
Turk J Phys
27 (2003) , 313 – 322.
c© TÜBİTAK
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Abstract

We have developed quantitative description of quantum coherent oscillations in the system of two
coupled qubits in the presence of weak decoherence that in general can be correlated between the two
qubits. It is shown that in the experimentally realized scheme of excitation of the oscillations, their
waveform is not very sensitive to the magnitude of decoherence correlations. Modification of this scheme
into potentially useful probe of the degree of decoherence correlations at the two qubits is suggested.
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1. Introduction

Despite the large number of successful demonstrations of quantum coherent oscillations in individual
[1, 2, 3, 4, 5, 6] and coupled [7, 8] Josephson-junction qubits, quantitative understanding of the details of
these oscillations is so far quite limited. One of the most important open problems is decoherence, many
aspects of which still remain to be understood. The purpose of this work is to develop theoretical description
of decoherence in dynamics of a system of two coupled qubits. The approach we are using is based on the
evolution equation for the density matrix in the Markovian approximation that is standard for description of
weak decoherence. Although there are indications from the single-qubit experiments that more sophisticated
approaches are needed for quantitatively accurate description of decoherence, the result we obtain within
the simple scheme can be useful as the benchmark for more elaborate models.

Motivation for studying decoherence in coupled qubits is provided by the recent experiment [7] with two
coupled charge qubits, where it was found that the decoherence rate for quantum coherent oscillations in
two qubits at the optimal bias point is with good accuracy factor-of-4 larger than the decoherence rate in
effectively decoupled qubits. An interesting question for theory is whether this factor-of-4 increase of the
decoherence rate is a numerical coincidence, or it reflects some basic property of the decoherence mechanisms
in charge qubits. As will become clear from the discussion below, the theory developed in this work favors
“numerical coincidence” point of view. Other aspects of decoherence in coupled qubits has been studied
before numerically in [9, 10, 11].

In general, it is well understood that decoherence rates of different states of two coupled qubits can
be quite different if the random forces created by the qubit environments responsible for decoherence are
completely or partially correlated at the two qubits. Most importantly, in the case of complete correlation,
the qubit system should have a “decoherence-free subspace” (DFS) spanned by the states |01〉, |10〉 [12,
13, 14], since completely correlated external environments can not distinguish these states. In contrast,
the subspace spanned by |00〉 and |11〉 experiences decoherence that is made stronger by the correlations
between environmental forces acting on the two qubits. So the role of the quantitative theory in description of
decoherence in the dynamics of coupled qubits is to see to what extent subspaces with different decoherence
rates participate in the qubit oscillations for different methods of their excitation.
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2. The model and Environmental Correlations

The Hamiltonian of the system of two qubits coupled directly by interaction between the basis-forming
degrees of freedom (i.e., electrostatic interaction through finite coupling capacitance for charge qubits, or
magnetic interaction for flux qubits) is:

H0 =
∑
j=1,2

(εjσ(j)
z + ∆jσ

(j)
+ + ∆∗jσ

(j)
− ) + νσ(1)

z σ(2)
z , (1)

where σ’s denote the Pauli matrices, ν is the qubit interaction energy, ∆j is the tunnel amplitude and εj
is the bias of the jth qubit. Four energy levels of the Hamiltonian (1) are shown schematically in Fig. 1 as
functions of the common bias ε̄ ≡ ε1 = ε2 of the two qubits. In this work, we will consider quantum coherent
oscillations in the qubits biased at the “co-resonance” point [7], where ε1 = ε2 = 0. Such bias conditions are
optimal for the oscillations.

It can be shown explicitly that the occupation probabilities of the qubit basis states (that are of interest
for us) are insensitive to the phases of the qubit tunnel amplitudes ∆j, so without the loss of generality we
will assume that ∆j’s are real. The Hamiltonian (1) at the co-resonance reduces then to

H0 =
∑
j=1,2

∆jσ
(j)
x + νσ(1)

z σ(2)
z . (2)

In the basis composed of eigenstates of the σ(j)
x operators, the Hamiltonian (2) can be diagonalized easily.

Eigenenergies and eigenstates are:

E1 = Ω, |ψ1〉 =
1
2

[(γ + η)(|00〉+ |11〉) + (γ − η)(|01〉+ |10〉)],

E2 = −Ω, |ψ2〉 =
1
2

[(η − γ)(|00〉+ |11〉) + (γ + η)(|01〉+ |10〉)], (3)

E3 = ε, |ψ3〉 =
1
2

[(α+ β)(|00〉 − |11〉) + (α − β)(|10〉 − |01〉)],

E4 = −ε, |ψ4〉 =
1
2

[(β − α)(|00〉 − |11〉) + (α + β)(|10〉 − |01〉)],

where

Ω = (∆2 + ν2)1/2 , ε = (δ2 + ν2)1/2 , α, β =
1√
2

(1± δ

ε
)1/2 , η, γ =

1√
2

(1± ∆
Ω

)1/2 ,

and ∆ ≡ ∆1 + ∆2, δ ≡ ∆1 −∆2. The states |kl〉 with {k, l} = {0, 1} in Eqs. (3) are the eigenstates of the
operators σ(1,2)

z in the natural notations: σ(1)
z |kl〉 = (−1)k|kl〉 and σ

(2)
z |kl〉 = (−1)l|kl〉.

We assume that external environments responsible for the decoherence couple to the basis-forming degrees
of freedom of the qubits. The interaction Hamiltonian is then:

Hi =
∑
j=1,2

ξj(t)σ(j)
z . (4)

The random forces ξ1,2(t) acting on the qubits are in general correlated. To describe the weakly dissipative
dynamics of the system in the basis of states (3) induced by the interaction (4) with the reservoirs, we use
the standard equation for the evolution of the qubit density matrix ρ in the interaction representation (see,
e.g., [15]):

ρ̇ = −
∫ t

−∞
dτ 〈[Hi(t), [Hi(τ ), ρ]]〉 , (5)

where angled brackets denote averaging over the reservoirs. Proceeding in the standard way, we keep in Eqn.
(5) only terms that do not oscillate as functions of time with large frequencies on the order of eigenenergies
of the system, and therefore lead to changes in ρ that accumulate over time. Equations for the matrix
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Figure 1. Schematic structure of the energy levels of the two coupled qubits as functions of the common bias of
the qubits. The inset shows the diagram of the decoherence-induced transitions between the levels at “co-resonance”
point where the bias vanishes.

elements ρnm, n,m = 1, ..., 4, of ρ in the basis (3) are transformed then as follows:

ρ̇nm =
∑

j,j′=1,2

[
− ρnm(σ(j)

mm − σ(j)
nn)(F̃ ∗jj′(0)σ(j′)

mm − F̃jj′(0)σ(j′)
nn )

−ρnm
∑
k

(σ(j)
nkσ

(j′)
kn F̃jj′(εn − εk) + σ

(j′)
mk σ

(j)
kmF̃

∗
jj′(εm − εk))

+δnm
∑
k

ρkk(σ(j′)
nk σ

(j)
kn F̃jj′(εk − εn) + σ

(j)
nkσ

(j′)
kn F̃

∗
jj′(εk − εn)

+
∑
(k,l)

ρklσ
(j′)
nk σ

(j)
lm(F̃jj′(εl − εm) + F̃ ∗j′j(εl − εm))

]
. (6)

Here σ(j)
nm denote the matrix elements 〈n|σ(j)

z |m〉, the last sum is taken over the pairs (k, l) of states that
satisfy the “resonance” condition:

εk − εl = εn − εm , (k, l) 6= (n,m) ,

and
F̃jj′(ω) =

∫ ∞
0

dt〈ξj(t)ξj′(0)〉eiωt .

The first term in Eqn. (6) represents “pure dephasing” that exists when the system operators that couple
it to the environment have non-vanishing average values in the eigenstates. As one can see explicitly from
Eqs. (3), the average values σ(j)

nn of σ(j)
z are vanishing in all states, so that there is no pure dephasing term

in the evolution of the density matrix in our case. The fact that σ(j)
nn are vanishing can be related to the

vanishing slope of the system energies with respect to variations of the bias in the vicinity of the co-resonance
point – see Fig. 1. Since all coefficients in the eigenfunctions (3) are real, the matrix elements σ(j)

nm are also
real. For real σ(j)

nm, imaginary parts of the noise correlators F̃j′j in the second term on the right-hand-side
of Eqn. (6) represent the decoherence-induced shifts of the system energy levels. These shifts do not affect
decoherence and we will neglect them in our discussion. With these simplifications, Eqn. (6) takes the form

ρ̇nm =
∑

j,j′=1,2

[
− (ρnm/2)

∑
k

(σ(j)
nkσ

(j′)
kn ReFjj′(εn − εk) + σ

(j′)
mk σ

(j)
kmReFjj′(εm − εk))
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+δnm
∑
k

ρkkσ
(j′)
nk σ

(j)
knReFjj′(εk − εn) +

∑
(k,l)

ρklσ
(j′)
nk σ

(j)
lmFjj′(εl − εm)

]
, (7)

where

Fjj′(ω) =
∫ ∞
−∞

dt〈ξj(t)ξj′(0)〉eiωt . (8)

The function F12 characterizes correlations between the environmental forces acting on the two qubits.
For instance, if the two qubits interact with different environments and ξ1, ξ2 are uncorrelated, F12 = 0,
whereas F12 = F11 = F22, if the qubits are acted upon by the force produced by one environment coupled
equally to the two qubits. While the correlators F11 and F22 are necessarily real, F12 can be imaginary, and
F ∗21 = F12. Non-vanishing imaginary part of F12 corresponds to the non-vanishing commutator [ξ1, ξ2] and
implies that the two qubits are coupled to the two non-commuting variables of the same reservoir. While
this is probably not very likely for qubits with the basis-forming degrees of freedom of the same nature
(which in a typical situation should be coupled to the same set of environmental degrees of freedom), the
non-vanishing ImF12 should be typical if the qubits have different basis-forming variables. Using the spectral
decomposition of the correlators Fjj′(ω) and Swartz inequality, one can prove (similarly to what is done in a
different context of linear quantum measurements [16]) that for arbitrary stationary reservoirs the correlators
satisfy the inequality that imposes the constraint on F12(ω):

F11(ω)F22(ω) ≥ |F12(ω)|2 . (9)

If the reservoirs are in equilibrium at temperature T , the correlators satisfy also the standard detailed balance
relations:

Fjj′(−ω) = e−
ω
T Fj′j(ω) . (10)

Equation (7) with the noise correlators (8) govern weakly dissipative time evolution of the two coupled
qubits in a generic situation. Below we use them to determine decoherence properties of quantum coherent
oscillations of the qubits. Before doing this, however, we would like to briefly discuss applicability of our
approach to realistic Josephson-junction qubits. As we saw above, one of the main features of Eqn. (7) is
that the pure dephasing terms disappear at the co-resonance point and remaining decoherence is related to
transitions between the energy eigenstates. This implies that within the approach based on Eqn. (7), the
decoherence rates are on the order of half of the transition rates, whereas experiments with charge qubits (see,
e.g., [4]) indicate that decoherence rates are larger than the transition rates even at the optimum bias point
when the pure-dephasing terms should disappear. Apparently, this is related to the low-frequency charge
noise [4, 17] that is coupled to qubit strongly enough for the lowest-order perturbation theory in coupling
(5) to be insufficient. This implies that the theory presented in this work might be only qualitatively correct
for realistic charge qubits, for which one should develop more accurate non-perturbative description of the
low-frequency noise to achieve quantitative agreement with experiments. Our simple perturbative approach,
however, should be applicable to flux qubits, where the low-frequency noise should not be as strong as in
the charge qubits.

3. Quantum Coherent Oscillations in Coupled Qubits

One of the most direct ways of excitation of quantum coherent oscillations in individual or coupled qubits
that will be discussed in this work is based on the abrupt variation of the bias conditions [1, 7]. If the qubits
are initially localized in one of their basis states, e.g. |00〉, and abrupt variation of the bias brings them
to the co-resonance point, the probabilities for the qubits to be in other basis states start oscillating with
time. In the simplest detection scheme (realized, for instance, in experiment [7]) the probability for each
qubit to be in the state |1〉 is measured independently of the state of the other qubit. Quantitatively, these
probabilities pj are obtained from the projection operators Pj:

pj = Tr{ρPj} , P1 =
∑
k=1,2

|1k〉〈k1| , P2 =
∑
k=1,2

|k1〉〈1k| .
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Finding explicitly the matrix elements of Pj from the wavefunctions (3), one gets:

p1(t) =
1
2

+ (αη + βγ)Re[e−iω−t(ρ42(t) − ρ13(t))] + (αγ − βη)Re[e−iω+t(ρ14(t) + ρ32(t))] , (11)

p2(t) =
1
2
− (αγ + βη)Re[e−iω−t(ρ13(t) + ρ42(t))] + (αη − βγ)Re[e−iω+t(ρ14(t)− ρ32(t))] , (12)

where ω± ≡ Ω ± ε, and as in the Eqn. (7), the matrix elements of the density matrix are taken in the
interaction representation. Equations (12) and (7) show that the waveform of the coherent oscillations in
coupled qubits is determined by the time evolution of the two pairs of the matrix elements of ρ:

ρ̇13 = −Γ13ρ13 + u−ρ42 , ρ̇42 = −Γ42ρ42 + u+ρ13 , (13)

ρ̇14 = −Γ14ρ14 + v−ρ32 , ρ̇32 = −Γ32ρ32 + v+ρ14 . (14)

The decoherence rates in these equations are determined by the rates of transitions between different
energy eigenstates:

Γ13 =
1
2
(
Γ(+)

1 + Γ(−)
2 + Γ(+)

2 + Γ(+)
4

)
, Γ14 =

1
2
(
Γ(−)

1 + Γ(+)
1 + Γ(+)

2 + Γ(+)
3

)
,

Γ32 =
1
2
(
Γ(−)

2 + Γ(−)
3 + Γ(−)

4 + Γ(+)
4

)
, Γ42 =

1
2
(
Γ(−)

1 + Γ(−)
3 + Γ(+)

3 + Γ(−)
4

)
. (15)

where labeling of the transitions is indicated in the inset in Fig. 1. Transition rates are:

Γ(±)
1 = Re

∑
j,j′

Fjj′(±ω+)σ(j)
14 σ

(j′)
41 , Γ(±)

2 = Re
∑
j,j′

Fjj′(±ω−)σ(j)
13 σ

(j′)
31 ,

Γ(±)
3 = Re

∑
j,j′

Fjj′(±ω−)σ(j)
24 σ

(j′)
42 , Γ(±)

4 = Re
∑
j,j′

Fjj′(±ω+)σ(j)
23 σ

(j′)
32 . (16)

The superscripts ± refer here to transitions in the direction of decreasing (+) or increasing (-) energy. Finding
matrix elements σnm from the wavefunctions (3) we see explicitly that transitions between the states 1 and
2, as well as 3 and 4 are suppressed, since the corresponding matrix elements are zero, and that the rates
(16) are:

Γ1 =
1
2
F11(1− δ∆ + ν2

εΩ
) +

1
2
F22(1 +

δ∆− ν2

εΩ
) + ReF12(

ν

Ω
− ν

ε
) ,

Γ2 =
1
2
F11(1 +

δ∆ + ν2

εΩ
) +

1
2
F22(1− δ∆− ν2

εΩ
) + ReF12(

ν

Ω
+
ν

ε
) ,

Γ3 =
1
2
F11(1 +

δ∆ + ν2

εΩ
) +

1
2
F22(1− δ∆− ν2

εΩ
)−ReF12(

ν

Ω
+
ν

ε
) , (17)

Γ4 =
1
2
F11(1− δ∆ + ν2

εΩ
) +

1
2
F22(1 +

δ∆− ν2

εΩ
) −ReF12(

ν

Ω
− ν

ε
) .

The transfer “rates” u, v in Eqs. (13) and (14) are:

u± =
∑

j,j′=1,2

σ
(j′)
14 σ

(j)
32 Fjj′(±ω+) , v± =

∑
j,j′=1,2

σ
(j′)
13 σ

(j)
42 Fjj′(±ω−) . (18)

Explicitly:

u =
1
2
F11(1 − δ∆ + ν2

εΩ
)− 1

2
F22(1 +

δ∆− ν2

εΩ
) + iImF12(

ν

Ω
− ν

ε
) ,

v = −1
2
F11(1 +

δ∆ + ν2

εΩ
) +

1
2
F22(1 − δ∆− ν2

εΩ
) − iImF12(

ν

Ω
+
ν

ε
) . (19)

Equations (17) and (19) do not show the frequency dependence of noise correlators, which is the same,
respectively, as in the Eqs. (16) and (18).
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Each pair, (13) and (14), of coupled equations can be solved directly by diagonalization of the matrix
of the evolution coefficients with a non-orthogonal transformation. In this way we obtain for the pair of
equations (13):

ρ13(t) =
1

u+u− + c2
[
ρ13(0)(u+u−e

−γ+t + c2e−γ−t) + cu−ρ42(0)(e−γ+t − e−γ−t)
]
,

ρ42(t) =
1

u+u− + c2
[
ρ42(0)(u+u−e

−γ−t + c2e−γ+t) + cu+ρ13(0)(e−γ+t − e−γ−t)
]
. (20)

where

γ± ≡ (Γ13 + Γ42)/2±
[
(Γ13−Γ42)2/4 +u+u−

]1/2
, c ≡ (Γ13−Γ42)/2−

[
(Γ13−Γ42)2/4 + u+u−

]1/2
, (21)

and ρ13(0), ρ42(0) are the initial values of the density matrix elements that depend on preparation of the
initial state. If, as in the experiment [7], the qubits are abruptly driven to co-resonance maintaining the
state |00〉, these initial values are:

ρ13(0) =
1
4

(γ + η)(α+ β) , ρ32(0) =
1
4

(γ − η)(α+ β) ,

ρ14(0) =
1
4

(γ + η)(β − α) , ρ42(0) =
1
4

(γ − η)(α− β) . (22)

Another type of initial conditions that will be discussed in this work is starting the oscillations from the
state |10〉. In this case:

ρ13(0) =
1
4

(γ − η)(α− β) , ρ32(0) =
1
4

(γ + η)(α− β) ,

ρ14(0) =
1
4

(γ − η)(α+ β) , ρ42(0) =
1
4

(γ + η)(α+ β) . (23)

Equations (22) and (23) follow directly from the wavefunctions (3): ρnm(0) = 〈n|i〉〈i|m〉, where |i〉 is the
initial state.

Solution of the other pair (14) of coupled equation is given by the same Eqs. (20) and (21) with obvious
substitutions: u± → v±, Γ13 → Γ14, Γ42 → Γ32. In this work, we are mostly interested in the low-
temperature regime T � ε,Ω, when transitions up in energy can be neglected. In this regime, u−, v− → 0,
and equations for the evolution of the density matrix elements are simplified. For instance, for u− → 0,
c ' u+u−/(Γ13 − Γ42), and Eqs. (20) are reduced to:

ρ13(t) = ρ13(0)e−Γ13t , ρ42(t) = ρ42(0)e−Γ42t +
u+

Γ13 − Γ42
ρ13(0)(e−Γ13t − e−Γ42t) , (24)

where now Γ13 = (Γ1 + Γ2 + Γ4)/2 and Γ42 = Γ3/2.
Time evolution (24) of the density matrix elements together with the rates (17) and (19), and initial

conditions (22) and (23) determines the shape of the coherent oscillations in two coupled qubits. In the next
Section, we discuss this shape in several specific situations.

4. Results and Conclusions

The shape of coherent oscillations determined in the previous Section depends on the large number of
parameters: temperature, degree of asymmetry of qubit tunnel energies and couplings to the environments,
frequency dependence of the decoherence, and strength and nature of the correlations between the two
reservoirs. We analyze some of these dependencies below.

4.1. Experimentally-motivated case

We start by considering the situation that is close to the experimentally realized case of oscillations in
coupled charge qubits [7]. As we argued above, the correlations between environments in this case should be
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real: ImF12 = 0. The oscillations are excited by driving the system to co-resonance in the initial state |00〉.
Equations of the previous Section give in this case the following expression for the shape of the oscillations:

p1(t) =
1
2
− 1

8
[
Ae−Γ42t +B(e−Γ13t − u+

Γ13 − Γ42
(e−Γ13t − e−Γ42t))

]
cosω−t

−1
8
[
Ce−Γ32t +D(e−Γ14t +

v+

Γ14 − Γ32
(e−Γ14t − e−Γ32t))

]
cosω+t , (25)

where

A = 1+
δ∆ + ν2

εΩ
− ν

Ω
−ν
ε
, B = 1+

δ∆ + ν2

εΩ
+
ν

Ω
+
ν

ε
, C = 1−δ∆ + ν2

εΩ
− ν

Ω
+
ν

ε
, D = 1−δ∆ + ν2

εΩ
+
ν

Ω
−ν
ε
.

Equation for p2(t) is the same with signs in front of δ, u+ and v+ reversed. As a simplifying assumption
we take F11 = F22 ≡ F . The decoherence rates in Eqn. (25) then are:

Γ13 = F (ω+)(1− ν2

εΩ
) +

1
2
F (ω−)(1 +

ν2

εΩ
) +

1
2
Fc(ω−)(

ν

Ω
+
ν

ε
) , u+ = −F (ω+)

δ∆
εΩ

,

Γ14 = F (ω−)(1 +
ν2

εΩ
) +

1
2
F (ω+)(1 − ν2

εΩ
) +

1
2
Fc(ω+)(

ν

Ω
− ν

ε
) , v+ = −F (ω−)

δ∆
εΩ

, (26)

Γ32 =
1
2
F (ω+)(1− ν2

εΩ
) +

1
2
Fc(ω+)(

ν

ε
− ν

Ω
) , Γ42 =

1
2
F (ω−)(1 +

ν2

εΩ
)− 1

2
Fc(ω−)(

ν

ε
+
ν

Ω
) ,

where Fc(ω) ≡ ReF12(ω). To enable comparison of these rates to those of individual qubits, we note that
the rate of decoherence of oscillations in a single qubit with vanishing bias is equal to F (∆j)/2 for the jth
qubit.

The functions p1,2(t) for the qubit parameters, δ, ν , and F , close to those in experiment [7] are plotted in
Fig. 2 under additional assumption that the decoherence is the same at two frequencies, ω+ and ω−. (The
decoherence strength F was taken from the data for the single-qubit regime in [7].) The curves are plotted
for the two situations, when decoherence is completely uncorrelated (F12 = 0) and completely correlated
(F12 = F ) between the two qubits. One can see that the difference between the two regimes is not very big
numerically, with correlations between the two reservoirs leading to the effective decoherence rate that is
increased in comparison with the uncorrelated regime by roughly 30÷ 50%, although the description with a
single decoherence rate is not quite appropriate quantitatively – see Eqs. (25) and (26).

The increase of the effective decoherence rate by correlations illustrated in Fig. 2 can be related to the fact
that the initial qubit state, |00〉, belongs to the subspace where the correlations increase the decoherence rate,
despite the mixing of this subspace with the DFS where the decoherence rate is decreased in the eigenstates
(3) of the coupled qubit system. (Here and below we use the term “DFS” for the subspace spanned by the
|01〉 and |10〉 states, although for interacting qubits it, strictly speaking, does not fully have the properties
of real DFS.) This implies that increase of decoherence rate by correlations should be to a large extent
insensitive to qubit parameters. This conclusion is supported by the case of identical qubits (δ = 0), when
u+ = v+ = 0 and Eq. (25) is reduced to a very simple form:

p1(t) =
1
2
− 1

4
[
(1 +

ν

Ω
)e−Γ13t cosω−t+ (1 − ν

Ω
)e−Γ32t cosω+t

]
, (27)

and p2(t) = p1(t). One can see from Eqs. (26) that both decoherence rates relevant for Eq. (27), Γ13 and
Γ32 increase with increasing correlation strength Fc. Equation (27) shows also that the description of the
oscillation decay with a single decoherence rate can be quite inaccurate: for weak interaction, ν < Ω the
amplitudes of the two (high- and low-frequency) components of the oscillations are nearly the same while
their decoherence rates can be very different.

4.2. Excitation into the DFS

Now we discuss decoherence properties of the oscillations in coupled qubits in the case when they start
with the initial qubit state |10〉. We note that in the case of experiment similar to [7], such an initial
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Figure 2. Probabilities pj to find jth qubit in the state |1〉 in the process of quantum coherent oscillations starting
with the state |00〉 of two coupled qubits. The decoherence strength is F = 0.08∆. Solid and dashed lines correspond,
respectively, to the decoherence that is uncorrelated (Fc = 0) and completely correlated (Fc = F ) between the two
qubits.

condition would require separate gate control of the two qubits, since the bias change bringing them into
co-resonance is different in this state for the two qubits. Since the state |10〉 belongs to the DFS in the case
of completely correlated noise, one can expect that oscillations with these initial conditions will be more
sensitive to the degree of inter-qubit decoherence correlations than oscillations with |00〉 initial condition,
and that the effective decoherence rate will decrease with correlation strength. All this indeed can be seen
from Eqs. (24) with the initial conditions (23) that correspond to the |10〉 state. Under the same assumptions
as were used in Eqn. (25), we get for the now different p1(t) and p2(t):

pj(t) =
1
2
− (−1)j

8
{[
Aje

−Γ42t + Bj(e−Γ13t +
(−1)ju+

Γ13 − Γ42
(e−Γ13t − e−Γ42t))

]
cosω−t

+
[
Cje
−Γ32t +Dj(e−Γ14t − (−1)jv+

Γ14 − Γ32
(e−Γ14t − e−Γ32t))

]
cosω+t

}
, j = 1, 2 , (28)

where

A1 = 1 +
δ∆ + ν2

εΩ
+
ν

Ω
+
ν

ε
, B1 = 1 +

δ∆ + ν2

εΩ
− ν

Ω
− ν

ε
,

C1 = 1− δ∆ + ν2

εΩ
+
ν

Ω
− ν

ε
, D1 = 1− δ∆ + ν2

εΩ
− ν

Ω
+
ν

ε
,

and the amplitudes A2, B2 , C2 , D2 are given by the same expressions with δ → −δ.
For identical qubits Eqn. (28) reduces to:

pj(t) =
1
2
− (−1)j

4
[
(1 +

ν

Ω
)e−Γ42t cosω−t+ (1− ν

Ω
)e−Γ14t cosω+t

]
. (29)

This expression and Eqs. (26) show that in contrast to Eqn. (27), the decoherence rate of the low-frequency
component that has larger amplitude is strongly suppressed by the non-vanishing inter-qubit noise corre-
lations Fc: Γ42 = 1

2(1 + ν/Ω)[F (ω−) − Fc(ω−)]. This means that the shape of the coherent oscillations in
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coupled qubit starting with the state |10〉 should indeed be more sensitive to the strength of these corre-
lations than the shape of the oscillations starting with the |00〉 state. As one can see from Fig. 3 which
shows the shape (28) of the |10〉 oscillations for the same set of experimentally realized parameters as in
Fig. 3, this conclusion also remains valid in the case of not fully symmetric qubits. Even in this case there
is a pronounced weakly decaying component of the oscillations if the decoherence is completely correlated
between the two qubits. For partial correlations, the effective decoherence rate is reduced.

0.0 5.0 10.0
t∆/2π

0.0

0.5

1.0

p 1

0.0 5.0 10.0
0.0

0.4

0.8

p 2

Figure 3. Probabilities pj to find jth qubit in the state |1〉 in the process of quantum coherent oscillations starting
with the state |10〉 of two coupled qubits. Qubit parameters are the same as in Fig. 2. Solid, dotted, and dashed lines
correspond, respectively, to the decoherence that is uncorrelated (Fc = 0), partially (Fc = 0.5F ), and completely
(Fc = F ) correlated between the two qubits.

In summary, we have developed quantitative description of weakly dissipative dynamics of two coupled
qubits based on the standard Markovian evolution equation for the density matrix. This description shows
that decoherence properties of currently realized oscillations in coupled qubits are not very sensitive to
inter-qubit correlations of decoherence, while relatively simple modification of the excitation scheme for the
oscillations should make them sensitive to these correlations.
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