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Abstract

Birefringence property of E7 nematic liquid crystal is investigated via voltage dependent transmit-
tance spectrums. Measurements are performed at wavelength 632.8 nm, which is the absorbance peak
of our sample including anthraquinone derivative Disperse Blue 14. Results of dye-doped samples are
compared with those undoped for dark and laser illuminated cases. It was observed that birefringence
is dependent on laser illumination for dye-doped samples, up to a threshold voltage after which it is
constant.
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1. Introduction

Liquid crystals (LC) are highly nonlinear optical materials and are very sensitive to their optical envi-
ronments. Several nonlinear mechanisms have revealed the promising characters of these materials. The
difference in refractive indices, for fields polarized along, and perpendicular to, the director axis brings about
a large birefringence property, ∆n = n|| − n⊥, observable from visible to infrared. This property is an op-
portunity for various potential applications [1]. Director axis reorientation-based effects causing a change
of refractive index and observations of several interesting dynamic and storage wave-mixing effects, have
also been extensively studied so far [1-3]. It is experimentally proved that doping with a small amount of
dye decreases the required threshold of molecular reorientation in dye-doped nematic LC. This phenomenon
has potential application such as holographic data storage. Birefringence property and its dependency on
molecular reorientation play an important role in understanding the molecular reorientation mechanisms.
Moreover, birefringence enhancement is of primary importance for the innovation of different electro-optic
applications [4, 5]. In this study, evaluation of birefringence dependency upon absorbance characteristics of
sample is examined.

2. Method and Experiment

Nematic LC are rod-like molecules and they exhibit orientated order (on average) along a common
direction known as director n̂. If the polarization axis of the laser is tilted 45◦ with respect to the director
axis of the LC molecules, polarized laser light propagating along the LC experiences a phase difference δ
between the ordinary and extraordinary components of the propagating light. The fundamental principle of
birefringence measurement is to measure this phase difference δ and an accurate way of determining δ is to
measure the I⊥ / I|| ratio, where I⊥ and I|| are the filtered intensity values of perpendicular and parallel
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polarized laser beams, respectively. Once this ratio is determined, the following equations are employed for
the evaluation of δ [6]:

|δ| = Nπ + 2 tan−1

√
I⊥
I||
, N = 0, 2, 4, . . . . (1a)

|δ| = (N + 1)π − 2 tan−1

√
I⊥
I||
, N = 1, 3, 5, . . . . (1b)

N is determined from the relationship between the number of peaks in I⊥, I|| and applied voltage, V and
birefringence ∆n is determined according to the following equation by using the δ values that are obtained
from Eq. (1a), (1b):

δ =
2πd∆n
λ

. (2)

Here, d is the thickness of the cell and λ is the wavelength of the probe laser. The sample is rotated 45◦

in plane. An analyzer is placed in front of the detector so that vertical and parallel transmissions, which
are used in the calculation of birefringence, are filtered. Details of the optical configuration is depicted in
Figure 1. An auxiliary He-Ne laser is used as a pumping source to observe the absorbance based birefringence
modulation. Polarisations of the lasers are perpendicular to the plane of incidence and power of the pumping
laser is around 40 mW, while the probe power is ∼1 mW. The angle between the probe laser and pumping
laser is arranged to be ∼1◦.
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Figure 1. Optical configuration of birefringence measurement. P: Polarizer; A: Analyzer; n̂: Director; λ: wavelength

of the incident laser beams.

The nematic host E7 was supplied from Merck and the doping dye, Disperse Blue 14, was provided by
Radiant Color. Dye was added to E7 in 1% w/w ratio for the preparation of the sample. Chemical formula
of the dye and spectroscopic information of the dye-doped sample is given in Figure 2. It can be seen that
the absorbance takes place at the wavelength of a He-Ne laser at around 632.8 nm. The measurement cell
was made up of two glass slides separated by Mylar sheets of appropriate thickness. Before constructing the
cell, glass substrates were spin coated with Polyvinyl alcohol (PVA) at 2000 rpm and were cured at 50 ◦C
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for ∼2 hours. The coating was deposited to a thickness of ∼100 nm, then subjected to a surface treatment
of unidirectional rubbing with velvet in order to develop conditions for molecular orientation. Spacing of the
cells is measured by a discrete Fourier transform technique described in [7] prior to the filling process. Three
cells are produced, two of which are 5 µm thick and are used to characterise the birefringence dependence
on voltage, respectively for doped and undoped cases. The other cell is 100 µm in thickness and it is used
for the measurement of birefringence dispersion in the visible region. Both cells are planar with 2 degree
rubbing tilt on their PVA coating and are filled by capillary action with the sample mixed in water bath at
80 ◦C.
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Figure 2. Transmittance spectrum of dye-doped liquid crystal sample in visible spectral range, and the chemical

formula of the doping dye (shown in the inset).

3. Results and Discussion

Birefringence dispersion of the undoped sample was performed by Fringe counting technique [8] from the
transmittance spectrum given in Figure 3a and it is fitted to Cauchy’s formula of the form
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Figure 3. (a) Transmittance spectra of nematic LC E7 in visible region for d = 100µm cell. (b) Wavelength

dependency of birefringence at T = 25◦C by Fringe counting technique (open circle), and fitted data using Eq. (3)

(solid line) and Eq. (4) (dotted line).
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∆n(λ) = A+ (B/λ2) + (C/λ4). (3)

Here A,B,and Care constants that are characteristics of the film [9] and are found to have the following
values: A = 0.21437, B = −6.6932× 103nm2 and C = 2.5906× 109nm4. Equation (3) is plotted in Figure
3b and is shown as the solid line. ∆n can also be described by an equation derived by Wu [4] as

∆n = G
λ2(λ∗)2

λ2 − (λ∗)2
(4)

and is also shown on Figure 3b for comparison. Here, λ∗ is the mean resonance wavelength and G is a
constant and have been found with the values G = 4.63× 10−6nm2, λ∗ = 205.4nm for E7 LC. The values
are consistent with those given in [4] (G = 3.06× 10−6nm2, λ∗ = 250nm). In Figure 3b, ∆n corresponds
to about 0.219, which is literature value associated with 632.8 nm He-Ne lasers used to investigated LC
material [6]. Birefringence as a function of voltage is explored for undoped and dye-doped samples under
dark and illuminated conditions. Figure 4 shows this dependency in such a way that ∆n value has not
been changed by laser pumping in the undoped sample (see Figure 4a), whereas there exist ∼4% gain in
birefringence with laser illumination in the vicinity of threshold voltage for the dye-doped sample (see Figure
4b). Above the threshold, the tendency is the same for all cases, as it is expected by the strength of voltage
aided reorientation order. Overall expanded uncertainty is 0.5% in birefringence measurements and it is
calculated according to GUM [10].
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Figure 4. Voltage dependency of birefringence; for d = 5µm cells, with f = 1 kHz sine waves, λ = 632.8 nm and

T = 25◦C (a) for undoped sample, (b) for dye-doped sample.

Reorientation mechanism, including Anthraquinone derivative dyes, is well explained by the Jánossy effect
[11, 12]. In the explanation of dye-enhanced reorientation mechanism, the starting point is the interaction
between liquid crystal molecules, and it is assumed that the mean fields acting on the dye molecules are
different when the dye molecules are in their ground state and when they are in their excited state. This
assumption brings about a modified version of optical torque that is expressed as

~ΓDYE = η~ΓOPT, (5)

where ~ΓOPT is optical torque, ~ΓDYE is the dye torque and η is the characteristic parameter of the dye that
is only dependent of the structure of the dye, so one can write the ~ΓDYE as
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~ΓDYE = (ξ/8π)(n̂ · ~E)(n̂ × ~E). (6)

Here, ξ = η∆ε, where ∆ε is the dielectric anisotropy; n̂ is the unit vector along the director axis and ~E
is the electric field. If the dye molecules are in their excited state, this means that angular momentum of
dye molecules are increased by pumping laser. That is why host molecules behave in such a way that they
minimize their angular momentum so that total angular momentum should be conserved, and this could be
realized by reorientation of the LC molecules. The interaction of light with dye excites the dye molecules and
this energy is conducted to nematic hosts via the angular momentum conservation, whereby reorientation
of liquid crystal molecules takes place in the frame of Eq. (6) [11, 12]. What we have found out is the
enhancement of briefringence under laser pumping, supporting the postulates of the Jánossy effect. It is
our view, that absorbance-based dye torque is responsible for birefringence modulation and this modulation
causes molecular reorientation in dye-doped case. In the scope of this study, a quantative analysis of optical
anisotropy was performed, demonstrating the absorbative effect of dye, the results are encouraging for further
exploration into the origin of reorientation mechanisms in dye-doped applications.
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