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Abstract

Quantum information processing (QIP) requires unitary operations, measurements and synthesis,
manipulation and characterization of arbitrary quantum states. Linear optics provides efficient tools for
these purposes. In this review paper, we introduce the elements of linear optics toolbox, and briefly
discuss some experimental and theoretical investigations using this toolbox. Our main focus will be the
qubit state generation and entanglement extraction using linear optics toolbox.
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1. Introduction

In recent years, the quantum engineering of light states has received much attention. This is mainly moti-
vated by the potential improvement offered by quantum mechanics to the manipulation and the transmission
of information. Quantum optics, which provides models some of which have been experimentally realized,
plays an important role in this exploration. A quantum optics toolbox (QOT) for quantum information
processing should contain elements which will enable the manipulation and coupling on single quanta level
(photons, atoms) as well as on large ensembles and systems. Once the information is encoded on these
quanta and systems, one needs quantum computing which includes tasks of manipulation and storage of
information. Therefore, a QOT should include quantum gates, which might be implemented either using
linear or non-linear optical components, and quantum memory for which there are candidates such as use of
atomic ensembles, cold atoms and solid state based devices. Another important task in QIT is the transfer
of the quantum and classical information between spatially separated parties. This requires channels which
should not alter the characteristic and the nature of the information being sent through, that is, it should be
damping and dissipation free. However, it is impossible to separate a quantum system from its surrounding;
therefore dissipation and damping are unavoidable due to the coupling of the system with the environment.
Then one should include elements which can decrease the effect of damping on their system and enough
tools to recover the lost information partially or completely, if the system has been effected. And finally a
QOT should include readout devices such as photon counting devices and schemes, as well as reconstruction
schemes such as homodyne tomography.

The implementation of qubits, which are the quantum analog of classical bits, by photons opens a
way to manipulate the represented information and transport it through free space or optical fibers. The
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problem in photonic implementation shows itself in the operations where nonlinear effects are needed. This
is beacuse at the single photon level the use of nonlinear effects is beyond the capabilities of the current
photonic technology. However, the interference phenomenon, which can be observed by mixing photonic
modes using linear optical elements and conditional dynamics together with photon counting, can create
the required nonlinear effect for some implementations. Therefore, the investigation of the linear optical
devices to understand what can be and what cannot be done using such devices is very crucial because of
the direct relation to simple physical implementations. The benefit is that linear optical schemes are much
easier to implement experimentally than the schemes which uses nonlinear media, but the drawback is that
the nonlinearities induced by linear optical elements and measurement are less versatile and the success rate
can be quite low especially when efficient photon counters and/or counting schemes are not available.

Recent theoretical and experimental studies have shown that linear optics toolbox (LOT) gives researchers
enough number of tools to explore the quantum information processing technologies based on optical states
of light. LOT has been proven to be ideal for the experimental implementation of several QIP protocols
such as quantum teleportation [1] and quantum dense coding [2]. Although, these studies have started an
excitement in the field, further studies revealed that linear optics have some limitations due not only to the
intrinsic properties of the tools but also to the measurement devices used in the implementations.

Linear optics toolbox consists of photon counters, auxiliary photons, and simple but powerful components
such as beamsplitters, polarization rotators and phase shifters. A survey of literature reveals that there is
a high number of theoretical proposals of QIT implementations using this toolbox and there has been a
tremendous effort in their experimental realizations covering a wide range from generation and manipulation
of non-classical states of light to entanglement purification (a remedy to damping problem in quantum
channels) and quantum gate constructions. Despite this encouraging studies, researchers have started to ask
the question whether all stages of QIP is realizable solely using LOT or not and how the elements of this
toolbox is related to the performance of these QIP implementations.

The purpose of this review paper is to introduce the linear optics toolbox, to discuss its limitations using
the theoretical proposals and experimental realizations which have been presented in the literature. The
paper is organized in six sections. In Sec. 2, the elements of the linear optics toolbox is briefly introduced.
Sections 3 and 4 cover a discussion and review of the schemes proposed and experimentally realized for
qubit state and Bell state preparation and measurement. In Sec. 5, entanglement manipulation protocols
are introduced and realization of one of these protocols by our group using linear optics toolbox is explained
in detail. Finally, Sec. 6 will be the conclusions.

2. Quantum state preparation using linear optics toolbox

In this section, we will briefly introduce the main elements of the linear optics toolbox and then describe
some of the proposals and experiments performed for quantum state preparation.

2.1. Linear optics toolbox

The widely used elements of the linear optics toolbox can be listed as beamsplitters, phase shifters,
photon counters, and auxiliary photons.

2.1.1. Beamsplitters

A beamsplitter (BS) is a two-input two-output device which channels the fields in the input modes, described
by the operators â and b̂, to the output modes, ĉ and d̂. Assuming a lossless and symmetric BS, the
annihilation operators of the output modes are written as

ĉ = R̂âR̂† , d̂ = R̂b̂R̂† (1)

where the beam splitter operator is [3]

R̂ = exp
[
θ(â† b̂− âb̂†)

]
(2)
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with the amplitude reflection and transmission coefficients expressed, respectively, as t = cos θ and r = sin θ.
Suppose that input states are two independent Fock states, |m, n〉 ≡ |m〉a|n〉b. The outputs are then a
superposition of two-mode Fock states:

R̂|m, n〉 =
m,n∑
j,k=0

√
(j + k)!(m+ n − j − k)!

m!n!

(
m

j

)(
n

k

)
(3)

×(−1)k(cos θ)n+j−k(sin θ)m−j+k |j + k,m+ n− j − k〉

=
m,n∑
j,k=0

Rx,N−xm,n |x,N − x〉,

where we have defined x = j + k, and the total number of input photons is N = m + n. Using Eq. 3,
some basic properties of BS can be understood: (i) a beamsplitter can be used as an entangler. When the
total number of input photons is N , the output state becomes an (N +1)-dimensional entangled state, i.e.,if
|m, n〉 = |1, 0〉 then R̂|m, n〉 = r|0, 1〉+ t|1, 0〉 which is a 2-dimensional entangled state. When r = t = 1/

√
2

that is a 50:50 BS (θ = π/4), this state becomes a maximally entangled state of vacuum and one photon
states. (ii) Amount of entanglement created at the output of BS can be found using the Von Neumann
entropy of the reduced density operator which can be written as

E(ρ̂a) = −
m,n∑
j,k=0

|Rx,N−xm,n |2 ln |Rx,N−xm,n |2. (4)

Apparently, the amount of entanglement depends on the number of photons in the inputs and the reflection
and transmission coefficients of the BS. For a maximally entangled state of (N + 1)-dimension, E(ρ̂a) =
ln(N +1). (iii) For a 50:50 BS, when n = m, it can be seen easily from Eq. 3 that all the terms where j+k is
an odd number cancel each other, and the terms obtained for even j + k remain. Therefore, the term in the
ket can be written as |2x, 2n−2x〉which corresponds to states with even number of photons. The possibility
of having states with odd number of photons is zero. This is due to the destructive interference of states
with odd numbers. For example, for the input state |1, 1〉, the output becomes R̂|1, 1〉 = [|0, 2〉− |2, 0〉]/

√
2

which shows the channelling property of the 50:50 BS. When both inputs of the BS are coherent states,
then we have R̂|α1, α2〉 = |(rα1 + tα2), (tα1 + rα2)〉 which is not an entangled state. Indeed, studies have
shown that nonclassicality of at least one of the inputs is a necessary condition for the output of a BS to be
entangled [4] .

2.1.2. Phase shifters

The action of a phase shifter acting on mode going through it is given by P̂φ = eiφâ
†â where â denotes the

mode on which the phase shifter acts. If a Fock state of |n〉 passes through this phase shifter, the output
state becomes einφ|n〉. As it is seen the induced phase shift is linearly proportional to the number of photons
in that mode, i.e, P̂φ|0〉 = |0〉, P̂φ|1〉 = eiφ|1〉, and P̂φ|2〉 = ei2φ|2〉.

PBS

Figure 1. Schematic description of the input-output relation for a polarizing beam splitter (PBS). l and �, respec-
tively, stand for horizontal and vertical polarizations.
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2.1.3. Polarizing beamsplitters (PBS)

These beamsplitters are two-input two-output devices for polarized light manipulations as can be seen in
Fig.1. When the input photons to a PBS have the same polarization, PBS channels them to different
outputs. On the other hand, when their polarizations are orthogonal, they are channelled to the same
output. If we define an operator R̂PBS , then the action of the PBS on the inputs state can be summarized
as R̂PBS |1V , 1V 〉 = |1V , 1V 〉, R̂PBS |1H, 1H〉 = |1H , 1H〉, R̂PBS |1V , 1H〉 = |0, 1H1V 〉 and R̂PBS |1H , 1V 〉 =
|1H1V , 0〉. This property of PBS can be used as a parity checker which has very important consequences in
entanglement purification schemes as we will discuss in the following sections.

2.1.4. Polarizers

A polarizer can be also named as polarization selector which allows the transmission of only one polarization
state. The output polarization axis orientation is independent of the input polarization state. The plane of
polarization is changed by rotating the linear polarizer about its optical axis. Two perfect polarizers with
their transmission axes placed orthogonal to each other will extinguish the incident state.

2.1.5. Polarization Retarders

Another class of useful tools of linear optics for manipulating polarized light is the polarization retarders.
Polarization manipulation is achieved in this device by introducing a relative phase between the orthogonal
polarizations of the input field. There are two main retarders: Quarter wave plate (QWP) and half wave
plate (HWP). A QWP, whose action on the polarization components of an input state of light is represented
by the 2× 2 matrix

R̂QWP (θ) =
1√
2

(
1− i cos(2θ) −i sin(2θ)
−i sin(2θ) 1 + i cos(2θ)

)
(5)

with θ being the angle between the input polarization and the fast axis of the retarder, is used to convert
light between linear and circular polarization forms. It changes a linearly polarized light to a circular one
if the angle between the input polarization and the fast axis of the retarder is θ = π/4. Vertically and
parallel polarized lights are converted, respectively, into right- and left-hand circularly polarized lights when
θ = π/4. An HWP whose 2× 2 matrix representation reads as

R̂HWP (θ) = −i
(

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

)
(6)

rotates the input polarization by twice the angle, θ, between the input polarization and the fast axis of
the device. A linearly polarized light remains a linearly polarized, except that the plane of polarization is
rotated by 2θ . When θ is set to π/4, HWP converts a vertically polarized light into a horizontally polarized
light. An HWP converts a right-hand circularly polarized light into a lef-hand circularly polarized light and
vice versa, regardless of the angle θ. Polarization retarders can be used together with polarizers to construct
variable polarization retarders, variable beamsplitters, variable attenuators and isolators.

2.1.6. Readout devices

Readout devices are necessary to characterize the output states at the end of an information processing task.
In linear optics implementation of QIP, conditional measurement is required. That is the process is realized
or a state is prepared only if some measurement outcomes are satisfied. These tasks require sophisticated
readout and measurement devices. In linear optics toolbox, we have two main readout devices: photon
counters and homodyne tomography. An ideal photon counter should resolve photon number incident on
them with single photon resolution, have a very high quantum efficiency η ∼ 1, a very low dark count rate
ν ∼ 0, and no after pulsing. However, within the current level of technology these requirements cannot be
met.
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Figure 2. Schematic configuration of detection scheme with cascaded counters. |ϕ〉 denotes the input field to be
detected and Di represents the photon counters.

For a realistic description of photon-counting detectors, the positive-operator-valued measure (POVM)
can be written as [5]

ΠN =
N∑
n=0

∞∑
m=n

e−ννN−n

(N − n)!
ηn(1− η)m−nCmn |m〉〈m| (7)

for a detector with quantum efficiency η (dead-time effects are included) and mean dark count of ν , where∑∞
N=0 ΠN = 1. In Eq.7, n and N − n denote the actual number of photons present in the detection mode

and the number of dark counts, respectively. N is the number of detected “clicks,” and Cmn is the binomial
coefficient. Mean dark count rate is given by ν = τresRdark, where Rdark is the dark count rate and τres is
the resolution time of the detector and the electronic circuitry. Currently, there are three photon counting
schemes available and being used by different research groups:

Conventional photon counters: This type of counters employs avalanche photodiodes and can only
distinguish the presence and absence of photons in the mode but cannot give any information on the exact
number of photons in the mode when a detection event is registered. Therefore, such counters are usually
referred to as ON/OFF detectors. They are available with dark count rates less than 100s−1 and η ∼ 0.7
[6]. POVM’s for this type of detectors can be written as

OFF : Π0 =
∞∑
m=0

e−ν(1− η)m|m〉〈m|, ON : ΠN≥1 = 1− Π0. (8)

Single photon counters: This type of counters can discriminate no photon, a single photon and
higher number of photons in the detection mode. They cannot distinguish two photons from higher number
of photons. η ' 0.7 and dark count rates in the order of 104s−1 have been reported [7]. POVM’s for this
type of detectors can be written as

Π0 =
∞∑
m=0

e−ν(1− η)m|m〉〈m|, Π1 =
1∑

n=0

∞∑
m=n

e−νν1−nηnmn(1− η)m−n |m〉〈m|, ΠN≥2 = 1− Π0 −Π1. (9)

Cascaded counters: Cascading conventional photon counters is a common way of solving the photon
number discrimination problem. A schematic of this structure is shown in Fig.2. Principle is as follows: Lets
assume that one has a system which can generate the correct output state when a single photon detection
is registered at a photon counter. However, it is possible that n > 1 photons can fall on the counter which
cannot resolve single photons. What one can do is to insert (n − 1) BS’s on the light path and to keep the
other inputs of all BS’s at vacuum. Then photon counters are placed at the n outputs of the BS’s. If only
one of the detectors fires, the event is accepted; on the other hand if more than one of the detectors fire one
can conclude that at the port to be measured there are more than one photon, and one does not consider
it as a correct event. This advantage of this scheme comes with a high cost; that is the use of (n − 1)
beamsplitters and n photon counters. Therefore, this technique is recommended only when the number of
photons in a system is low.

Balanced homodyne tomography: Evaluation and verification of state preparation and manipulation
tasks in the fields of quantum optics and QIP require the measurement of quantum states over all phase
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Figure 3. Basic scheme for balanced homodyne tomography. Signal state to be measured and the strong local
oscillator (LO) are, respectively, in modes â and b̂. BS is a symmetric, 50:50 beamsplitter. PD and Amp. stand for
photodiode and amplifier, respectively. The phase θ is induced on the LO field by a phase shifter (PS).

space in order to obtain the exact information of the quantum state. Uncertainity principle tells us that
it is impossible to make an exact measurement of both quadratures of a quantum state at the same time.
However, balanced homodyne tomography (BHT) scheme can be used to reconstruct the Wigner function
which contains all the information on the measured quantum state [8, 9]. The scheme is based on the direct
measurement of quantum noise which is usually buried in the classical noise and very difficult to measure.
However, in a BHT scheme, classical noise cancels out and measurement of the quantum noise becomes
possible. BHT is composed of two main parts: the first part is the balanced homodyne detection to measure
the quantum noise, and the second part is the signal processing part where the measured noise is processed
using inverse Radon transform in order to construct the Wigner function of the quantum state under test.

The basic scheme of balanced homodyne tomography is shown in Fig. 3 where a signal field in mode â
interferes with a strong local oscillator (LO) with amplitude αLO in mode b̂ at a 50:50 beamsplitter. LO
phase is varied to take the projections of the quadratures at different angles. After the two light fields are
mixed at the beamsplitter, the fields at the outputs of the beamsplitters are detected by photodiodes located
at modes ĉ and d̂. The measured intensities at the detectors are subtracted from each other to obtain the
difference intensity. The measured intensity at the detectors are related to the detected photon number,
that is Ic ∝ n̂c = ĉ†ĉ and Id ∝ n̂d = d̂†d̂. Using the input-output relation for a 50:50 beamsplitter, we can
write

n̂c = [n̂a + n̂b + â†b̂ + b̂†â]/2, n̂d = [n̂a + n̂b − â†b̂− b̂†â]/2. (10)

Then the intensity difference ∆I = Ic − Id or the photon number difference ∆n̂ = n̂c − n̂d is found as
∆n̂ = â†b̂ + b̂†â. The strong LO condition enables us to replace the operators of the LO with c-numbers,
that is we can use b̂ = αLO and b̂† = α∗LO where αLO can be represented as αLO = |αLO| eiθ. Then ∆n̂
becomes

∆n̂ = |αLO|[â† eiθ + â e−iθ] =
√

2|αLO|q̂θ, (11)

where q̂θ is the phase dependent quadrature. ∆n̂ can be normalized by
√

2|αLO| to make it independent
of the LO intensity. Therefore, it becomes clear that balanced homodyne scheme measures the quadrature
distribution at a projection phase provided by the LO. In an experimental realization, the modulation of
the LO phase is achieved by a mirror mounted on a piezoelectric transducer or by electro-optical modulator
(EOM). Repeating measurements at a fixed LO phase gives the statistics and distribution of quadratures. LO
phase then is scanned at equal intervals between 0 to π and different projection distributions are obtained.
In this way, f(x, θ) which is the probability distribution of the measured quadrature after a phase shift θ is
collected.

After f(x, θ) is collected, the signal processing stage starts. In this stage, f(x, θ) is first filtered and
then the output is sum up over all projection angles θ. Indeed, this process corresponds to Inverse Radon
Transform which is written as

W (q, p) =
1

2π2

∫ π

0

dθ

∫ ∞
−∞

dxf(x, θ)K(q cos θ + p sin θ − x), (12)
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where the K(...) is a Kernel function or the filtering function. This function has some practical obstacles: (i)
it is singular, and (ii) in practice a filter has a limited bandwidth, that is, limits of integration cannot be from
−∞ to +∞. Therefore a regularization is needed when dealing with K(...). This is done by setting a cutoff
frequency kc as the integration limits. Then in the implementation, it is considered as a piecewise-function

K(y) =

{
k2
c

2 [1− k2
cy

2

4 + k4
cy

4

72 ...] if |kcy| ≤ 0.1
x
y

if |kcy| > 0.1
(13)

The choice of kc is very important and it must be optimized for each specific experiment. Choosing high
values causes high frequency fluctuations, on the other hand, low values may cause the loss of some charac-
teristic properties of the Wigner function by smoothing out it.

Lastly, we point out that BHT scheme does not need photon counters with single photon resolution but
rather use photodiodes for measuring the current. The following points should be satisfied for a successfull
implementation of BHT: (i) strong LO, (ii) spatial and time-frequency mode-match of the state to be
measured and the LO, (iii) balanced (to cancel out classical noise components) and stable (to prevent
fluctuations in the phase) interferometer: (iv) photodiodes with high detector efficiency, (v) low electrical
noise (must be much lower than the shot noise which reflects the fluctuations of the light intensity), (vi)
high amplification over a large bandwidth.

2.1.7. Auxiliary photons: single photons from parametric down conversion process

In order to prepare quantum states of arbitrary structures, we need to use auxiliary photons and coherent
light. Here we will briefly review the generation of single photons and the current level of technology in the
area. Preparing single photon states are important not only because we can use them as auxiliary photons,
but also because we can study the fundamentals of quantum optics using these highly nonclassical states of
light. However, it is very difficult to prepare single photons, because it requires the generation of exactly
one and only one photon with energy in a well-defined spectra and spatial mode. At present, spontaneous
parametric down conversion (SPDC) process is the most widely used method to prepare single photon states.
Besides SPDC, recently there has been successful demonstration of single photon sources using quantum dot
technology. However, at present they are not as common as the SPDC in usage. Therefore, we restrict
ourselves to a detailed analysis of SPDC as a single photon source in this section.

In SPDC process, two photons (denoted as idler and signal) with lower energy are generated when a
nonlinear crystal is pumped with a strong pump laser as seen in Fig.4. The probability of having this
down conversion is very small. Conservation of energy fixes the frequencies of the generated photons via
h̄ωp = h̄ωi + h̄ωs where p,i, and s correspond to pump, idler and signal, respectively. However, due to the
finite size of the nonlinear crystal, the photons may have broader bandwidths, even if the pump light has
narrow bandwidth. Therefore, a spectral filtering is needed to obtain photons with well-defined spectrums.
Emission directions of these photons are determined with the conservation of momentum as −→k p = −→k i+−→k s.
The photons are emitted in a cone of radiation, and hence their location in the cone is important. Photons
with well-defined spatial modes can be obtained by using spatial filtering with apertures. The two photons
created in this way are highly entangled in energy, momentum, time, polarization, phase and photon number
under appropriate conditions. Even though, the photons in the idler and signal modes do not enjoy a well-
defined phase of their own, their phase is related to the phase of the pump field through φp = φi + φs. The
expression for the output of a SPDC process may be written as [10]

|ϕ〉(i,s) =
√

1− γ2

∞∑
0

(γeiφp )n|n〉i|n〉s, (14)

where γ2 is the rate of one-photon pair generation and is typically O(10−4) [11], n is the number of photons
generated in pairs in the idler and signal modes, and θp is the phase of the pump field.

There are two types of SPDC characterized according to the relation between the polarizations of the
emitted photons which is determined by the crystal and the polarization of the pump field [12]. In type I
process, the generated photons have the same polarization whereas in the type II process they have orthogonal
polarizations (see Fig. 5). One who wants to use SPDC as a single photon source should keep in mind that
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Nonlinear

Crystal

pump

Idler

Signal

Figure 4. Schematic illustration of spontaneous parametric down conversion (SPDC). h̄,ω,φ and k stand for the
Planck’s constant, angular frequency, phase and the wavevector of the fields in SPDC.

Nonlinear

Crystal

TYPE I TYPE II 

Nonlinear

Crystal

Nonlinear

Crystal

TYPE I 

Figure 5. Polarization properties of the photon pairs generated in type I and type II SPDC.

(i) the photon pairs are generated at random times, (ii) most of the time it is the vacuum at the output of the
process, (iii) even though the probability is much lower, there may be cases where more than one photon pair
is generated. Therefore, to use SPDC for this purpose, one should use a conditional measurement, that is,
when a detector placed in idler mode registers a “click”, there is photon in the signal mode as schematically
shown in Fig. 6 (left). In practice, this technique suffers from detector inefficiencies discussed in the former
section, that is, the commercially available detectors do not resolve single photons. A “click” registered with
such detectors does not necessarily mean that there is only one photon in the output, there might be more
than one photon. An experimental characterization of single photons generated by conditional measurement
from a SPDC using balanced homodyne tomography has been performed by Lvovsky et al.[13].

3. Qubit state generation

In this section, we present some of the theoretical proposals and experiments which utilize linear optics
toolbox for optical qubit state generation:

3.1. Qubit encoded in polarization

A qubit encoded in the polarization degree of freedom of a single photon can be constructed by placing
polarization retarders on the signal mode of SPDC. As it can be seen from Eq.6, a single HWP can prepare
only linearly polarized states in which the relative weights of the vertical and horizontal polarizations can
be adjusted by the rotation angle θ of the HWP. Circular and elliptical states can be prepared using a single
QWP (see Eq.5). Indeed, particular polarization changes on a single photon can be implemented by passing
it through a HWP, or a QWP, or a HWP and QWP placed one after another. In order to make arbitrary
changes on the polarization state of a single photon to produce arbitrary qubit states, the configuration seen
in Fig.6 (right), where a HWP is placed between two QWP’s, is needed.

3.2. States generated by displacement and photon adding

In this subsection, we introduce the schemes based on displacement and photon adding aoperators. These
operators can be used alone or together in various ways to prepare nonclassical states of light.
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Nonlinear

Crystal
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QWP 
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Figure 6. Preparation of single photon (left) and qubit state encoded in polarization degree of freedom of a photon
(right) using SPDC. R̂(δ, β, γ) stands for the polarization rotation induced by the combined half-wave plate (HWP)
and quarter-wave plates (QWP’s) which is shown in the dotted box. δ, β, and γ are the angles between the input
polarization and the fast axis of the retarders. A and F represent aperture and narrowband interference filter,
respectively.

(A) (B)(A) (B)

Figure 7. Schemes for (A) displacementent and (B) photon adding operators.

Displacement operator is defined as D̂(α) = exp(αâ† − α∗â) with α being the amount of displacement.
A coherent state |α〉 can be generated by applying D̂(α) on vacuum state that is |α〉 = D̂(α)|0〉, where α
denotes the amplitude of a coherent state. It has been shown that D̂(α) can be physically realized by a
beamsplitter with r � 1 shown in Fig.7(A) where no measurement is needed at the other output port of the
BS, and |φ〉 is an arbitrary state.

Photon adding, too, can be achieved by using a BS. In this case, a single photon |1〉 and an arbitrary state
|φ〉 are fed into the BS as seen in Fig.7(B). If the state at the output mode-d̂ is conditioned on no-photon
detection in mode-ĉ, the state at mode-d̂ reduces onto tâ†|φ〉 from which it is seen that a photon is added
to the state |φ〉.

3.2.1. Displaced Fock state:

Displaced Fock states, which were theoretically described by Boiteux and Levelut [14], are highly nonclassical
states. A Fock state does not carry any phase information, whereas as we will see a displaced Fock state
carries a phase information. This makes displaced Fock state a very useful tool for probing the phase
relations. It has been shown that quasidistribution of any quantum state can be represented as a series
of displaced Fock states [15, 16, 17]. Displaced Fock states can be generated by applying a displacement
operator on a Fock state as shown in Fig.7(A) if |φ〉 is replaced by a Fock state |m〉. Then the output of BS
becomes

|out〉 =
1√
m!
D̂c(tα)D̂d(rα)(td̂† + rĉ†)m|0〉c|0〉d. (15)

If no measurement is done at mode-ĉ, the state at mode-d̂ becomes |φ〉d = D̂d(rα)|m〉 provided that r� 1.
It is now clear that the output state is a Fock state carrying the phase information of the coherent state
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through α = |α|eiθ where θ is the phase of the coherent light. An experimental demonstration of displaced
Fock state generation has been performed by Lvovsky et al. [18] where linear optics toolbox has been used.
Tomographic reconstruction of the prepared states shows the nonclassical properties of these states clearly.

3.2.2. Superposition States

The simplest of superposition states is c0|0〉 + c1|1〉 (with proper normalization) can be generated using
displacement operator followed by a conditional measurement. If the input coherent state in Fig.7A satisfies
α � 1, that is, it can be expanded as |α〉 ' |0〉 + α|1〉, and we select the events where one and only one
photon is detected at a detector placed on mode-ĉ output of the BS, the state at the other output of the BS
becomes |out〉d = N (t|0〉+ α|1〉) where N−2 = |t|2 + |α|2 [19, 20].

Superposition states with arbitrary finite dimension |φ〉 =
∑

n cn|n〉 can be prepared from a vacuum
state by alternate applications of displacement and photon-adding operators as shown in Fig.8 [19]. At the
first stage labelled as “displacement” and bounded with a dotted box in Fig.8, a vacuum state |0〉 and a
strong coherent light |α1〉 are mixed at the first beamsplitter whose transmittance is very close to unity.
This corresponds to the displacement operator and creates a coherent state |r1α1〉 = D̂(r1α1)|0〉. At the
second stage inside the dotted box labelled as “photon adding”, a single photon addition is performed by
superimposing the |r1α1〉 with |1〉 on the condition that no photon is detected at the other output port of this
second beamsplitter. This will generate the state t2â†|r1α1〉 = t2â

†D̂(r1α1)|0〉. In the next step, these two
stages are repeated whose effect can be easily seen by replacing |α1〉 by |α2〉. Then the state at the output of
the fourth beamsplitter will become t4â†D̂(r2α2)t2â†D̂(r1α1)|0〉. Repeating this procedure N times, and at
the end applying the last displacement D̂(αN+1) complete the task of generating arbitrary finite dimensional
superposition states. To generate a state with desired coefficients cn, one should be careful in choosing the
beamsplitter transmittance in the photon adding stage and the intensity of the input coherent state in the
displacement stage. This scheme has not been experimentally demonstrated.

Displacement Photon adding

Figure 8. Basic scheme for generating arbitrary superposition states using alternate displacement and photon
adding.

3.3. Teleportation based qubit state preparation

Quantum scissors device (QSD) is a scheme for preparing superposition states based on the concept of
teleportation [21, 22, 23, 24]. In this scheme the superposition state is prepared by truncating a coherent
state which is expressed in photon number basis as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n
|n〉 = e−|α|

2/2[|0〉+ α|1〉+ α2

√
2
|2〉....]. (16)

To prepare the qubit state only the part of the coherent state up to a specific photon number is teleported
to a spatially separated place, e.g., teleportation of only the part of to one photon state that is N [|0〉+α|1〉]
with N is a renormalization factor. The originally proposed basic scheme of the QSD and the scheme for
its practical realizations are given in Fig. 9. It must be noted that no light from the input coherent state
|α〉 reaches to the output state |out〉, so this process is a nonlocal process relying on entanglement. The
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BS1 BS2

Figure 9. Basic scheme of quantum scissors device (left) and the scheme for its experimental realization (right). PL,
pulsed laser; FD, frequency doubler; PDC, parametric down conversion crystal; Att, strong attenuator; A, aperture;
f, narrow band filter; L, lens; CCL, coincidence counter and logic; BS, BS1, and BS2 are beam splitters; and D1, D2,
and D3 are photon-counting detectors.

entangled state is produced at BS1 (50:50) by mixing |0〉 and |1〉. The Bell measurement which is the
essential element of teleportation scheme is performed by BS2 (50:50) and two photon counters placed at
its output ports. A detection event of |0〉 and |1〉 at the photon counters teleports and truncates the input
coherent state |α〉 to c0|0〉+ c1|1〉 with proper normalization. In other detection events, the protocol fails
to generate the desired output state. The scheme can be extended to generate superposition states of the
form N [|0〉 + α|1〉 + α2

√
2
|2〉] as follows: Beamsplitters BS1 and BS2 are chosen as |r1|2 = |r2|2 = 0.21 or

|r1|2 = |r2|2 = 0.79, the inputs of the BS1 are now both |1〉, and the required measurement result is |1〉 and
|1〉 at the detectors [25]. The weights of vacuum and one-photon state in the superposition can be varied or
tuned to desired values either by proper choice of beam-splitter parameters or by adjusting α [26, 27]. This
basic scheme cannot be used to extend the output state to higher dimensions.

QSD, as we have already mentioned, performs both teleportation and truncation, therefore, it can be
used as a teleporter for superposition states without making any change [25, 28]. If one wants to teleport a
state c0|0〉 + c1|1〉, first he/she can prepare it with the QSD scheme with the input |α〉. Then this output
superposition state of the first QSD can be fed into a second QSD as the input and perform the teleportation
process when vacuum and one-photon are registered at the detectors. The same is valid for preparing and
teleporting c0|0〉+ c1|1〉+ c2|2〉.

4. Bell state preparation using SPDC

Entangled states and their joint measurement in the basis of four maximally entangled states, which are
referred to as Bell states or EPR pairs, form an essential part of QIP schemes. These states can be prepared
using the polarization entangled photon pairs created by SPDC. Four Bell states which can be unitarily
transformed to each other are written as

|Φ∓〉 =
1√
2

(|HH〉 ∓ |V V 〉)

|Ψ∓〉 =
1√
2

(|HV 〉 ∓ |VH〉). (17)

In the non-collinear type-II SPDC process where the photons are created in orthogonal polarizations, at
certain angles between the pump-beam and the optic axis of the crystal, the photons are emittted in cones
which do not have a common axis. While one of these cones has horizontally polarized photons, the other
will have vertically polarized photons. Along the intersection of these cones, one cannot distinguish whether
a certain photon is vertically or horizontally polarized provided that the “walkoff”, which is caused by
different group velocities of the horizontally and vertically polarized light in the crystal, is compensated.
This compensation can be usually done by inserting birefringent crystals, e.g. quartz of various thickness in
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each of the beam paths. When the compensation is achieved, the state can be described as

|Ψ〉 =
1√
2

(|HV 〉 + eiϕ|VH〉) (18)

where the angle ϕ can be adjusted by using compensator crystals [29]. By using a HWP in one of the beam
paths, we can transform the |Ψ∓〉 into |Φ∓〉.

Another way of generating Bell states is to use two nonlinear crystal geometry either in type-II [30] or
type-I [31] SPDC. Fig.10 shows the idea for type-I process. In this scheme, the crystals are stacked to each
other in such a way that their optic axis are perpendicular to each other. Then if the pump beam is chosen
as a linearly polarized light at 45◦, in the first crystal, horizontally polarized portion of the pump beam
creates a horizontally polarized photon pair, whereas in the second crystal the vertically polarized portion
creates a vertically polarized photon pair. If the “walkoff” effect is compensated using additional crystals,
the resultant state becomes

|Φ〉 =
1√
2

(|HH〉+ eiϕ|V V 〉) (19)

from which other Bell states can be prepared by using a HWP and a QWP.
An essential part of a quantum communication scheme is a Bell state analyzer. Indeed, there is a large

number of QIP applications, such as teleportation [1], dense coding [2], quantum repeaters [32] and fault
tolerant quantum computing [33], where it is needed to project an incoming state on to the Bell state.
When a two-photon state is input, a Bell state analyzer determines which one of the Bell states the input
is. The basic principle of a Bell state analyzer is that only one of the Bell states, |Ψ−〉, given in Eq.(17) is
anti-symmetric while the other three are symmetric under the exchange of particles. If we define four modes
two of which correspond to internal state that is the polarization (V,H), and the other two correspond to
external state that is the spatial modes (a,b), then the Bell states can be written as

|Ψ〉∓ =
1√
2

(â†H b̂
†
V ∓ â

†
V b̂
†
H)|0〉, |Φ〉∓ =

1√
2

(â†H b̂
†
H ∓ â

†
V b̂
†
V )|0〉. (20)

Let’s assume that any of these Bell states is incident symmetrically on a 50:50 BS. Then the output of the
BS denoted by the spatial modes c and d becomes as follows for each of the input state:

|Ψ−〉 → 1√
2

(|1H〉c|1V 〉d + |1V 〉c|1H〉d)

|Ψ+〉 → i√
2

(|2H,V 〉c|0〉d + |0〉c|2H,V 〉d)

|Φ+〉 → i

2
√

2
(|2H〉c + |2V 〉c)|0〉d + |0〉c(|2H〉c + |2V 〉c)

|Φ−〉 → i

2
√

2
(|2H〉c − |2V 〉c)|0〉d + |0〉c(|2H〉c − |2V 〉c). (21)

It is seen that if the incident state is a symmetric Bell state then two photons emerge together in one of the
two outputs of BS. On the contrary, in case of the antisymmetric state, |Ψ−〉, one photon is present at each
output mode of BS leading to a coincidence detection if photon counters are placed at the output of the BS.
Therefore, it can be said that |Ψ−〉 can be discriminated from the other three Bell states by a coincidence
detection at the output of a 50:50 BS [34, 35]. But this is not enough for a Bell state analyzer. A further
analysis of the symmetric Bell states shows that only the state |Ψ+〉 has different polarizations for each
photon. Therefore, making a polarization measurement at the output of 50:50 BS can allow us distinguish
the |Ψ+〉 from the other two states |Φ∓〉. This polarization measurement is done by inserting PBS at each
output of the 50:50 BS and using four photon counters placed at the output of PBS’s. If a coincidence
detection is registered at the output of one of the PBS’s, then the incoming state is |Ψ+〉, on the other hand,
if one photon is detected at the output of one of the PBS and another photon at the output of the other
PBS is detected, then the input state is |Ψ−〉. All other cases correspond to |Φ∓〉. In this way a Bell state
analyzer with 50% efficiency can be realized. Here, we must note that there is a No-go theorem which states
that never failing complete Bell state analyzer is impossible using only linear optics toolbox [36].
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Figure 10. Bell state preparation using type-I SPDC with two nonlinear crystals stacked together with their optics
axes orthogonal to each other.

5. Entanglement Extraction

Entanglement is a very specific and precious resource in QIP applications such as teleportation, dense
coding and secure key distribution. On the other side, it is a source of hard to overcome problems in QIP.
However, quantum information community has come up with very clear ways of dealing with such problems
and manipulating entangled states.

One of the main problems related with entangled states emerges in the distribution of these states. Since
entanglement cannot be created by local operations alone, entanglement should be distributed, at some point,
between the spatially separated parties to build up non-local quantum correlations. During the distribution
process, these qubits will unavoidably interact with the channel (environment) which will induce decoherence
reducing the purity of the entangled state and resulting in some mixed state which is less-entangled than
the original one. To overcome this problem entanglement extraction protocols, which are used to extract
from a large number of less-entangled states a smaller number of more-entangled states, have been proposed
[37, 38, 39]. Based on these protocols, experimentally feasible schemes have been proposed [40, 41, 42, 43].
In these protocols, the spatially separated parties are restricted to use LOCC (Local Operation and Classical
Communication). Because it is only in this restriction that the parties are forced to use the less-entangled
states they have in order to generate a smaller number states with higher entanglement. In LOCC, one of
the parties, say Alice, can use any unitary operator, von Neumann or any generalized measurement only
on the Hilbert space of her particles. She cannot manipulate the particles of the other party, Bob, neither
can they exchange particles or any quantum system. Recently, LOT has been successfully exploited for
entanglement extraction and practical realization of proposed protocols[44, 45, 46, 47].

5.1. Protocols for entanglement extraction

Schmidt Projection Method: This is originally proposed for the concentration of entanglement of
pure partially entangled states [37]. The method takes its name from the projection of the joint state of
n-particles onto a subspace spanned by eigenstates of the reduced density operator, ρ̂A (or ρ̂B) of a bipartite
pure state |ϕ〉AB , with the same eigenvalues. Hence, it correponds to the number of terms in the Schmidt
decomposition of |ϕ〉AB which is expressed as

|ϕ〉AB =
∑
i

ci|αi〉A|βi〉B (22)

with ci being real and positive, and {αi} and {βi} forming orthonormal states of subsystem A and B,
respectively. Now, let us assume that Alice and Bob share n of partially entangled pure states |ϕ〉AB =
λ0|HH〉+λ1 |V V 〉 with |λ0|2 + |λ1|2 = 1. Then the complete state of the particles they share can be written
as

Ψn =
n⊗
j=1

|ϕ〉AB =
n∑
k=0

λk0λ
n−k
1 {|H⊗kV ⊗(n−k)〉A|H⊗kV ⊗(n−k)〉B} (23)

where the states in curly brackets denote the sum of all states with having k number of H . For ex-
ample, {|H⊗2V ⊗1〉A|H⊗2V ⊗1〉B} stands for |HHV 〉A|HHV 〉B + |HVH〉A|HVH〉B + |VHH〉A|VHH〉B .
Then defining the unnormalized state |χk〉A|χk〉B = {|H⊗kV ⊗(n−k)〉A|H⊗kV ⊗(n−k)〉B}, Eq.(23) becomes
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Ψn =
∑n
k=0 λ

k
0λ

n−k
1 |χk〉A|χk〉B. Here we define |ϕk〉 = |χk〉A|χk〉B which is unnormalized, and write

Ψn =
∑n

k=0 λ
k
0λ

n−k
1 |ϕk〉 from which it is seen that the set {|ϕk〉} forms orthogonal basis and all |ϕk〉 are

maximally entangled. Then with a probability
(
n
k

)
|λ0|2k|λ1|2(n−k), Alice and Bob get a maximally entan-

gled state |ϕk〉 with an amount of entanglement equals to E(|ϕk〉) = log2

(
n
k

)
. They can do that if Alice

counts the number of |H〉’s in the joint space of n qubit they share. Now the problem of Alice and Bob is
reduced to transforming the state they have into the product of Bell states. In order to do this, first they
have to use a function which performs the mapping {χk} → {0, 1, 2, ....,

(
n
k

)
}, e.g. for n = 3 and k = 2,

|HHV 〉A|HHV 〉B + |HVH〉A|HVH〉B + |VHH〉A|VHH〉B → |0〉A|0〉B + |1〉A|1〉B + |2〉A|2〉B. Then using
this mapping and defining δk =

(
n
k

)
,

|ϕ′k〉 =
1√
δk

δk−1∑
j=0

|j〉A|j〉B (24)

can be written. Each of j is a binary string with length Lk = log2

(
n
k

)
. If δk is a power of 2, then the state

|ϕ′k〉 is a product of Lk Bell pairs. For example, lets assume that they share n = 4 partially entangled pairs
and they make their measurement and keep the states with k = 3, that is states with three |H〉. Then with
probability 4|λ0|6|λ1|2, they will have a maximally entangled state from which they can extract two Bell
(EPR) pairs. The state |ϕ3〉 is obtained as

|ϕ3〉 = |χ3〉A|χ3〉B
= |HHHV 〉A|HHHV 〉B + |HHVH〉A|HHVH〉B + |HVHH〉A|HVHH〉B + |VHHH〉A|VHHH〉B

→ |ϕ′3〉 =
1
2

(|0〉A|0〉B + |1〉A|1〉B + |2〉A|2〉B + |3〉A|3〉B). (25)

Then in binary form of two bits Lj = 2, |ϕ′3〉 becomes

|ϕ′3〉 =
1
2

(|00〉A|00〉B + |01〉A|01〉B + |10〉A|10〉B + |11〉A|11〉B). (26)

Keeping in mind that δj = 4 is a power of 2, different bits of the binary string are disentangled, therefore
we can directly write

|ϕ′3〉 =
1
2

(|00〉AB + |11〉AB)(|00〉AB + |11〉AB)

=
1
2

(|HH〉AB + |V V 〉AB)(|HH〉AB + |V V 〉AB) = |Φ+〉|Φ+〉 (27)

where we labelled |0〉 → |H〉 and |1〉 → |V 〉.
The problem becomes more complicated for Alice and Bob if δk is not a power of two. Now let’s assume

that it is either a power of two or slightly higher than a power of two, that is 2Lk ≤ δk < 2Lk+1. Then they
can measure the most significant bit (MSB) of the qubits they have when it is written in the binary form.
With a probability 2Lk/δk, they will obtain a zero. In this case the state will collapse to a subspace of 2Lk ,
then they can extract Lk pairs by taking the bits L0, L1, ...., Lk−1 where Lk denotes the MSB. However, if
δk is much higher than a power of two, then there still exists a problem for them and they can solve the
problem by repeating the above protocol. What they do is as follows: They take another batch of n samples
and make measurement. Let us assume that this time they obtain the state |ϕ′k1

〉. Then the new dimension
of the combined state of the first batch and the second batch becomes

(
n
k

)(
n
k1

)
. They check whether this

satisfies 2` ≤ δ < 2`(1 + ε) for some ` and predetermined ε. If this is the case, then they are happy because
they can split the dimension into two orthogonal subspaces, one of which is dimension 2` and the other with
L− 2`. Then they can write their states in binary form and measure the MSB as explained above to extract
` pairs. If not, they have to take new batches and repeat the procedure until they obtain a combined state
dimension that satisfies the above inequality.

A schematic description of the Schmidt projection method is illustrated in Fig.11. This method for
entanglement manipulation requires at least n = 2 non-maximally entangled pure states. The efficiency
increases with increasing n. Alice and Bob need not know the exact states of the shared pairs they start
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Alice Bob

Classical communication
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Figure 11. Schematic diagram of Schmidt projection method. Source generates non-maximally entangled pairs.
Alice performes a non-destructive measurement on her qubits and pass the measurement result to Bob via classical
communication channel. Based on this measurement, they apply a unitary operator to transform their states into
the one they want and then throw away the unwanted pairs.

Non-MES 

mixed state

Reconstruct

density matrix 

Local

filtering

Reconstruct

density matrix 

Polarization

dependent loss

MES

Entanglement

Figure 12. Schematic diagram of local filtering protocol. The exact state of the non-maximally entangled state
(non-MES) ρ is determined first. Based on this measurement, polarization dependent losses are set and purification
process starts. A tomography of the state after filtering, ρ′, can be done to reconstruct its density operator from
which the amount of entanglement represented as E(ρ′) can be calculated.

with; however, the pairs should be identical. The difficulty in the implementation is the need for non-
destructive measurement which is not available with the current level of technology and the tools to operate
collectively on a large number of photons.

Local Filtering (Procrustean Method): This method is especially suitable for increasing the entan-
glement of pure states [37]. This method works for individual pairs and does not need collective manipulation
of pairs. Using this method, a pure state of the form

|ϕ〉 = λ0|HH〉+ λ1|V V 〉, (28)

which is a non-maximally entangled state with λ0 6= λ1 being two real numbers and satisfying λ2
0 + λ2

1 = 1,
can be transformed into the maximally entangled state |Φ+〉 by introducing polarization dependent absorbers
or reflectors (coated glass slabs or Brewster window) on one or both of the qubits. If we assume that λ0 > λ1,
this filtering operation with polarization dependent losses should be designed either to cut down the value
of λ0 to equalize it at λ1, or to cut down both of them to have a value λ which is less than λ0 and λ1. Then
Alice and Bob can use the filters with the following transmission matrices

TA = TB =
( √

λ1/λ0 0
0 1

)
, (29)

which attenuates the horizontally polarized light. Then the output qubits, that is the qubits which pass
these filters, is the maximally entangled state, |Φ+〉. If the qubits are absorbed then Alice and Bob declares
the failure of the process. It is easy to see that Alice and Bob keeps the output filtered state |Φ+〉 with
a probability 2|λ1|2, and discard the qubits with probability 1 − 2|λ1|2. Thus this nonunitary filtering
process equalizes the contribution of the two terms in Eq.28 yielding a perfect entanglement. This process
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ÖZDEMİR, YAMAMOTO, KOASHI, IMOTO

is also applicable to the cases where the initial state is partially mixed in addition to being non-maximally
entangled. The drawback of this method is that exact state of of the qubit pair should be known by Alice and
Bob to customize the polarization dependent losses, without this information losses to be inserted cannot be
decided. Then Alice and Bob should make a tomographic measurement to understand the exact state of the
qubit pairs, assuming that, the pairs they receive are all identical. Then based on this measurement they
set the losses and apply filtering on the new non-maximally and mixed states. A schematic configuration
which summarizes local filtering is depicted in Fig. 12. This method of entanglement extraction has been
experimentally realized by Kwiat et al. [44].

Recurrence Method: This protocol works for two-qubit states whose fidelity to a Bell state is F > 1/2
[38]. Assuming Alice and Bob share n identical %̂ states with fidelity F , the protocol proceeds as follows:
(1) Alice chooses an independent, random SU(2) operator Û for each state and applies it to her particles.
Then she tells the operators she has chosen to Bob who applies Û∗ to his particles. This operation which is
called as “Twirling” transforms the original general mixed state into a Werner state

W = F |Ψ−〉〈Ψ−|+ 1− F
3

(|Ψ+〉〈Ψ+|+ |Φ−〉〈Φ+|+ |Φ+〉〈Φ+|) (30)

in which the weight of |Ψ−〉 is the highest, “mostly |Ψ−〉”. The effect of the twirling operation is diago-
nalization of the mixed state in the Bell basis without changing its fidelity to |Ψ−〉. (2) Alice performs a
σy operation on her qubits. This operation transforms |Ψ−〉 into |Φ+〉. (3)Using their two states as con-
trol and target states, Alice and Bob perform bilateral quantum controlled-NOT (C-NOT) operation which
is referred to as (BXOR). An important feature of BXOR is that it maps Bell states into Bell states. A
complete table showing how the BXOR operates can be found in Ref.[38]. The reason for step 2 is clear
when the truth table for BXOR is analyzed. When a |Φ+〉 is used as the control and target states for the
BXOR, the resultant control and target states do not change. (4) The pair of target qubits is then measured
locally. Then they exchange their results (two-way classical communication). If their results are different,
they discard both the target and control states. Otherwise, they keep the control state. By applying this
test, Alice and Bob are able to distinguish |Ψ∓〉 from |Φ∓〉 the latter of which gives the same result for
Alice and Bob. (5) Alice performs a σy operation to transform the state to a mostly |Ψ−〉 state which has a
greater F than the starting state. (6) Alice and Bob repeat the steps 1-5 to increase the fidelity until they
obtain a F which is high enough for their purpose. The relation between the fidelities after and before the
purification process is given as

F ′ =
F2 + (1/9)(1− F)2

F2 + (2/3)F(1−F) + (5/9)(1−F)2
(31)

where F is the fidelity of the states entering the purification process and F ′ is the fidelity of the remaining
state after the purification.

Recurrence method basically repeats the cycle: σy-BXOR-measurement-σy . If the starting state is Werner
state in which the weight of |Ψ−〉 is high, each cycle makes the coefficient of |Ψ−〉 higher so that the Werner
state will become closer to |Ψ−〉. For this to be performed, Alice and Bob do not have to know exactly the
state they start with. In order to know which qubits to keep and which ones to discard, Alice and Bob needs
a two-way communication. The drawbacks of this method can be listed as follows: (i) It is not very efficient
because in order to get a pair very close to a maximally entangled state, a high number of these processes
should be repeated, and in the limit of very high fidelity, that is an exact Bell pair, the yield approaches to
zero, (ii) with the current level of technology, two qubit BXOR operation is difficult to perform in practice.

The scheme works as long as F > 1/2 for all states, which may not be identical. In a recent work, Pan
et al., has performed an experimental realization of this protocol starting from a mixed state of the form
%̂ = F |Ψ+〉〈Ψ+|+ (1− F )|Φ−〉〈Φ−| using only linear optics toolbox [47].

5.2. Experimental realization of entanglement extraction based on Schmidt
projection method

The first ever successful entanglement extraction experiment using a collective operation on photon pairs
was performed in our group at SOKENDAI by Yamamoto et al. [45] based on a simple theoretical scheme
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Figure 13. Schematic diagram of the experimental setup. The channel realized by a a liquid crystal retarder (LCR)
is a phase damping channel which gives identical phase fluctuations to photons in mode 1 and 3. (HWP2, PBS2, D2)
and (HWP6, PBS6, D6)are used only for the verification of the extracted photon pair at modes 2 and 6. HWP1 is
inserted for an auxiliary experiment and it is not relevant here for an additional π phase shift.

derived from the original Schmidt projection method. In this section, we will briefly introduce the theoretical
background and then present the experimental results.

The scheme, which is depicted in Fig.13, works as follows [42, 45]: Let us assume that we have a
source which prepares partially entangled pure states in the form |ψ〉12 = α|HH〉12 + β|V V 〉12 and |ψ〉34 =
α|HH〉34 + β|V V 〉34 where α and β are complex numbers satisfying |α|2 + |β|2 = 1. Alice receives the
photons in modes 1 and 3, whereas Bob receives the photons in modes 2 and 4. The complete state of these
pairs can be written as

|ψ〉12|ψ〉34 = (α|HH〉12 + β|V V 〉12)⊗ (α|HH〉34 + β|V V 〉34)
= α2|HH〉13|HH〉24 + β2 |V V 〉13|V V 〉24 + αβ(|HV 〉13|HV 〉24 + |VH〉13|VH〉24) (32)

which is a superposition of separable states with coefficients α2 and β2 , and an entangled state with the
coefficient αβ. Then the task is to discard the first two terms (separable part) and extract a maximally
entangled pair from the last terms (more entangled part) using LOCC. Since the partially entangled states
that Alice and Bob share are identical, they can apply Schmidt projection method to extract a maximally
entangled pair of the form |Φ+〉. This can be done as follows: Alice makes a collective non-destructive
polarization measurement which gives the number of vertically polarized photons. If the outcome is one, she
communicates the result to Bob and they keep the state which now becomes |HV 〉13|HV 〉24+|VH〉13|VH〉24.
Then they can apply local unitary operator to obtain |Φ+〉. The essential point here is the nondestructive
measurement which determines the polarization of each photon without destroying it. However, this is not
possible with the current technology. Instead, Alice and Bob can use linear optics toolbox and perform
destructive measurement with photon counters to achieve the same task: (1) Alice rotates the polarization
of the photon in mode 3 by π/2 using a HWP3. This will make the transformation |H〉3 → |V 〉3 and
|V 〉3 → |H〉3. (2) The output of HWP3 is sent to PBS1 whose other input is the photon coming in mode 1.
After the PBS1, the complete state becomes

α2|H〉6|V 〉6|H〉2|H〉4 + β2|V 〉5|H〉5|V 〉2|V 〉4 + αβ(|H〉5|H〉6|H〉2|V 〉4 + |V 〉5|V 〉6|V 〉2|H〉4). (33)

It is seen that by counting the number of photons in mode 5 we can discard the unwanted parts. The desired
part which contains the expressions with coefficient αβ is selected if and only if there is one photon in mode
5. This one photon can be in either of the polarizations, therefore the measurement process should not
distinguish |H〉 from |V 〉. (3) Alice measures the incoming photons on the diagonal basis {|D〉5, |D〉5} and
Bob measures on {|D〉4, |D〉4} where |D〉 = (|H〉+ |V 〉)

√
2 and |D〉 = (|H〉 − |V 〉)

√
2 for both modes 4 and

5. (4) If Alice measures one photon on |D〉5 and Bob measures one photon on |D〉4, then the modes 2 and
6 share the Bell state |Φ+〉. (5) By communicating their measurement results via classical communication
channel, Alice and Bob can extract a Bell pair.

In our experiments, polarization entangled photons are generated using the method described in Sect.4
(Fig.10) by SPDC collinearly [31, 42]. Then the photons are separated by a beamsplitter inserted on their
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ÖZDEMİR, YAMAMOTO, KOASHI, IMOTO

path. The nonlinear crystals used in the experiment are β-barium borate (BBO). After the first entangled
pair is generated, the pump beam is reflected back passing the crystals in the opposite direction generating
the second entangled pair. Here, once more, we have to note that this process generates entangled photon
pairs in a nondeterministic way. The failures due to component losses, channeling effect of the beamsplitters
and no photon generation in either or both of the crystals can be discarded by post-selection. That is, the
events when four detectors register photon detection (four-fold coincidence detection) will be considered as
the successful events, other cases will be discarded.

After the photon pairs are generated, one photon from each pair is sent to Alice through a channel
which induces a time varying random phase shift. The two photons are launched into the channel within
the correlation time of the phase fluctuations of the channel in order to ensure that they are affected with
identical phase fluctuations. This phase damping channel is realized using a liquid crystal retarder (LCR)
which can change the phase between |H〉 and |V 〉 proportional to the applied voltage. The phase is varied
between 0 and π in eight intervals for 10s. At the end of this phase damping, the state of the ensemble of
each pair becomes

ρ12 =
1
2

(|HH〉12〈HH |+ |V V 〉12〈V V |)

ρ34 =
1
2

(|HH〉34〈HH |+ |V V 〉34〈V V |) (34)

where the off-diagonal elements are averaged out and the pairs are no longer entangled. In order to show
this is really the case in our experiments, we measured the correlations between the polarizations of photons
in each pair, separately, both before and after the phase fluctuations are induced. Polarization correlations
were probed by making two-fold coincidence measurements. For example, for the photon pair in modes 3
and 4, coincidence counts at detectors D4 and D5 were recorded for various angles of HWP3 and HWP4

while the photons in modes 1 and 2 were blocked and the HWP5 was adjusted so that it does not rotate
the polarization. For the pair in modes 1 and 2, the same measurements were performed for various angles
of HWP1 and HWP2 while the photons in modes 3 and 4 were blocked and HWP6 was adjusted so that
it does not rotate the polarization. The results of these measurements are given in Table 1 and Fig.14 for
the pair in mode 3 and 4. From the table, it is seen that |HH〉34 and |V V 〉34 are dominant. The coherence
between these terms should show up as an interference fringe in the count rate of D4 when HWP4 is rotated
on the condition that a photon is detected in mode 3. It is seen that the visibility of the interference curve is
0.89 before the LCR is modulated (no phase fluctuation) implying the presence of highly entangled photon
pairs. When the phase fluctuations are introduced as above by modulating the LCR, the visibility of the
interference curve became less than 0.03 which is a sign of the loss of coherence. By making tomographic
measurement, we reconstructed the density matrix for the decohered pair and calculated the entanglement
of formation to be very small ' 0.0018. These results clearly indicated that our source for photon pair
generation and the realization of the phase damping channel worked as expected. Moreover, we see that
when each pair is considered individually after the channel, there is almost no entanglement. As we have
discussed above, using this scheme which is based on collective manipulation of photon pairs, Alice and
Bob can extract a highly entangled photon pair if the detectors D4 and D5 register photons. Since our
source is not a deterministic source, we have to make post-selection, hence a four-fold coincidence detection
at detectors D2, D4, D5 and D6. This will automatically discard the events where there are two photons
in mode 5 (no photon in mode 6). In Fig.14 (C), we present the result of the polarization correlation
measurements for photons in mode 2 and 6 conditioned on coincidence detection at detectors D4 and D5.

The visibility of the interference curve is found to be 0.63± 0.05 which is well above the achievable value
of 0.5 in the classical model. Then the lower bound for the fidelity of the extracted entangled state in modes
2 and 6 to a maximally entangled state |Φ−〉 is calculated to be 0.78± 0.05. Then from this lower bound of
fidelity, the lower bound for the entanglement of formation of the extracted pair is calculated as 0.42± 0.12.
Thus the extracted pair in this experiment is clearly shown to be entangled. The visibility of the interference
curve and hence the amount of entanglement extracted in this experiment is limited mainly due to residual
temporal and spatial mode mismatch between the photons belonging to different pairs.
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Table 1. Rates of coincidence detection on {|H〉, |V 〉} basis before decoherence, after decoherence, and after the
extraction process. |HH〉 and |V V 〉 are dominant. The coherence of these terms are probed by making measurement
along the diagonal basis as shown in Fig.14.

HH HV VH VV
Before decoherence (10s) 15230 118 244 15173

After decoherence (80s) 121189 1225 2016 118858

After extraction (9600s) 109 5 4 116
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Figure 14. Results of photon correlation measurements for three important stages of the experiments. (A) Testing
the entanglement of the photon pair generated by the SPDC source used in the experiment. This measurement was
performed while the LCR was kept unmodulated (no phase fluctuation). (B) Verification of the decoherence of the
individual photon pairs when one photon from each pair passes through the LCR while the LCR is modulated (phase
fluctuations are induced). Coherence is lost. Coincidence events rate where a photon in polarization |D〉 is detected
at D5 and a linearly polarized photon with angle θ is detected at D4 are shown. During these measurements modes
1 and 2 were blocked. (C) Verification of the entanglement of the extracted pair after the collective manipulation
of two photons. Coincidence events where a photon in polarization |D〉 (or |D〉) is detected at D6 while a linearly
polarized photon with polarization angle θ is detected at D2 on the condition that D4 and D5 both register a photon.
The error bars assume Poisson statistics and the solid curves represent the best fit to the data. θ = 0, θ = π/4,
θ = π/2, θ = 3π/4, respectively correspond to |H〉, |D〉, |V 〉, and |D〉.

6. Results and Conclusions

In this review paper, we have shown that LOT contains powerful tools that can enable the realization of
fundamental requirements for QIP applications. Although we have restricted ourselves for the review of qubit
state generation and entanglement extraction, LOT has been shown both theoretically and experimentally to
be applicable in quantum gate construction, as well [48, 49, 50, 51]. The most important restrictions on LOT
applications come from more fundamental problems in single photon counting and generation. However, the
recent developments and ongoing successful works on these counters and sources give us the hope that such
problems will be overcome in near future. Therefore, there waits new and exciting fields to be explored using
those new equipments within the linear optics toolbox.
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