Clebsch-Gordan Equalities that imply the Vanishing of Particular $6 j$ Symbols

Harry A. MAVROMATIS
Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261-SAUDI ARABIA
e-mail: harrym@kfupm.edu.sa

Received 08.01.2003

Abstract

Three Clebsch-Gordan equalities and three individual Clebsh-Gordan relations are obtained by studying the non-accidental vanishing of certain $6 j$ symbols.

Key Words: Clebsch-Gordan coefficients, 6 j symbols, Regge symmetries, angular momenta.

1. Introduction

In two interesting papers [1, 2] involving nuclear shell model calculations, Robinson and Zamick show that certain $6 j$ and $9 j$ symbols vanish and that this vanishing is not accidental. In particular, they point out that

$$
\left\{\begin{array}{lll}
j & j & 2 j-3 \\
j & 3 j-4 & 2 j-1
\end{array}\right\}=0
$$

for both integer and half integer values of j. By using Regge [3] symmetries they also show this particular $6 j$ is isomorphic with other $6 j$ symbols which are therefore also zero.

2. Formalism

In the present note we examine what the result

$$
\left\{\begin{array}{lll}
j & j & 2 j-3 \\
j & 3 j-4 & 2 j-1
\end{array}\right\}=0
$$

implies at the level of Clebsch-Gordan coefficients and show that unexpected equalities, involving these coefficients, arise.

The $6 j$ coefficient

$$
\left\{\begin{array}{lll}
j & j & 2 j-3 \\
j & 3 j-4 & 2 j-1
\end{array}\right\}
$$

is related to the sum over four Clebsch-Gordan coefficients as follows:

$$
\begin{align*}
&\left\{\begin{array}{lll}
j & j & 2 j-3 \\
j & 3 j-4 & 2 j-1
\end{array}\right\}=\frac{1}{\sqrt{(4 j-5)(4 j-1)}} \\
& \times \sum_{m_{a}, m_{b}}\left(j j m_{a} m_{b} \mid 2 j-3 m_{a}+m_{b}\right)\left(2 j-3 j m_{a}+m_{b} M-m a-m_{b} \mid 3 j-4 M\right) \\
& \times \quad\left(j j m_{b} M-m_{a}-m_{b} \mid 2 j-1 M-m_{a}\right)\left(j 2 j-1 m_{a} M-m_{a} \mid 3 j-4 M\right), \tag{1}
\end{align*}
$$

MAVROMATIS

where $-|3 j-4| \leq M \leq 3 j-4$. Since this expression is independent of M, in what follows we choose $M=3 j-4$. To understand why the double sum expression (1) is zero, at first seems a daunting task. For an arbitrary $j,(2 j+1)^{2}$ terms are involved. Thus, for $j=19 / 2$ this amounts to 400 terms.

A careful analysis however shows that, independent of j, only six non-zero terms arise in expression (1). The Clebsch-Gordan coefficient $\left(2 j-3 \quad j \quad m_{a}+m_{b} 3 j-4-m_{a}-m_{b} \mid 3 j-43 j-4\right)$ requires that $m_{a}+m_{b}$ must equal $2 j-3$ or $2 j-4$. Otherwise it is zero. This is only possible if $m_{a}=j, m_{b}=j-3$; $m_{a}=j-1, m_{b}=j-2 ; m_{a}=j-2, m_{b}=j-1 ; m_{a}=j-3, m_{b}=j ;$ or $m_{a}=j, m_{b}=j-4$; $m_{a}=j-1, m_{b}=j-3 ; m_{a}=j-2, m_{b}=j-2 ; m_{a}=j-3, m_{b}=j-1$; and $m_{a}=j-4, m_{b}=j$.

Thus, there are only nine combinations that in principle can contribute to expression (1). Of these, two are accidentally zero, namely $m_{a}=j-2, m_{b}=j-2$, since ($j j j-2 j-2 \mid 2 j-32 j-4$) is zero, and $m_{a}=j-2, m_{b}=j-1$ since $(j j j-1 j-1 \mid 2 j-12 j-2)$ is zero, and the combination $m_{a}=j-4, m_{b}=j$, is zero since $(j j j j \mid 2 j-12 j)$ involves a projection $2 j$ for an angular momentum $2 j-1$. Thus, for any j, only six pairs $\left(m_{a}, m_{b}\right)$ contribute, namely: $(j, j-3),(j, j-4),(j-1, j-2),(j-1, j-3),(j-3, j)$, ($j \frac{1}{-3, j-1)}$.

An analysis of the first two pairs $(j, j-3),(j, j-4)$ in the sum of Eqn. (1) leads to the following expression:

$$
\begin{align*}
& {[(j j j j-3 \mid 2 j-32 j-3)(2 j-3 j 2 j-3 j-1 \mid 3 j-43 j-4)(j j j-3 j-1 \mid 2 j-12 j-4)} \\
+ & (j j j j-4 \mid 2 j-32 j-4)(2 j-3 j 2 j-4 j \mid 3 j-43 j-4)(j j j-4 j \mid 2 j-12 j-4)] \\
\times & (j 2 j-1 j 2 j-4 \mid 3 j-43 j-4) . \tag{2}
\end{align*}
$$

But it can be shown that the product

$$
\begin{align*}
& (j j j j-3 \mid 2 j-32 j-3)(2 j-3 j 2 j-3 j-1 \mid 3 j-43 j-4)(j j j-3 j-1 \mid 2 j-12 j-4) \\
= & -\frac{j}{(4 j-3)} \sqrt{\frac{2 j-3}{6(j-1)}} \\
= & -(j j j j-4 \mid 2 j-32 j-4)(2 j-3 j 2 j-4 j \mid 3 j-43 j-4)(j j j-4 j \mid 2 j-12 j-4) . \tag{3}
\end{align*}
$$

Hence the sum of the contributions of this pair vanishes.
Similarly, the sum of the pairs $(j-1, j-2)$ and $(j-1, j-3)$ vanishes because of the identity

$$
\begin{align*}
& (j j j-1 j-2 \mid 2 j-32 j-3)(2 j-3 j 2 j-3 j-1 \mid 3 j-43 j-4)(j j j-2 j-1 \mid 2 j-12 j-3) \\
& =\frac{\sqrt{j(2 j-3)}}{2(4 j-3)} \\
=- & (j j j-1 j-3 \mid 2 j-32 j-4)(2 j-3 j 2 j-4 j \mid 3 j-43 j-4)(j j j-3 j \mid 2 j-12 j-3) \tag{4}
\end{align*}
$$

and the sum of the pairs $(j-3, j)$ and $(j-3, j-1)$ vanishes because of the identity:

$$
\begin{align*}
& (j j j-3 j \mid 2 j-32 j-3)(2 j-3 j 2 j-3 j-1 \mid 3 j-43 j-4)(j j j j-1 \mid 2 j-12 j-1) \\
& =-\frac{1}{2} \sqrt{\frac{j(2 j-3)}{3(j-1)(4 j-3)}} \\
=- & (j j j-3 j-1 \mid 2 j-32 j-4)(2 j-3 j 2 j-4 j \mid 3 j-43 j-4)(j j j-1 j \mid 2 j-12 j-1) . \tag{5}
\end{align*}
$$

General results, involving relations between single Clebsch-Gordan Coefficients, follow by combining expressions (3), (4), and (5). In particular, combining Eqns. (3) and (5), one obtains

$$
\begin{equation*}
(j j j-3 j-1 \mid 2 j-12 j-4)=-\sqrt{\frac{2 j}{(4 j-3)}}(j j j j-1 \mid 2 j-12 j-1) \tag{6}
\end{equation*}
$$

while combining Eqns. (4) and (5) yields

$$
\begin{equation*}
(j j j-3 j \mid 2 j-12 j-3)=-\sqrt{\frac{3(j-1)}{(4 j-3)}}(j j j j-1 \mid 2 j-12 j-1) \tag{7}
\end{equation*}
$$

Combining the results of Eqns. (6) and (7) one obtains

$$
\begin{equation*}
(j j j-3 j-1 \mid 2 j-12 j-4)=\sqrt{\frac{2 j}{3(j-1)}}(j j j-3 j \mid 2 j-12 j-3) \tag{8}
\end{equation*}
$$

It is of interest to compare these results with those obtained using the symmetries of Regge's elegant expression [4].

Written in terms of $3-j$'s Eqn. (8) becomes:

$$
\left(\begin{array}{llr}
j & j & 2 j-1 \\
j-3 & j-1 & -2 j+4
\end{array}\right)=\sqrt{\frac{2 j}{3(j-1)}}\left(\begin{array}{lrr}
j & j & 2 j-1 \\
j-3 & j & -2 j+3
\end{array}\right)
$$

From Regge's symmetries (aside from the standard relations one obtains if one interchanges rows, or changes the signs of the projections), one obtains additionally

$$
\left(\begin{array}{lll}
j & j & 2 j-1 \\
j-3 & j-1 & -2 j+4
\end{array}\right)=\left(\begin{array}{ccc}
2 j-2 & 2 j-1 & 2 \\
-1 & 0 & 1
\end{array}\right)=\left(\begin{array}{rcc}
j & 2 j-2 & j+1 \\
1-j & 2 j-3 & 2-j
\end{array}\right) .
$$

These involve different angular momenta, whereas Eqns. (6)-(8) involve different projections for the same j 's. The three relations, Eqns. (6)-(8), can be verified by construction, starting with the state $\psi_{2 j}^{2 j}=\phi_{j}^{j} \eta_{j}^{j}$, using lowering operators to obtain the state $\psi_{2 j-1}^{2 j}=\sqrt{\frac{1}{2}}\left(\phi_{j}^{j} \eta_{j-1}^{j}+\phi_{j-1}^{j} \eta_{j}^{j}\right)$, constructing the orthogonal state $\psi_{2 j-1}^{2 j-1}$, and finally using lowering operators to obtain $\psi_{2 j-2}^{2 j-1}, \psi_{2 j-3}^{2 j-1}$, and $\psi_{2 j-4}^{2 j-1}$.

3. Conclusions

It has been shown that three unexpected Clebsch-Gordan equalities, namely Eqns. (3), (4), (5) lead to the non-accidental vanishing of the $6 j$ symbol:

$$
\left\{\begin{array}{lll}
j & j & 2 j-3 \\
j & 3 j-4 & 2 j-1
\end{array}\right\}
$$

that can generally be expressed as a sum of six terms. These three relations are also of some interest by themselves and lead to general relations between individual Clebsch-Gordan coefficients namely Eqns. (6), (7) and (8).

The author would like to thank KFUPM for its support in this research.

References

[1] S. J. Q. Robinson and L. Zamick, Degeneracies when T=0 Two Body Interaction Matrix Elements are Set Equal to Zero and Regge's 6j Symmetry Relations, Physical Review C, 63, (2001), 64316.
[2] S. J. Q. Robinson and L. Zamick, Degeneracies when T=0 Two Body Interaction Matrix Elements are Set Equal to Zero: Talmi's method of calculating coefficients of fractional parentage to states forbidden by the Pauli Principle, Physical Review C, 64, (2001), 57302.
[3] T. Regge, Il Nuovo Cimento, Vol. XI, N. 1, (1959), 298-299.
[4] T. Regge, Il Nuovo Cimento, Vol. X, N. 3, (1959), 296-297.

