2)〉,

where F (z, ε) is the Fermi function which depends on the nuclear charge and two electron energies ε1 ,ε2

with momenta
∣∣∣~k1

∣∣∣ and
∣∣∣~k2

∣∣∣, Ψi(Ψf ) and |n〉 are ground state wave functions of mother (daughter) nuclei

and 1+ excited states for intermediate nuclei, ν(ωn) is the energy of the neutrino, and w = Ef − Ei is the
energy of 2β2ν decay. Using the approximation that each electron-neutrino pair will have equal energy, i.e.
ε1+ν1=ε2+ν2=ε+ν=w/2 (if ε1=ε2=ε is supposed), the integral in Eq. (1) is reduced to the simple form

ω2ν = f2νM
2
GT ln 2, (2)

where f2ν is a phase integral which depends on charge of daughter nuclei, and is a polynomial of eleven
orders with respect to w, and MGT is called the Gamow-Teller matrix element for 2β2ν decay and described
by

MGT =
∑
n

〈Ψf (A, Z)|~στ−|1+
n 〉〈1+

n |~στ−|Ψi(A, Z − 2)〉
ωn +w/2

. (3)

The values of this phase integral of investigated nucleus are shown in Table 1 [25]. Then the half-life of
the 2β2ν decay can be written as

T−1
1/2 = f2νM

2
GT . (4)
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Table 1. The values of f2ν investigated nucleus (year−1MeV2).

76Ge-76Se 82Se-82Kr 96Zr-96Mo 100Mo-100Ru 128Te-128Xe 130Te-130Xe 150Nd-150Sm
3.45 10−20 1.16 10−18 4.98 10−18 2.43 10−18 2.16 10−22 1.23 10−18 3.03 10−17

3. Nuclear Matrix Elements for β2ν Decay

We take into consideration spin-isospin interaction among nucleons in the form of Ref. [26]:

VGT =
1
2
χβ
∑
i 6=j

~σi~σj~τi~τj . (5)

The charge-exchange part of this interaction is considered as in Ref. [27] as

Vcoll = 2χββ+β (6)

with

β =
∑(

b̄npCnp − bnpC†np
)

(7)

Cnp =
1√
2

∑
ρ

αpραn,−ρ , C†np = 1√
2

∑
ρ
α†n,−ρα

†
pρ , µ = 0, 1

[
Cnp, C

†
n′p′

]
∼= δnn′δpp′ ,

[
Cnp, Cn′p′

]
=
[
C†np, C

†
n′p′

]
= 0

bnp =
√

2σµnpupvn , b̄np =
√

2σµnpvpun , σµnp = 〈n+ |σµ + (−1)µσ−µ|p+〉 ,

where α† (α) are quasiparticle creation (annihilation) operators, u and v are parameters of Bogolyubov
canonic transformation and C†np(Cnp) are two-quasiparticle creation (annihilation) operators.

The model Hamiltonian of the system can be written as

H = Hsqp + Vcoll

with

Hsqp = Σ
n
εnBnn + Σ

p
εpBpp

Bnn = Σ
nρ
α†nραnρ , Bpp = Σ

pρ
α†pραpρ,

where εn (εp) is the energy of the neutron (proton) quasiparticle. In RPA, a collective 1+ state in the
intermediate odd-odd nucleus is considered as a one-phonon charge-exchange excitation described by

|ψi〉 = Q†i |ψ0〉 =

[∑
np

(
rinpC

†
np − sinpCnp

)]
|ψ0〉 ,
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where Q†i is the phonon creation operator, |ψ0〉 is the phonon vacuum which corresponds to the ground
states of the mother even-even nucleus. The two quasiparticle amplitudes rinp and sinp are normalized by

∑
np

[(
rinp
)2 − (sinp)2] = 1 . (8)

Following the conventional procedure of RPA and solving the equation of motion

[Hsqp + Vcoll , Q
†
i ]|ψ0〉 = ωi Q†i |ψ0〉,

we obtain the dispersion relation for the excitation energy of 1+ states in odd-odd nuclei:

[
1 + 2χβ

∑
np

(
b̄2np

Enp−ωi + b2np
Enp+ωi

)]
·
[

1 + 2χβ
∑
np

(
b2np

Enp−ωi + b̄2np
Enp+ωi

)]
−

[
2χβ

∑
np
bnpb̄np

(
1

Enp−ωi + 1
Enp+ωi

)]2

= 0,

(9)

where Enp = En +Ep is the two quasiparticle energy for neutron-proton pairs.
In this study, the ground states of the mother and daughter nuclei will be assumed to be same, i.e.,

(|ψi〉 = |ψf〉 ≡ |ψ0〉). For this approximation the matrix elements of beta transitions given in Eq. (3) takes
the form of

M+
i =

〈
1+
i |~στ+|ψf (A, Z)

〉
=
〈
ψf(A, Z)|~στ−|1+

i

〉
=
∑
n,p

(b̄nprinp − bnpsinp)

M−i =
〈
1+
i |~στ−|ψi(A, Z − 2)

〉
= −

∑
n,p

(bnprinp − b̄npsinp),

where

rinp =
b̄np + L(ωi)bnp
Enp − ωi

1
Z (ωi)

, sinp =
bnp + L(ωi)b̄np
Enp + ωi

1
Z (ωi)

L(ωi) = −
[

2χβ
∑
np

bnpb̄np

(
1

Enp − ωi
+

1
Enp + ωi

)][
1 + 2χβ

∑
np

(
b2np

Enp − ωi
+

b̄2np
Enp + ωi

)]−1

and Z(ωi) can be calculated by using normalization condition (8).

4. Numerical Results and Conclusions

Numerical calculations in this work are based on the single particle Wood-Saxon potential with parametriza-
tions given in Ref. [28] for the spherical case, and in Ref. [29] for the deformation case. Pairing correlation
and deformation parameters (∆n,∆p, and δ) were taken from Ref. [30]. The charge-exchange spin-spin
interaction parameter χβ is determined by comparing the theoretical and experimental values of log(ft) for
beta transitions in deformed odd nuclei, and this value is taken as χβ=21/A. Calculated values of MGT for
the investigated nuclei are shown in Table 2.

The single-quasiparticle (SQP) and QRPA values of the matrix elements for the spherical case is shown in
the second and third columns of Table 2. In the fourth and fifth columns, the results of the same calculation
for the deformation case are presented. In the sixth column, the experimental values for NME are given, and
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these values are found from Eq. (2) by using the f2ν results given in Table 1 and the experimental values
for the half life of 2β2ν decay (t1/2)exp.

Calculations show that the single particle values of NME(MGT ) for the deformed nuclei are also zero
as it is in the spherical case [31]. The SQP values of MGT are almost the same for both the deformation
and spherical cases (see column 2 and 4) indicating the reliability of the single particle basis used in our
calculations.

As it is seen from Table 2, RPA values of MGT in both cases are less than SQP values due to the effective
spin-isospin interactions among nucleons. While this decrease is expressed in percentages in the spherical
case, it is bigger in deformation case. An explanation of this decrease can be given as follows:

Table 2. MGT value for the investigated nuclei.

Transitions
Spherical Case Deformation Case

Experiment Ref.SQP QRPA SQP QRPA
76Ge-76Se 0.561 0.464 0.718 0.172 0.127 [32]
82Se-82Kr 0.465 0.392 0.504 0.132 0.102 [33]
96Zr-96Mo 0.654 0.540 0.656 0.179 0.072 [34]

100Mo-100Ru 1.002 0.785 0.617 0.174 0.246 [35]
128Te-128Xe 0.972 0.727 0.999 0.190 0.025 [36]
130Te-130Xe 0.750 0.587 0.765 0.148 0.017;0.032 [36,37]
150Nd-150Sm 0.774 0.647 0.654 0.173 0.070 [35]

a) although all SQP values of the Gamow-Teller matrix element M−i and M+
i are in phase, some of their

RPA values can be due to phase-out;
b) the charge exchange spin-spin interaction (in the particle-hole channel) decreases significantly the

β− strength function amplitude in the spectroscopic region where β+ transitions are dominant due to its
repulsive character;

c) one can not find some roots for secular Equation (9) in RPA calculations (this can be considered as
the error in calculation and has no physical origin).

Figures 1 and 2 show the energy dispersion of the strength functions S±β for 150Nd isotope in both
spherical and deformation case, respectively. The calculated values of these strength functions are obtained
by the formula [38]
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Figure 1. Energy dispersion of strength function S±β for 150
60 Nd→150

60 Sm (Spherical case).
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Figure 2. Energy dispersion of strength function S±β for 150
60 Nd→150

60 Sm (Deformation case).
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S±β =
1

∆E

∑
∆E,i

∣∣〈1+
i |στ±|0+

〉∣∣2, (∆E = 1MeV ).

Dashed and solid lines in the graphs correspond to the SQP and RPA values of the strength functions,
respectively. From Figures 1 and 2, it is seen that the effect of spin-spin interactions with charge exchange
between nucleons on the strength of function S− is stronger in both the spherical and deformation cases.
The value of the overlap sum will decrease since maximum points of the strength of functions (S− and
S+) become far away from each other by means of these interactions. Therefore, the values of the nuclear
matrix elements are almost 2-4 times less than the corresponding spherical values when the deformation
structure in nuclei is taken into account. The theoretically calculated values of NME studied here are still
2-8 times greater than the corresponding experimental values even though there exists such a decrease. To
compensate for the difference between the theoretical and experimental values, the following situations will
be considered:

• the case in which the ground states of the mother and daughter nuclei have different deformation
structure;

• consideration of spin-spin interactions with charge-exchange among nucleons in particle-particle chan-
nel;

• calculation of the nuclear matrix element through the residue theory if one can not find all roots of
the secular equation in Formula (9).
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