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Abstract

Due to nontrivial orbital pairing symmetry, surfaces and interfaces of high-Tc superconductors sup-
port states which violate time-reversal (T -) symmetry. Such naturally degenerate states, useful as work-
ing states of a qubit, are standard for atomic or molecular-size qubit prototypes (e.g. based on nuclear
spins), but exceptional for mesoscopic qubits. (In particular, they hold promise of a better scalability.) In
these lectures I review the physics of T -breaking on surfaces and interfaces of high-Tc superconductors;
then describe existing proposals for high-Tc based qubits and the current state of experiments; finally, I
discuss the decoherence sources in the system, open questions, and future research directions.
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A researcher, in deep concentration,
Performed quantum gate computation,
But Erwin, his cat,
Qubit him so bad,
That he lost most of his reputation.

1. Time-reversal symmetry breaking on surfaces and interfaces
of high-Tc superconductors

1.1. Description of transport in high-Tc structures.

The lack of accepted microscopic theory of superconductivity in high-Tc cuprates did not prevent success-
ful research in this field since 1986. We have in several respects the repetition of the situation ca 1938, but
with a clear advantage of already having BCS theory to provide insight and language for phenomenological
treatment.

On this level, high-Tc superconductors are successfully described by Gor’kov equations for normal and
anomalous Green’s functions[1], which in Matsubara representation are defined in the usual way:

Gαβ(k, τ ; k′, τ ′) = −
〈
Tτaα(τ )a†β(τ ′)

〉
,

Fαβ = (k, τ ; k′, τ ′) = 〈Tτakα(τ )a−k′β(τ ′)〉 , (1)

F+
αβ = (k, τ ; k′, τ ′) =

〈
Tτa+
−kα(τ )a†k′β(τ ′)

〉
.
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The only difference from conventional superconductivity is in the nontrivial symmetry of the pairing
potential,

Hint =
1
2

∑
k,k′,q

Vαβ,λµ(k,k′)a†−k+q/2,αa
†
k+q/2,βak′+q/2,λa−k′+q/2,µ. (2)

As usual, we write equations of motion for each of these functions and use the ”anomalous mean field”
recipe to decouple the four-operator products,

〈
a†a†aa

〉
→
〈
a†a†

〉
〈aa〉. This brings out modified self-

consistency relations for the order parameter,

∆αβ(k,q) = −
∑
k′

Vβα,λµ(k,k′)Fλµ(k′ + q/2, τ ; k′ − q/2, τ ),

∆+
λµ(k,q) = −

∑
k′

Vαβ,µλ(k′,k)F+
αβ(k′ − q/2, τ ; k′ + q/2, τ ), (3)

and Gor’kov equations, which in the spatially uniform, stationary system read:

(iωn − ξk)Gαβ(k, ωn) + ∆αγF
+
γβ(k, ωn) = δαβ;

(iωn + ξk)F+
αβ(k, ωn) + ∆+

αγGγβ(k, ωn) = 0; (4)
(iωn − ξk)Fαβ(k, ωn) −∆αγGβγ(−k,−ωn) = 0.

Here ξk is the Fourier transform of the kinetic energy operator, ξ̂ = (2m)−1p̂2 − µ, µ being the chemical
potential.

It was established, that in high-Tc cuprates, like YBCO, the order parameter is a spin singlet with d-wave
orbital symmetry,

∆αβ(k) = δαβ∆(k), ∆(k) ∝ cos2(kx)− cos2(ky) (5)

(with axes chosen along crystallographic directions (1,0,0), (0,1,0) in the cuprate layer)[11, 12, 13]. For
the following, the most important consequence of this symmetry is the sign change of ∆(k) for certain
directions. This means, first, that there exists an intrinsic phase shift of π between different directions
in the crystal; second, that in certain (nodal) directions the order parameter is zero, and therefore the
quasiparticle excitation spectrum is not gapped.

On the spatial scale exceeding the coherence length, ξ0, it is more convenient to use the Eilenberger
equations[2], which follow from (4) in the quasiclassical limit. This is certainly justified in high-Tc cuprates
with their small ξ0.

The Eilenberger equations are conveniently written in matrix form,

vF · Ĝ(ωn) + [ωnτ̂3 + ∆̂, Ĝ(ωn)] = 0. (6)

Here the matrix Green’s function and order parameter,

Ĝ(vF , r;ωn) =
(
gωn(vF , r) fωn(vF , r)
f+
ωn

(vF , r) gωn(vF , r)

)
; ∆̂(vF , r;ωn) =

(
0 ∆(vF , r)

∆+(vF , r) 0

)
, (7)

depend both on position r and on (direction of) Fermi velocity vF . (The layered structure of high-Tc
cuprates allows us to reduce the problem to two dimensions to a good accuracy, unless we have to consider,
for example, a twist junction[3], or tunneling in the c-direction.) The components of Ĝ, obtained from

Gor’kov’s functions by integration over energies, satisfy the normalization condition, gωn =
√

1− f+
ωnfωn ,

and the self-consistency relation (3) becomes

∆(vF , r) = 2πN(0)T
∑
ωn>0

〈V (vF ,v′F )fωn(vF , r)〉θ . (8)

Here the angle averaging 〈〉θ =
∫ 2π

0
dθ
2π

.
In a little different language, the same results are obtained using the Andreev approximation in the

Bogoliubov-de Gennes equations for the components of the single-bogolon wave function, (u(r), v(r))>. The
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original Bogoliubov-de Gennes equations are obtained in the process of diagonalization of pairing BCS
Hamiltonian [4]:(

− 1
2m
∇2 − µ ∆k(r)

∆∗k(r) 1
2m
∇2 + µ

)(
uk(r)
vk(r)

)
≈
(
−vF · ∇ ∆k(r)
∆∗k(r) vF · ∇

)(
uk(r)
vk(r)

)
= Ek

(
uk(r)
vk(r)

)
. (9)

Here the wave vector k labels the bogolon state, Ek is the excitation energy, and the self-consistency relation
reads

∆∗k(r, T ) =
∑
k′

V (k,k′)u∗k′(r)vk′(r) tanh
Ek′ [∆k′(r)]

2T
. (10)

Unlike the Gor’kov equations (4) (or the initial Bogoliubov-de Gennes equations), the equations (6,9) are
of the first order in gradients, which allows us to introduce quasiclassical trajectories (characteristics) along
vF and solve the corresponding equations by integration along these trajectories, with proper boundary
conditions.

It is known that a quasiparticle (electron or hole, described, in terms of Bogoliubov-de Gennes equations,
by a vector ~ψk = (1, 0)> exp(ikr) ((0, 1)> exp(ikr)) respectively) impinging on the superconductor from the
normal metal can undergo an Andreev reflection, switching the branch of the excitation spectrum, acquiring
an additional phase, and almost exactly reversing the direction of its group velocity (this happens because
an electron and a hole with the same momentum k have opposite group velocities):

~ψ → R̂A · ~ψ, (11)

where

R̂A =
(

0 e−iπ/2+iχ

e−iπ/2−iχ 0

)
. (12)

The phase χ is the phase of the superconducting order parameter; the (−π/2)-shift is exact in the limit when
the quasiparticle energy is much less than the superconducting gap (generally it is some energy-dependent
function δ(E)).

Now consider a slab of normal conductor sandwiched between two superconductors (SNS junction). If
we neglect the spatial dependence of the order parameter in superconductors, we don’t need to solve the self-
consistency equations (3,10). Therefore the problem reduces to a single-particle one and is most naturally
solved in Bogoliubov-de Gennes language (Eq.(9) becomes a Schrödinger equation for a two-component wave
function).

Solutions of this equation with the boundary condition (12) are standing waves. Obviously in the act
of Andreev reflection a charge of ±2e is transferred to the superconductor, therefore every standing wave
(Andreev level) carries supercurrent.

Quasiclassically, in order to find Andreev levels in a normal layer of thickness L, sandwiched between
”left” and ”right” superconductors, with phase difference χ, we write the Bohr-Sommerfeld quantization
condition, ∮

p(E)dq ± χ+ δl(E) + δr(E) = 2πn. (13)

Here the kinematic phase gain of the quasiparticle along the closed trajectory,
∮
p(E)dq =

∫ r
l
pe(E)dq +∫ l

r
ph(E)dq =

∫ r
l

(pe(E) − ph(E))dq, takes into account electron-hole (or vice versa) conversion.
The positions of levels, and therefore the supercurrent, depend on the phase difference χ between the

superconducting banks, and we arrive at Josephson effect in SNS structures [5, 6, 7]. Actually, the language
of Andreev levels can be successfully used to describe the Josephson effect in general (for a review see [8]).

1.2. π-junctions and time-reversal symmetry breaking

The crucial experiments([14, 15, 16]; see also review[13]) which confirmed d-wave pairing symmetry in
high-Tc cuprates were directed at catching the intrinsic phase π-shift. The general idea of the experiment
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follows from the fluxoid quantization condition in a superconductor: if a superconducting contour C is
penetrated by the magnetic flux Φ, then [17]

2π
Φ
Φ0

+
∮
C
ds · ∇φ = 2πn, Φ0 ≡

hc

2e
(14)

(in CGS units; Φ0 ≈ 2 · 10−15Wb in SI).
In the case of a massive superconducting ring the contour can be chosen well inside the superconductor,

where there is no current and therefore no superconducting phase gradient. Then the magnetic flux is
quantized in units of Φ0.

If there is a Josephson junction in the ring, the phase change will concentrate there, yielding

2π
Φ
Φ0

+ χ = 2πn. (15)

Here χ is the phase difference across the junction.
The equilibrium value of χ is determined by the interplay between Josephson and magnetic energy of

the system. The Josephson energy is related to the Josephson current via

I(χ) = 2e
∂E(χ)
∂χ

, (16)

and in the simplest case of a tunneling junction, I(χ) = Ic sinχ, and E(χ) = −(Ic/2e) cosχ. For a conven-
tional Josephson junction E(χ) is at a minimum when χ = 0; therefore in the absence of an external field
the total energy of the ring,

U(χ) = E(χ) +Emagn.(Φ) = − Ic
2e

cosχ+
( χ

2π

)2 Φ2
0

2L
, (17)

has a single global minimum at χ = 0 for any value of 2πLIc/Φ0 (here L is the self-inductance of the ring).
Not so if the pairing symmetry is d-wave: if we choose the configuration of the loop in such a way, that

the opposite sign lobes contact across the junction (so called π-junction), the current-phase relation switches
to I(χ) = Ic sin(χ + π) = −Ic sinχ, and E(χ) = +(Ic/2e) cosχ. Therefore if 2πLIc/Φ0 > 1, the system has
two degenerate minima; if this ratio is so big that the magnetic energy can be neglected compared to the
Josephson energy, the equilibrium phase difference is χ0 = π, and we obtain from (15), that

Φ =
(
n+

1
2

)
Φ0. (18)

Thus in equilibrium there is a spontaneous flux Φ0/2 in the ring. Its direction (up or down) allows us to
distinguish the two ground states of the system, where the time-reversal symmetry is thus broken.

Such behaviour was indeed observed in an experiment [16]: a tri-crystal ring of YBCO generated a
half-flux quantum, which was detected by SQUID microscopy.

A natural question is whether π-junctions are the only possibility provided by d-wave symmetry, and
whether only Φ0/2 fluxes can be spontaneously generated. The answer is no: in principle, any equilib-
rium phase difference can be realized in a d-wave junction, and time-reversal symmetry breaking can be
accompanied by generation of an arbitrary magnetic flux, or none at all.

1.3. Josephson effect and T-breaking in SND and DND junctions

Let us return to an SNS junction (assuming a rectangular normal part, L ×W ). Each quasiclassical
trajectory connecting two superconductors acts as a conduit of supercurrent between them, an ”Andreev
tube” of diameter ∼ λF , which carries supercurrent, determined by the phase difference between its ends.
If we neglect the normal scattering at NS interfaces, there is no mixing between different trajectories, since
Andreev reflections simply reverse the velocity, sending the reflected particle along the same path. It can be
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shown, that if L� ξ0, every such trajectory passing through the point r contributes a partial supercurrent
density[4, 9]

j(r,vF ) =
2evF
λFW

∞∑
n=1

(−1)n+1L(vF )
lT

sin(n(φ1 − φ2))
sinh(nL(vF )/lT )

e−2nL(vF )/vF τi . (19)

In Eq.(19), L(vF ) is the length of the trajectory, and lT = vF/2πkBT is the so called normal metal
coherence length. (We also included effects of weak impurity scattering with scattering time τi.) The
physical meaning of lT is that in a clean normal metal an electron and Andreev-reflected hole (or vice versa)
with energy kBT maintain phase coherence across distance lT simply because they travel along the same
trajectory. Indeed, the momentum of an electron (hole) with energy kBT � EF is pe,h ≈ pF ±(∂EpF )kBT =
pF ± kBT/vF . At a distance l from the point of Andreev reflection (measured along the trajectory) they
would gain phase difference (pe − ph)l = 2kBT l/vF . If the phase difference is of order π, the coherence is
effectively lost, so we get lT,ballistic ∼ vF/kBT . The factor of (2π)−1 appears in accurate treatment, like in
Eq.(19).

As an aside, in case of very strong scattering in the normal part of the system, when the motion of
electrons/holes is diffusive with diffusion coefficient D, we can still use the same argument. Now the observ-
able length scale is given by the displacement of quasiparticle, l2 = Dt, while the phase difference between
the electron and the hole is gained along the crooked path of length l′ = vF t = vF l

2/D they take. So the
condition 2kBT l′/vF ∼ π yields lT,diffusive ∼

√
D/kBT .

Such coherence in a normal metal is a purely kinematic effect, since there is no interaction in the normal
(non-magnetic) metal, which would either support or suppress superconductivity. (”Normal metal is neutral
with respect to superconducting correlations.”-C.W.J. Beenakker.) Nevertheless its effects are quite real,
e.g. the very possibility of coherent supercurrent flow (Josephson effect) in SNS junctions.

Let us apply the approach of (19) to calculation of Josephson current in a clean SNS contact. In every
point of NS boundary (e.g. x = L), we integrate (19) over directions of vF (such that vFx > 0). As it should
be expected, the result reproduces Ishii’s sawtooth [6]: in the limit of zero temperature and no scattering
inside the normal layer (χ ≡ φ1 − φ2),

I(χ) =
∫
dy

∑
vFx>0

jx(y,vF ) ∝ 2
π

∞∑
n=1

(−1)n+1 sin(nχ)
n

=
χ

π
, |χ| < π (20)

(periodically extended).
Consider now an SND junction, that is, an SNS contact, where one of the superconductors has d-wave

symmetry [10, 4]. Now, when integrating over the directions of vF we encounter two kinds of trajectories:
”zero”- and ”π”-trajectories, which link the conventional superconductor with the lobes of the d-wave order
parameter of opposite sign (intrinsic phase π-shift). The Josephson current is therefore a sum of two
contributions like (20), one of which has the phase argument χ+π. The relative weight of these contributions
depends on the orientation of the SD boundary with respect to the crystal axes of the cuprate (to which the
order parameter is nailed). In the case of a 45◦ orientation, when the boundary is along the (110) plane and
is therefore normal to the nodal direction of the d-wave order parameter, the two groups contribute equally,
yielding (cos θ = vFx/vF )

I(χ) =
zero levels∑
vFx>0

evF cos θ
L

2
π

∞∑
n=1

(−1)n+1e−2nL/li cos θ L

lT cos θ
sin(nχ) + sin(n(χ+ π))

sinh(nL/lT cos θ)
. (21)

All odd harmonics cancel, and we obtain a π-periodic sawtooth: at T = 0, li →∞

I(χ) ∝ χ− π/2
π/2

, 0 < χ < π, (22)

(periodically extended). (This is simply a sum of two identical, 2π-periodic sawtooth functions, shifted by π,
see Fig.2.) There are two stable equilibrium phase differences across the junction: χ = ±π/2. This means,
that the time-reversal symmetry is broken. (In addition, the frequency of ac Josephson effect in the system
will be doubled [10, 20]).
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Figure 1. Josephson and spontaneous currents in SND and DND junctions. Arrows a and b indicate Andreev zero-
and π-levels. In equilibrium their contributions to the Josephson current (normal to the NS boundary) cancel. By
switching current directions (dashed arrows) we come to the other ground state, with the opposite direction of the
spontaneous current, jS.

I
J

χ

I
J

χ

I
J

χ

J
S

χ

a) b)

c) d)

Figure 2. Josephson and spontaneous currents in SND and DND junctions. a)Contributions of zero- and π-levels to
the Josephson current in a 0-45◦ DD(SD) junction. b)Resulting current-phase dependence. c) Same in more general
case. d) Spontaneous current in a 0-45◦ junction.
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The SND junction may seem simply a ”superposition” of two SNS junctions, with phase differences
shifted by π, but the situation is more interesting. In equilibrium, spontaneous currents flow in the normal
layer, parallel to the boundary[18]. This is clear from our ”Andreev tube” treatment. Take, for example, two
trajectories, with θ = +α and θ = −α, carrying equal partial currents. Their contribution to the Josephson
current (normal to the boundary) is zero, since their currents’ projections on this direction cancel each other.
On the contrary, the projections on the direction, parallel to the boundary, add. The phase dependence
of this current, Is(χ), can be obtained in the same way as for the Josephson current. In the limit of zero
temperature and clean normal layer it reduces to a difference of two sawtooth functions, yielding

Is(χ) ∝ sgnχ, |χ| < π, (23)

again periodically extended. States with π/2 and −π/2 thus carry spontaneous currents in opposite direc-
tions. If an SND junction is closed on itself (annular geometry), these currents translate into spontaneous
magnetic fluxes, normal to the plane of the system [19].

Note that all of the above is only possible if higher harmonics of current-phase dependence are not all
zero, since all the odd harmonics (including the standard Josephson term, sinχ) cancel. (The expected
”total depairing” in the (110) plane.)

In the case of arbitrary orientation of the ND plane, the weights of zero- and π-sawtooth functions will
be different (Fig.2c). Then the current-phase dependence regains 2π-periodicity. At zero temperature and
in the absence of scattering, the T-breaking is generally still present. The equilibrium phase difference is no
longer ±π/2 and depends on the geometry. (The exception is when the boundary is along (100) or (010).
Then the contribution of only one group survives, and we have either standard, or π-junction. Of course,
it is impossible to tell, whether a single junction is a π-junction - it is necessary to look at the contour, in
which it is included[12].) Finite temperature and scattering suppress higher harmonics first, and therefore
the transition to non-T-breaking state is possible [18].

Essentially the same interplay of zero- and π-levels takes place in DND junctions. There we have a some-
what richer picture. For example, the time-reversal symmetry can be broken without producing spontaneous
currents (Fig.3c).

One of the reliable methods of fabrication of Josephson devices in high-Tc cuprates is based on forming
grain boundary junctions (see e.g. [25]). The order parameter is suppressed within∼ ξ0 around the boundary,
and this region can be considered ”normal”. Therefore the SND/DND model applies, but only qualitatively,
since the above equations are derived in the limit L� ξ0. A more accurate approach, based on Eilenberger
equations (6), confirms the qualitative similarity between DND and DD junctions[21].

Integrating the current-phase dependences of Fig.2, we obtain the Josephson energy of the junction,
Eq.(16), which has two minima, corresponding to its degenerate ground states. This bistability plays the
crucial role in qubit applications of high-Tc superconductors. This prediction was confirmed in grain bound-
ary YBCO junctions[26] (Fig.6).

So far we did not take into account normal scattering on NS interfaces, and therefore missed an important
point. Let us first consider a boundary of a d-wave superconductor with a vacuum or an insulator. The
order parameter near the surface is suppressed, and a qualitative understanding of the situation can be
obtained by ”inserting” a normal layer of thickness ∼ ξ0 between the insulator and the bulk superconductor,
similar to the DND model[27]. Energy levels in such a layer can be found from (13) for every quasiparticle
trajectory (assuming specular reflection), Fig.7a:∮

p(E)dq + 2δ(E) + πs = 2πn. (24)

Here s = 0 or s = 1 depending on whether the trajectory connects the lobes of the same or opposite sign.
Note that

∮
p(0)dq = 0 and 2δ(0) = π. Therefore solution E = 0 exists if and only if s = 1. This is the

zero-energy, or midgap, state (ZES, MGS), which obviously cannot exist in conventional superconductors,
where s always equalis zero (see review [27]).

Now consider a DD junction with finite transparency, D < 1 (instead of the case of ideal transparency,
D = 1, which we dealt with earlier). We can use the DND model, inserting in the middle of the normal
layer an infinitely thin barrier with transparency D(θ), dependent on the incidence angle of the quasiparticle
trajectory[27].
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Figure 3. Josephson and spontaneous currents in DND junctions [21, 22]. a) Arbitrary case. b) Asymmetric (0-45◦)
junction. c) Symmetric (22.5◦-22.5◦) junction. Directions corresponding to zero-levels are shaded. In the case c) the
contributions of zero- and π-levels to the current in y-direction are identically zero; therefore the spontaneous current
is absent, but the time-reversal symmetry is still broken. d) Orientation of the d-wave order parameter with respect
to the crystalline axes.

Figure 4. Josephson current (a) and spontaneous current (b) versus the phase difference in a clean DD grain
boundary junction calculated in the non-self-consistent approximation. Temperature is T = 0.1Tc. The mismatch
angles are χl = 0 and χr = 45◦ (1), 40◦ (2), 34◦ (3), 22.5◦ (4) [22].
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Figure 5. Equilibrium phase difference φ0 in a clean grain boundary junction as a function of the mismatch angle:
χl = 0; χr = δχ (Fig. 3). Parameter t = T/Tc is the dimensionless temperature. Triangles and circles correspond
to self-consistent and non-self-consistent solutions of Eilenberger equations, respectively. The 0-45◦ junction is a
π/2-junction at any temperature, since by symmetry all odd components of the Josephson current are cancelled.
Compare this to the behaviour observed in YBCO junctions (Fig.6).

Figure 6. Bistability in a grain boundary YBCO junction[26]. Free energy, restored from Josephson current-phase
dependence, is plotted vs. phase for (a) 0-45◦ and (b) symmetric (22.5◦-22.5◦) junction. Curves (top to bottom)
correspond to temperatures (a) 30, 20, 15, 10, and 4.2 K; (b) 20, 15, 11, 10, 5, and 1.6 K, respectively.
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D'N'

θ

D N

θ

DNI

θ

a) b)

Figure 7. Surface bound state in a d-wave superconductor (a) and model of a DD junction with finite transparency
(b) (after [27]) .

Bohr-Sommerfeld quantization conditions for quasiparticle trajectories shown in Fig.7b yield the energy
levels of the bound states in the junction. In the limit of low transparency, D � 1, the critical current is
much larger (O(

√
D), not O(D)), if the orientations of the d-wave order parameter allow formation of zero

energy states on both sides of the barrier.
Even when transparency is not small, the presence of ZES may be qualitatively important. For example,

the junction can become a π-junction at low enough temperature (see review [27]); you can see such behaviour
in Fig.6b, where below 11 K the potential wells are centered around π rather than zero.

The appearance of spontaneous currents in SD and DD junctions can be considered as due to a time-
reversal symmetry breaking order parameter with s + eiχ0d or d + eiχ0d′ symmetry, which is formed in
the junction area due to the proximity effect (here χ0 6= 0, π is the equilibrium phase difference across such
junction). In certain conditions, such combinations could appear near the surface of a d-wave superconductor,
leading to spontaneous currents and magnetic moments. So far there is no conclusive evidence for such
currents (see [23] and references therein).

2. Mesosopic d-wave qubits

2.1. Flux qubits with conventional superconductors

Qubits are the basic building blocks of future quantum computers. Essentially they are two-state quantum
systems which can be put in an arbitrary superposition of states (”initialized”), coupled to each other,
undergo desired quantum evolution and measured (”read out”) before losing quantum coherence. Here we
concentrate on superconducting phase qubits.

The simplest example of such a qubit is an RF SQUID, that is, a loop with a single Josephson junction (like
in Section 1.2). We saw, that in certain circumstances the system has two degenerate minima, corresponding
to a flux of ±Φ0/2 through the loop.

The Hamiltonian of such a system is

H = UJ(χ) + UC (Q̂), (25)

where UC is the Coulomb energy of charge Q on the junction (which has some finite capacitance C). The
charge operator Q̂ can be expressed in terms of the phase difference across the junction as Q̂ = −i∂χ (see
e.g. [17, 4]). Due to the presence of the Coulomb term, phase is no longer a ”good” quantum variable,
and the eigenstates of the Hamiltonian (25) become linear combinations of ”up” and ”down”, or ”left” and
”right”, states (with spontaneous flux ±Φ0/2). In other words, the qubit can now tunnel between the wells
of the Josephson potential, corresponding to certain phases (Fig.6).1

1This description is appropriate as long as the Coulomb energy does not exceed the Josephson energy, otherwise the natural
starting point would be the states with definite charge on the junction; we do not consider such systems (charge qubits) here,
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Coherent quantum tunneling was indeed observed in an RF SQUID[29]. Simultaneously, this effect was
obtained in a different system, consisting of a small inductance loop with three Josephson junctions (the so
called persistent current qubit, [30]).

The advantage of the latter design is as follows. As we have seen in Section 1.2, the degenerate states
appear in the RF SQUID only if the self-inductance of the loop is large enough, and they carry comparatively
large spontaneous fluxes, ±Φ0/2. Therefore they will couple to the external degrees of freedom and reduce
the time τd during which the system maintain its quantum coherence. Even more important is the fact that
the resulting potential barrier is comparatively high, which may prohibit the tunneling we are after. In an
experiment [29] the coherent tunneling was indeed observed not between the lowest, but between the excited
states in the wells.

In case of the three-junction loop of negligible self-inductance, the fluxoid quantization condition (15)
leaves two independent Josephson phase differences in the circuit:

χ1 + χ2 + χ2 + 2π
Φexternal

Φ0
= 2πn. (26)

The Josephson energy,
UJ = −EJ1 cos(χ1)− EJ2 cos(χ2) −EJ3 cos(χ3) (27)

of the system forms a 2D potential profile (e.g. as a function of χ1, χ2), which depends on the external flux
Φexternal ≡ f × Φ0 as a parameter.

If f = 0.5, and the EJ ’s are comparable, this potential has two degenerate minima; unlike the case of
the RF SQUID, the potential barrier can be small, as are the spontaneous fluxes corresponding to the ”left”
and ”right” states.

2.2. Rationale and proposed designs for qubits with d-wave superconductors

One of the main problems with the designs of the previous section is the necessity to artificially break
the T-symmetry of the system by putting a half flux quantum through it. Estimates show [31] that the
required relative accuracy is 10−5 − 10−6. The micron-size qubits must be positioned close enough to each
other to make possible their coupling; the dispersion of qubit parameters means that applied fields must
be locally calibrated; this is a formidable task given such sources of field fluctuations as fields generated by
persistent currents in qubits themselves, which depend on the state of the qubit; field creep in the shielding;
captured fluxes and magnetic impurities. Moreover, the circuitry which produces and tunes the bias fields
is an additional source of decoherence in the system.

These problems are avoided if the qubit is intrinsically bistable. The most straightforward way to achieve
this is to substitute the external flux by a static phase shifter, a Josephson junction with unconventional
superconductors with nonzero equilibrium phase shift χ0. For example, three-junction (persistent current,
Mooij) qubits would require an extra π-junction (χ0 = π) [31]. The only difference compared to the case of
an external magnetic field bias is in the prevalent decoherence sources: instead of noise from field-generating
circuits we will have to take into account intrinsic decoherence from nodal quasiparticles and interface bound
states (see below).

Another suggestion [32] is based on the same tricrystal high-Tc ring geometry as in experiments[16, 13]
(Fig. 8). The spontaneous flux ±Φ0 generated by such a structure labels the qubit states |0〉, |1〉. Tunnelling
between them, necessary for quantum operations, is made possible by applying a magnetic field in the plane
of the system. Indeed, then the states |0〉, |1〉 are no longer the eigenstates of the Hamiltonian.

The tricrystal ring D is surrounded by an s-wave superconductor ring S, aimed at screening the sponta-
neous flux from the environment (including other qubits). Indeed, due to the fluxoid quantization condition
(14) in the ring S, the total flux through it must be an integer multiple of Φ0, and therefore the states of
the rings D and S become entangled (e.g. α|0〉D

⊗
|1〉S + β|1〉D

⊗
|0〉S).

This entanglement puts forward an interesting problem. In order to perform two-qubit operations, as
well as initialization and readout, it is necessary to make the qubits ”visible” to each other and the outside
world. To do this, it is suggested in [32] to locally destroy superconductivity in the screening ring by using

but they were successfully implemented experimentally[28].
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S D

Figure 8. A tricrystal high-Tc qubit [32]. The ring D formed of high-Tc film contains one π-junction and there-
fore supports a spontaneous flux ±Φ0/2[16]. The ring S of conventional superconductor screens this flux from the
environment.

a superconducting field effect transistor (SUFET) (not shown) (i.e. by applying a gate voltage to the part
of the screening ring). Will this transition collapse the wave function of the qubit, destroying quantum
coherence between |0〉D and |1〉D?

Now let us consider the case when the bistable d-wave system is employed dynamically, that is, when its
phase is allowed to tunnel between the degenerate values. In a so called ”quiet” qubit [33] an SDS’ junction
(effectively two SD junctions in the (110) direction) put in a small-inductance SQUID loop in parallel with
a conventional Josephson junction and a large capacitor, Fig.9. One of the SD junctions plays the role of a
π/2-phase shifter. The other junction’s capacitance C is small enough to make possible tunneling between
the π/2 and −π/2-states due to the Coulomb energy Q2/2C. Two consecutive SD junctions are effectively
a single junction with equilibrium phases 0 and π (which are chosen as working states of the qubit, |0〉
and |1〉). The proposed control mechanisms are based on switches c, s. Switch c connects the small S’D
junction to a large capacitor, thus suppressing the tunneling. Connecting s for the duration ∆t creates an
energy difference ∆E between |0〉 and |1〉, because in the latter case we have a frustrated SQUID with 0-
and π- junctions, which generates Φ0/2 spontaneous flux. This is a generalization of applying a σz operation
to the qubit. Finally, if switch c is open, the phase of the small junction can tunnel between 0 and π.
Entanglement between different qubits is realized by connecting them through another Josephson junction
in a bigger SQUID loop.2

Due to the absence of currents through the loop during tunneling between |0〉 and |1〉 the authors called
it ”quiet”, though as we have seen small currents and fluxes are still generated near SD boundaries.

Another design based on the same bistability [24, 34] only requires one SD or DD boundary (Fig.10).
Here a small island contacts a massive superconductor, and the angle between the orientation of the d-
wave order parameter and the direction of the boundary can be arbitrary (as long as it is compatible with
bistability [21, 22], Fig.5). The advantage of such a design is, that the potential barrier can be to a certain
extent controlled and suppressed; moreover, in general the two ”working” minima (−φ0, φ0; the phase of
the bulk superconductor across the boundary is zero) will be separated from each other by a smaller barrier,

2The switches in question are in no way trivial, since they must operate without destroying quantum coherence of the
system. One possible solution is to use a frustrated dc-SQUID[33], that is, insert in the wire a small inductance loop with two
equivalent Josephson junctions in parallel. The total supercurrent through the switch, I = I1(χ1) + I2(χ2), goes to zero if the
phase difference (tunable by external magnetic flux) χ1 − χ2 = π. Modifications of this scheme are discussed in [31]. Another
possibility is to use superconducting single-electron transistors (SSETs, ”parity keys”)[24].
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Figure 9. ”Quiet” SDS’ qubit (after [33]). Switches c and s connect the SDS’ structure to a conventional Josephson
junction, S, and a large capacitor, Cext.

than from the equivalent states differing by 2πn. This allows us to disregard the ”leakage” of the qubit state
from the working space spanned by (|0〉,|1〉), which cannot be done in the ”quiet” design with the exact
π-periodicity of the potential profile.

Qubit operations in this system are realized by connecting qubits to each other and to the ground
electrode (normal or superconducting) through SSETs (or other kind of switches). When isolated, a qubit
undergoes natural evolution between |0〉 (state with phase −φ0) and |1〉 (phase φ0), which realizes the σx
operation. The σz operation (that is, adding a controllable phase shift to one of the states with respect
to the other) can be realized by e.g. connecting the island through a SSET to the massive superconductor
(”bus”), the phase of which χ 6= 0. The same operation repeated periodically can be used to block unwanted
tunneling (so called ”bang-bang” technique) [34]: physically, if we keep shifting the levels in the right and
left well with respect to each other, the tunneling is suppressed, since they are practically never in resonance.

A different design was suggested in [38] (”silent qubit”). Here two small bistable d-wave grain boundary
junctions with a small superconducting island between them are set in a SQUID loop (Fig. 11). As usual,
”small” means that the total capacitance of the system allows phase tunneling: the Coulomb energy term
in (25) is not negligible.

In the limit of negligible self-inductance of the loop, the quantization condition (14) fixes the sum of the
phases to the external flux, χ1 + χ2 ≡ φ = 2πΦ/Φ0. This leaves only one independent phase combination,
the superconducting phase of the island, θ = (χ1 − χ2)/2.

Keeping for simplicity only the first two harmonics in the current-phase relation of the junctions,

Ii = I
(I)
i sinχ1 − I(II)

i sin 2χ ≡
≡ I0i [sinχi sinγi − sin 2χi cos γi] , (28)

we find for the Josephson potential of the qubit the expression (Fig. 12)

UJ (θ, φ) = −(I01/2e) [f(φ/2 + θ, γ1) + ηf(φ2 − θ, γ2)] . (29)

Here f(ϕ, γ) = cos(ϕ) sin(γ) − (1/2)cos(2ϕ) cos(γ), and η = I02/I01. Parameter γ ∈ [0, π/2] provides a
convenient parametrization for the current-phase dependence in a DD junction.

In the absence of the external flux (φ = 0) the qubit potential UJ(θ, 0) has two degenerate minima.
Moreover, if the junctions only differ in the amplitude of critical current, but have the same γ, there is
no spontaneous current in the loop in either minimum, which means that the qubit is decoupled from the
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Figure 10. A qubit based on an SD (a) or grain boundary DD (b) Josephson junction[24, 34]. Parity keys
(superconducting single electron transistors) are used to connect the nearest neighbours. The critical current through
the parity key (a small superconducting island) can be tuned by changing the gate voltage, Vg [35]. M are magnetic
force microscope tips, intended to read out spontaneous fluxes. An alternative readout scheme relies on direct
detection of the phase on the island, which affects the critical current between the bus and the ground [36].

J J'A A'

Figure 11. A silent d-wave qubit[38]. The structure is formed of a high-Tc film around the grain boundary AA’ and
contains two grain boundary junction (J,J’).
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J

Figure 12. The Josephson energy profile for the silent qubit[38] as a function of the island phase, θ; γ1 = γ2 = π/4;
η = 0.5. In the limit of negligible self-inductance the potential depends on the external magnetic flux, Φext =
Φ0×(φ/2π) as on parameter (a). In the absence of external flux the potential has two degenerate minima; degeneracy
is lifted by finite external flux, which also affects the height of the potential barrier(b).

external magnetic fields (if we disregard spontaneous currents in the junctions themselves, which can be very
small [21, 22, 23]). This justifies the moniker ”silent”.

Both the barrier and the bias between the wells can be controlled by the external flux. It is noteworthy
that the corrections are of at least second order in φ, which drastically reduces the influence of fluctuations
in the external circuitry[38]. The mechanism of noise reduction is similar to that of the ”quantronium”
qubit[39], but the ”sweet spot” (an extremal point on the energy surface) appears already on the classical
level, and at zero external field.

Finally, let us briefly mention two more proposals.
A ”no tunneling” design[40] combines the ideas of CBJJ (current-based Josephson junction) qubits [42, 41]

and the intrinsic bistability of d-wave junctions. In a single bistable Josephson junction, the potential barrier
between the degenerate levels corresponding to phase difference ±χ0 is too high to allow tunneling. The
transitions between the states are realized through Rabi transitions via an auxiliary energy level, situated
above the top of the barrier. Rabi transitions are induced by applying an external high-frequency field.

”Dot/antidot” proposals are based on the spontaneous flux (less than a flux quantum) generated in a
high-Tc island or around a hole in bulk high-Tc due to the presence of a subdominant order parameter[23, 36]
(see the end of Section 1.3), but so far lack experimental support.

2.3. Fabrication and experiment

Due to fabrication difficulties, as well as expected problems with decoherence from e.g. nodal quasipar-
ticles (see Section 2.4), experimental research on d-wave qubits is not as far advanced as on the devices with
conventional superconductors. The experimental confirmation of quantum behaviour in these systems is still
missing. Nevertheless several recent successes should be noted.

Arrays of half-flux quanta were realized and manipulated (classically) in YBCO-Nb zigzag junctions
[37]. Each facet of the junction effectively constitutes a π-ring, which supports spontaneous flux of ±Φ0.
Interaction between the fluxes is mainly due to the superconducting connection, which leads to robust
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Figure 13. Critical currents of two nominally identical dc SQUIDs, based on YBCO grain boundary junctions,
as a function of applied magnetic field[44]. Dots: experiment. Thin line: theoretical fit. Fitting parameters: (a)

I
(I)
1 = 9 µA; I

(II)
1 = 3.7 µA; I

(I)
2 = 0.3 µA; I

(II)
2 = 22.7 µA; (b) I

(I)
1 = 7.8 µA; I

(II)
1 = 5.3 µA; I

(I)
2 = 3 µA;

I
(II)
2 = 4.3 µA.

antiferromagnetic ordering. In its absence, a weaker, magnetic interaction establishes ferromagnetic flux
ordering. The authors consider the possibility of using their structures in qubit design.

Good quality submicron grain boundary YBCO junctions were fabricated and bistable energy vs. phase
dependence was demonstrated [26, 43]. Dc SQUIDs YBCO (15×15 µm2 square loops with nominally 2 µm
wide grain boundary junctions) were fabricated and tested, and their classical behaviour is very well described
by the existing theory [44] (Fig. 13). Like in (28), only two harmonics of current-phase dependence were
considered. From fitting the experimental data, we had to conclude that the junctions in the same SQUID
have not only different critical current amplitudes, but different ratios of first to second harmonic (γ1 6= γ2),
probably due to the variation in the grain boundary properties over a distance of ∼ 15 µm. This is one reason
for putting the junctions in the silent qubit, Fig. 11, close to each other, as it was done when fabricating its
prototype[38].

2.4. Decoherence in d-wave qubits

Decoherence is the major concern for any qubit realization, especially for solid state qubits, due to abun-
dance of low-energy degrees of freedom. In superconductors, this problem is mitigated by the exclusion of
quasiparticle excitations due to the superconducting gap. This explains also why the very fact of existence
of gapless excitations in high-Tc superconductors long served as a deterrent against serious search for macro-
scopic quantum coherence in these systems. An additional source of trouble may be zero-energy states in
DD junctions.

Nevertheless, recent theoretical analysis of DD junctions [47, 46, 45], all using quasiclassical Eilenberger
equations, shows that the detrimental role of nodal quasiparticles and ZES could have been exaggerated.

Before turning to these results, let us first do a simple estimate of dissipation due to nodal quasiparticles
in bulk d-wave superconductors.

Consider, for example, a three-junction qubit with d-wave phase shifters. The |0〉 and |1〉 states support,
respectively, clockwise and counterclockwise persistent currents around the loop, with superfluid velocity vs.
Tunnelling between these states leads to nonzero average 〈v̇2

s〉 in the bulk of the superconducting loop.
Time-dependent superfluid velocity produces a local electric field

E = −1
c
Ȧ =

m

e
v̇s, (30)
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and quasiparticle current jqp = σE. The resulting average energy dissipation rate per unit volume is

Ė = σE2 ≈ mτqp〈n̄(vs)v̇2
s〉. (31)

Here τqp is the quasiparticle lifetime, and

n̄(vs) =
∫ ∞

0

dεN̄(ε) [nF (ε− pF vs) + nF (ε+ pFvs)] (32)

is the effective quasiparticle density. The angle-averaged density of states inside the d-wave gap is [48]

N̄(ε) ≈ N(0)
2ε
µ∆0

, (33)

where µ = 1
∆0

d|∆(θ)|
dθ , and ∆0 is the maximal value of the superconducting order parameter. Substituting

(33) in (32), we obtain

n̄(vs) ≈ N(0)
2

µ∆0

(
−T 2

)(
Li2
(
−e−

pF vs
T

)
+ Li2

(
−e

pF vs
T

))
, (34)

where Li2(z) =
∫ 0

z dt
ln(1−t)

t is the dilogarithm. Expanding for small pF vs � T , and taking into account that
Li2(−1) = −π2/12, Li′2(−1) = ln 2, and Li′′2(−1) = −1/2 + ln 2, we obtain

n̄(vs) ≈
N(0)
µ∆0

(
π2T 2

3
+ (pFvs)

2

)
. (35)

The two terms in parentheses correspond to thermal activation of quasiparticles and their ”Cherenkov”
generation by current-carrying state. Note that finite quasiparticle density does not lead by itself to any
dissipation.

In the opposite limit (T � pF vs) only the ”Cherenkov” contribution remains,

n̄(vs) ≈
N(0)
µ∆0

(pFvs)
2 (36)

(since Li2(z) ∼ −(1/2)(ln z)2 for large negative z, and ∼ z for small z).
The energy dissipation rate provides the upper limit τε for the decoherence time (since dissipation is

sufficient, but not necessary condition for decoherence). Denoting by Ic the amplitude of the persistent
current in the loop, by L the inductance of the loop, and by Ω the effective volume of d-wave superconductor,
where it flows, we can write

τ−1
ε =

2ĖΩ
LI2

c

≈
2mτqpN(0)Ω

(
π2T 2

3 〈v̇2
s〉 + p2

F 〈v2
s v̇

2
s〉
)

µ∆0LI2
c

. (37)

Note that the thermal contribution to τ−1
ε is independent on the absolute value of the supercurrent in the

loop (∝ vs), while the other term scales as I2
c . Both contributions are proportional to Ω and (via v̇s) to ωt, the

characteristic frequency of current oscillations (i.e. tunneling rate between clockwise and counterclockwise
current states).

It follows from the above analysis that the intrinsic decoherence in a d-wave superconductor due to nodal
quasiparticles can be minimized by decreasing the amplitude of the supercurrent through it, and the volume
of the material where time-dependent supercurrents flow. From this point of view the designs with phase
shifters, as well as the Newns-Tsuei and ”no tunneling” designs are at a disadvantage (the latter, because
the microwave field necessary to produce Rabi transitions will affect the whole sample).

Now let us estimate dissipation in a DD junction. First, following [19, 24], consider a DND model with
ideally transmissive ND boundaries. Due to tunneling, the phase will fluctuate, creating a finite voltage on
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the junction, V = (1/2e)χ̇, and normal current In = GV . The corresponding dissipative function and decay
decrement are

F =
1
2
Ė =

1
2
GV 2 =

Gχ̇2

2

(
1
2e

)2

; (38)

γ =
2

MQχ̇

∂F
∂χ̇

=
G

4e2MQ
=

4N⊥EQ
π

. (39)

Here EQ = e2/2C, MQ = C/16e2 = 1/32EQ, N⊥ are the Coulomb energy, effective ”mass” and number of
quantum channels in the junction respectively. The latter is related to the critical Josephson current I0 and
spacing between Andreev levels in the normal part of the system ε̄ = vF /2L via

I0 = N⊥eε̄. (40)

We require, that γ/ω0 � 1, where ω0 =
√

32N⊥EQε̄/π is the frequency of small phase oscillations near
a local minimum. This means,

N⊥ �
ε̄

EQ
. (41)

The above condition allows a straightforward physical interpretation. In the absence of thermal excitations,
the only dissipation mechanism in the normal part of the system is through the transitions between Andreev
levels, induced by fluctuation voltage. These transitions become possible, if ε̄ < 2eV̄ ∼

√
¯̇χ2 ∼ ω0, which

brings us back to (41). Another interpretation of this criterion arises if we rewrite it as ω−1
0 � (vF /L)−1

[24]. On the right-hand side we see time for a quasiparticle to traverse the normal part of the junction. If
it exceeds the period of phase oscillations (on the left-hand side), Andreev levels simply don’t have time
to form. Since they provide the only mechanism for coherent transport through the system, the latter is
impossible, unless our ”no dissipation” criterion holds.

For the thickness of the normal layer L ∼ 1000 Å and vF ∼ 107 cm/s this criterion limits ω0 < 1012 s−1,
which is comfortable three orders of magnitude above the usually obtained tunneling splitting in such qubits
(∼ 1 GHz) and can be accommodated in the above designs. Nevertheless, while presenting a useful qualitative
picture, the DND model is not adequate for the task of extracting quantitative predictions. For example,
the coherence length lT in the normal metal can be very large, while in the high-Tc compound it is short.
Therefore the estimates for crucial parameters (like ε̄) based on the assumption lT � L can be wrong.
Moreover, the assumption of ideal ND boundaries is not realistic.

A calculation[32], which used a model of a DD junction interacting with a bosonic thermal bath, gave
an optimistic estimate for the quality of the tricrystal qubit Q > 108.

The role of size quantization of quasiparticles in small DD and SND structures was suggested in [24, 33].
The importance of the effect is that it would exponentially suppress the quasiparticle density and therefore
the dissipation below temperature of the quantization gap, estimated as 1 − 10 K. Recently this problem
was investigated[45] for a finite width DD junction. Contrary to the expectations, the size quantization as
such turned out to be effectively absent on the scale exceeding ξ0 (that is, practically irrelevant). On the
other hand, the finite transverse size of the system imposed an effective band structure. Namely, due to
the direction dependence of the order parameter, a quasiparticle travelling along the trajectory, bouncing
between the sides of the junction, goes through a periodic 1D off-diagonal potential. The influence of this
band structure on dissipation in the system is not straightforward. Ironically, from the practical point of
view this is a moot point, since the decoherence time from the quasiparticles in the junction, estimated in
[45, 47], already corresponds to the quality factor τϕ/τg ∼ 106, which exceeds by two orders of magnitude
the theoretical threshold allowing to run a quantum computer indefinitely.

The expression for the decoherence time obtained in [45, 47],

τϕ =
4e

δφ2I(∆t/e)
, (42)

where δφ is the difference between equilibrium phases in degenerate minima of the junction (i.e. δφ = 2χ0 in
other notation), contains the expression for quasiparticle current in the junction at finite voltage ∆t/e (where
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∆t is the tunneling rate between the minima). This agrees with our back-of-the-envelope analysis: phase
tunneling leads to finite voltage in the system through the second Josephson relation and with finite voltage
comes quasiparticle current and decoherence. The aforementioned quality factor is defined asQ = τϕ∆t/2h̄,
that is, we compare the decoherence time with the tunneling time. This is a usual optimistic estimate, since
it will certainly take several tunneling cycles to perform a quantum gate operation.

It turns out that a much bigger threat is posed by the contribution from zero energy bound states, which
can be at least two orders of magnitude larger. We can see this qualitatively from (42): a large density of
quasiparticle states close to zero energy (i.e., on Fermi level) means that even small voltages create large
quasiparticle currents, which sit in the denominator of the expression for τϕ. Fortunately, this contribution
is suppressed in the case of ZES splitting, and such splitting is always present due to, e.g., finite equilibrium
phase difference across the junction[45].

A similar picture follows from the analysis presented in [46]. A specific question addressed there is
especially important: it is known that RC-constant measured in DD junctions is consistently 1 ps over a
wide range of junction sizes [43], and it is tempting to accept this value as the dissipation rate in the system.
It would be a death knell for any quantum computing application of high-Tc structures, and nearly that
for any hope to see there some quantum effects. Nevertheless, it is not quite that bad. Indeed, we saw
that ZES play a major role in dissipation in a DD junction, but are sensitive to phase differences across
it. Measurements of the RC constant are done in the resistive regime, when a finite voltage exists across
the junction, so that the phase difference grows monotonously in time, forcing ZES to approach the Fermi
surface repeatedly. Therefore τRC reflects some averaged dissipation rate. On the other hand, in a free
junction with not too high a tunneling rate phase differences obviously tend to oscillate around χ0 or −χ0,
its equilibrium values, and do not spend much time near zero or π; therefore ZES are usually shifted from
the Fermi level, and their contribution to dissipation is suppressed.3

This qualitative picture is confirmed by a detailed calculation (Fig. 14). The decoherence time is related
to the phase-dependent conductance via

τϕ =
1

αF (χ0)2δE
tanh

δE

2T
. (44)

Here α is the dissipation coefficient, δE is interlevel spacing in the well, and

G(χ) = 4e2α (∂χF (χ))2
. (45)

For a realistic choice of parameters Eq.(44) gives a conservative estimate τϕ = 1− 100 ns, and quality factor
Q ∼ 1 − 100. This is, of course, too little for quantum computing, but quite enough for observation of
quantum tunneling and coherence in such junctions.

3. Conclusions

Since the d-wave character of superconducting pairing in high-Tc cuprates was established, our under-
standing of high-Tc Josephson structures and ability to fabricate them progressed significantly. Now it
enables us to ask the question in the title of this paper: Can high-Tc cuprates play a role in quantum
computing?- and to tentatively answer: Yes.

We have seen that submicron junctions of sufficiently high quality are now fabricated. Several designs,
which take advantage of the intrinsic bistability of d-wave structures, were developed, fabricated, and tested
in classical regime. If the decoherence time turns out to be large enough, their better scalability can be a
decisive advantage for quantum computing applications.

This is, of course, a big if. Still, theoretical estimates tend to be rather optimistic. Even though they
widely differ, all of them predict τϕ long enough to encourage experimental search for quantum coherence.

3A useful model Hamiltonian for this system can be written as

H =
Q̂2

2C
+ U (χ) +

1

2

[
Q̂, V (χ)

]
+

∑
α

cαxα +
∑
α

[
p̂2
α

2mα
+
mαω2

αx
2
α

2

]
(43)

. Here U (χ) is the two-well potential, and V (χ) is centered near χ = 0.
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Figure 14. Phase (a) and temperature (b) dependence of the normal conductance of a DD junction [46].

There are several compelling reasons to do that. First, it would be a spectacular result. Second, it would
clarify why different models give different answers. Third, it could indeed lead to practical application of
high-Tc devices in quantum computing.
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