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Abstract

A quantum computer based on electrons floating over liquid helium is described. Each qubit is made
of combinations of ground and first excited states of an electron trapped over micro-electrodes just below
the helium surface. We describe mechanisms for preparing the initial state of the qubit, operations with
the qubits, and a proposed readout. This system is, in principle, capable of ∼ 104 operations in a
decoherence time, the time in which the wave function collapses.
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1. Introduction

Quantum computing invokes the use of energy levels of a quantum system for bits. It has the potential
of being extremely fast and handling large simulations. Many designs for a quantum computer (QC) have
been proposed.[1] We give a description of a design based on quantum bits comprised of electrons bound
to a helium surface.[1, 2, 3, 4, 5, 6] Each quantum bit (qubit) is made of combinations of ground and first
excited states of an electron trapped over micro-electrodes just below the helium surface.

A quantum computer uses two stationary states of a quantum system as counterparts of the classical
bits 0 and 1. We identify the ground and first excited states of these electrons with the |0〉 and |1〉 analog
of classical bits, respectively. Each qubit can be put in any linear superposition of the states |0〉 and |1〉,

ψj = aj|0〉+ bj|1〉, |aj|2 + |bj|2 = 1. (1)

Here, |aj|2 and |bj|2 are the probabilities of finding the qubit j in the states |0〉 and |1〉, respectively. In
simple cases aj , bj = 0, 1 or 2−1/2.

A quantum computer composed of N qubits has 2N basis states (combinations of |0〉s and |1〉s for each
qubit) which in the simplest form are products of the basis vectors of each of the N qubits. The general
state of a QC is written as

Ψ =
∑
j

αj|xj〉,
∑
j

|αj|2 = 1, (2)

where |xj〉 is one of the 2N basis vectors. An example of a four-qubit system is

Ψ = 2−1/2(|1〉+ |0〉)|0〉|1〉|0〉= 2−1/2(|1〉|0〉|1〉|0〉+ |0〉|0〉|1〉|0〉). (3)

The state is called an entangled state if the superposition can not be made up of a product of individual
states. For a two-qubit system an entangled state can be

Ψ = 2−1/2(|11〉+ |00〉). (4)
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Operations use qubits in a superposition of many possible basis states and can, therefore, be equivalent
to performing a large number of computations in parallel. The difficulty in utilizing this advantage arises
from the fundamental nature of measurement in quantum processes, namely that measurement of the energy
of an individual qubit will necessarily collapse the wave function so that the result can be only either |0〉 or
|1〉 for each qubit. This requires algorithms that can yield definite answers to computations. We describe
mechanisms for preparing the initial state of the qubit, operations with the qubits, and a proposed readout.
This system is, in principle, capable of ∼ 104 operations in a decoherence time, the time in which the wave
function collapses.

We choose the ground and first excited states associated with the motion of an electron normal to the
liquid helium surface for the states |0〉 and |1〉, respectively. Electrodes beneath the electrons are used to
localize them laterally and to apply a Stark field to each qubit individually. Data is read into the registers
by preparing each qubit in an admixture of states |0〉 and |1〉. This is accomplished by Stark shifting states
sequentially into resonance with microwave radiation for a predetermined length of time. For the operations
of gates, interactions between neighboring qubits are controlled by Stark shifting their energy levels into
resonance with each other and applying rf pulses of radiation for a specified time. The answer to the
calculation is in the final state of the qubits. We propose a mechanism for a simultaneous readout of each
qubit. It involves extracting electrons in the weakly bound excited state, |1〉, with an electric field ramp while
leaving electrons in the ground state, |0〉, above micro electrodes. Then tunneling of the remaining electrons
will be probed with a superconducting bolometer placed right above micro electrodes. The mechanisms that
cause relaxation, T1 and T2 processes, will be discussed.

2. Electrons on Helium

An electron placed at a distance z above a liquid helium surface polarizes the helium atoms in the liquid.
This polarization can be described mathematically with an image charge +e(ε − ε0)/(ε + ε0) in the liquid
at a distance z below the surface. Here, ε = 1.0568 and ε0 are the dielectric constants of liquid 4He and the
vapor, respectively. The electron is prevented from entering the liquid due to Pauli force. The s-shell of the
helium atoms in the liquid is completely filled. The wave function of any extra electron must be orthogonal
to those of the core electrons in the liquid, and, as a result, must have p-wave characteristics. This requires
energy of ∼ 1 eV which prevents the electron from penetrating into the liquid. The binding energy of the
electron is small compared to this potential barrier. Therefore, one can assume that this potential barrier
is infinite compared to the potential energy due to the image charge and the applied field, and solve the
Schrödinger equation for the electron accordingly.

In an externally applied field F , the Hamiltonian H , of the electron is given by

H = − h̄2

2m
(
d

dz
)2 − Qe2

z + z0
+ eFz. (5)

where Q = (ε− ε0)/4(ε+ ε0) and the surface of the liquid is assumed to be at z = 0. The constant z0 = 1.04
Å in the image potential term in H has been introduced to obtain the exact energy spectrum[7] of an electron
on liquid helium. The correction is necessary since the surface is not perfect, i.e. the liquid density drops to
zero over a width of about 6-7 Å at the surface.

The Schrödinger equation, Hφn = Enφn, for the electron is identical to the equation for rR(r) of the
zero angular momentum states of the hydrogen atom for F = 0 and z0 = 0. The difference here is that the
nuclear charge is reduced by a factor of Q ∼0.0069. Thus one obtains hydrogen-like solutions for the wave
functions and energy eigenvalues. The ground and the first excited states are given by

φ1(z) =
2
b3/2

ze−z/b,

φ2(z) =
1

(2b)3/2
(2− z

b
)ze−z/2b, (6)

where b = 76 Å is the effective Bohr radius. Numerical solutions for φ1 and φ2 at F = 40 V/cm are plotted
in Fig. 1. Average distance of an electron from the surface is 11.4 nm and 45.6 nm in the ground and first
excited states, respectively.
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Figure 1. Numerical solutions of the Schrödinger equation for φ1 and φ2 at F = 40 V/cm as a function of z.

As in the hydrogen atom, the electron energy is quantized in the direction perpendicular to the surface,
and given by

En = − R
n2
, (n = 1, 2, ...), R =

h̄2

2mb2
= 8K, b =

h̄2

me2Q
. (7)

At temperatures below ∼ 2 K all electrons will be in the ground state. The transition frequency between
the ground and the first excited states is ∼ 126 GHz. A finite electric field F applied perpendicular to the
surface Stark-shifts the energy levels. The confining potentials are shown in Fig. 2 for the cases F = 0 and
F > 0. The Fermi temperature Tf = πh̄2n/mkB is ≤ 2.8 mK for electron densities n ≤ 108 cm−2 which will

Figure 2. Schematic of the confining potentials in the direction perpendicular to the liquid surface for F = 0 and
F > 0. The transition frequency between the energy levels is a function of the aplied field F .

be used in this project. Therefore electrons are classical even at the low experimental temperature of ∼ 10
mK. Without any trapping potentials, electrons are free to move parallel to the surface.

Electrons scatter from helium vapor atoms at high temperatures above 0.7 K. Below 0.7 K the vapor
pressure is extremely small and scattering from vapor atoms can be neglected. At 10 mK the coupling of
electrons to the external world is via ripplon scattering.

The advantages of using electrons on helium for quantum computing are the simultaneous readout and the
scalability. This system has also been studied extensively both theoretically and experimentally. Electrons
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have extremely long relaxation time (highest mobility known in a condensed matter system),

τ0 ∼ 10−7 s, µ ∼ 104 − 105 m2/Vs. (8)

Inter-electron distance is comparatively large, ∼ 1 µm. This makes it easier to construct the micro-structures
which will be used to control qubits.

3. Design of the computer

We identify the ground state (n=1) as |0〉, and the first excited state (n=2) as |1〉. In order to address and
control the qubits each electron is localized laterally over micro electrodes (posts) which would be submerged
into the liquid. The distance between micro electrodes is 1 µm while the electrons are separated from the
posts by a 0.5 µm thick helium film. The lateral confinement of electrons results from the voltages applied
to the posts and the potential due to the image charge at the tips of the posts. A schematic of a four-qubit
system is shown in Fig. 3. Electrode potentials lead to Stark shift of the energy levels, and quantization
of motion parallel to the surface. The relaxation rate of a confined electron can be much less than that

Figure 3. The geometry of a four-qubit system with electrons trapped above micro electrodes. Electric field lines
are shown. The drawing is not to scale. The optimal dimensions are d = 1 µm, h = 0.5 µm.

of a free electron. To further slow down the relaxation a magnetic field perpendicular to the surface can
be applied.[2] In Fig. 4. we show a schematic of an electron trapped over a microelectrode representing a
qubit. In order to obtain a realistic estimate of the electrode potential U‖ and the electron energy spectrum,

Figure 4. Schematic of the lateral confinement potential U‖ and an electron trapped by it. The potential is formed
by the electrostatic image in the liquid, the potential from the electrode, potential created by the ground plate and
a parallel plate above the electron which is not shown. The figure is not to scale. In reality, h� b.
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Dykman et al. [8] used a model in which the micro electrode is approximated as a conducting sphere with
a diameter 2rel equal to the electrode diameter. For z � h, r = (x2 + y2)1/2 � h, this model gives electron
potential energy as

U‖(r, z) ∼= −
Qe2

z
+ eFz +

1
2
mω2
‖r

2

F =
Velrel
h2

+
erelh

(h2 − r2
el)1/2

ω‖ = (
eF

mh
)1/2. (9)

where Vel is the electrode potential and ω‖ is the frequency of in-plane oscillations. In-plane electron potential
is parabolic near the minimum and leads to harmonic oscillations with the frequency ω‖. Full electron energy
spectrum is shown in Fig. 5. Each energy level En gives rise to a set of harmonic oscillations parallel to the
helium surface with a spacing h̄ω‖. Both |0〉 and |1〉 correspond to the ground state of in-plane vibrations.
For typical F ∼ 300 V/cm and h ∼ 0.5 µm, one obtains ω‖/2π ∼ 20 GHz ∼ 1 K. Even though the spacing
h̄ω‖ between vibrational levels is less than the energy gap ∆E = E2 − E1 ∼ 8 − 10 K, with such large ω‖
one can avoid resonance between E2 and an excited vibrational level of the state |0〉.

Figure 5. Energy spectrum for a single qubit.

Energy spectrum for a single qubit differs from that of a many-qubit system. Electron-electron inter-
actions come into play in the case of many-qubits. Interaction leads to coupling of in-plane vibrations of
different electrons. In a many-electron system the vibrational energy spectrum becomes nearly continuous
as a result of a plasmon band associated with each level.[8] In order to avoid quasi-elastic scattering by

Figure 6. Energy spectrum for multi-qubits. ν∆‖ is the width of the plasmon band on the νth vibrational level.
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ripplons, the electron energy spectrum has to be discrete, i.e. broadened vibrational levels should be well
separated from each other up to energies E2 − E1. This requires

∆‖ �
(h̄ω‖)2

E2 − E1
=
h̄ω‖
ν
, (10)

where, ν is the number of vibrational levels between the levels E2 and E1.
For multi-qubit system one must choose suitable values for h, dij, Vi to optimize the performance of the

quantum computer. The objective is to have a high working frequency ΩQC and a low relaxation rate Γ. The
frequency ΩQC is determined by the rate of single qubit operations and by the strength of the interaction
between neighboring qubits.

The value of ∆‖ depends on the geometry. If the electrons form a Wigner crystal with the same lattice
constant as the micro electrodes, then the vibrational frequencies ω‖ of the pinned crystal are

ω‖ ∼ (ω2
k + ω‖)1/2 (11)

where, ωk is the phonon frequency of the electron crystal in the absence of electrode potential.[8] If ωk � ω‖
, then the phonon bandwidth ∆‖ is small compared to ω‖, and

∆‖ =
maxω2

k

ω‖
∼
ω2
p

ω‖
, ωp =

2πe2n3/2

m
, (12)

where, ωp is the characteristic zone boundary frequency of the Wigner crystal. Therefore, quasi-elastic
scattering will be eliminated[8] for a pinned Wigner crystal if

∆‖ =
(h̄ω‖)2

E2 −E1
⇒ ω2

p �
h̄2ω3

‖
E2 − E1

. (13)

This imposes an upper limit on the nearest neighbor spacing d, because

ωp ∝
1
d3/2

. (14)

For a square lattice with d = 1 µm, one obtains ωp/2π = 6.3 GHz. It has been found theoretically[8] that, in
the case of multi-qubits, the frequency ω‖ remains close to the single-qubit value for h/d ≤ 0.5. Therefore,
the optimal dimensions for this system would be such that h = 0.5 µm and d = 1 µm.

4. Qubit-qubit interactions

Wave functions of electrons do not overlap and the important part of the interaction between qubits is
dipolar. The dipol-dipol interaction energy Vij , between qubits i and j is given by

Vij ∼
e2(zi − zj)2

d3
ij

. (15)

where, zi and zj are the separation of the ith and jth qubits from the surface. For a typical dipole moment
eb , the interaction energy Vij between the qubits separated by a distance dij = 1 µm is

Vij =
e2b2

d3
ij

∼ 2× 107 Hz ∼ 1 mK. (16)

Dipolar interaction energy is extremely sensitive to the separation dij and can be controlled by adjusting the
inter-electron distance. For inter-electron distances d ≤ 1 µm, the qubit-qubit interaction limits the clock
frequency of the computer ΩQC to 107 − 108 Hz.

388



KARAKURT

5. Operations

5.1. Single-qubit operations

The single-qubit operation yields an admixture of states |0〉 and |1〉 by Stark shifting the states into
resonance with microwave radiation for a predetermined time. The state of the qubit j evolves as

ψj = cos(
1
2

Ωτj)|0〉 − isin(
1
2

Ωτj)|1〉 (17)

where Ω = eErf〈0|z|1〉/h̄ is the Rabi frequency and τj is the time the jth qubit is in resonance with the
microwave field Erf . For typical Erf = 1 V/cm, Ω ∼= 109 s−1. Thus, the rate of single qubit operations does
not limit the clock frequency of the quantum computer.

5.2. Two-qubit operations

Interactions occur when neighboring qubits are brought into resonance for a predetermined amount of
time by giving both states an equal Stark shift. As a result of dipolar interaction between the qubits,
an exchange (SWAP) occurs in about 10 ns. The SWAP operation would work in the following manner.
Suppose we begin with a two-qubit system in the state |01〉. Each qubit evolves as

ψj = cos(
1
2

Ωτ )|0〉 − isin(
1
2

Ωτ )|1〉, (18)

where Ω is determined by the strength of the interaction energy. The operation is a SWAP if Ωτ = π,

USwap|01〉 → i|10〉. (19)

The operation is a SQUARE ROOT of SWAP if Ωτ = π/2,√
USwap|01〉 → 2−1/2(|01〉+ |10〉). (20)

The operator
√
USwap leads to entanglement.

Two-qubit CNOT gate is implied by making use of the interaction between qubits. The transition
frequency of an electron depends on the position of the neighboring electron. Fig. 7. shows how the
transition frequency ν of the target qubit is affected by the control qubit. If the control qubit |C〉 = |1〉,
then ν is larger than ν0 by a factor which is determined by the interaction energy. The ν0 is the transition
frequency for a single qubit. For the CNOT gate the microwave frequency for target transition is selected
for the case |C〉 = |1〉, for example. Then, the transition in the target qubit will occur only if the control
qubit |C〉 = |1〉.

6. Readout

The wave function of the system collapses when a measurement is made. It would be advantageous
to read all qubits simultaneously. This should be done within the time scale set by the plasma frequency
ωp ∼ 10 GHz, i.e. before the qubits interact with one another. We present a simultaneous readout scheme
which is destructive. An ∼ 1 ns ramp of an extracting field is applied to the top electrode. When the field is
sufficiently large, electrons in the excited |1〉 state will tunnel into the vacuum in a short time while electrons
in the ground |0〉 state will not. The tunneling probability depends exponentially on the extracting field in
the range where the WKB approximation holds,

P (z) ∝ exp[K(z)dz], K(z) = [
2m[V (z) −E2]

h̄2 ]1/2. (21)

The potential with an extracting field is shown in Fig. 8. Nearly all electrons in the excited state tunnel
simultaneously as the tunneling probability changes rapidly from a value of � 10−9 s−1 to a probability
≥ 10−10 s−1 during the field sweep. Later |0〉 states are extracted sequentially with a large field applied for
a longer time to each post.[9] Electrons will be detected by a superconducting bolometer placed above the
posts. If an electron is detected, the state was |0〉. If no electron is detected, the state was |1〉 (See Fig. 9.).

389



KARAKURT

Figure 7. Transition frequency of the target qubit depends on the state of the control qubit. Microwave frequency
for target transition can be selected for the cases |C〉 = |1〉 or |C〉 = |0〉 to oparate the CNOT gate. In the figure,
h = 2πh̄.

Figure 8. The potential with an extracting field. The arrow represents a tunneling electron.

7. Relaxation mechanisms

Relaxation mechanisms can be classified into two groups: Decay of the excited state (decoherence) and
dephasing. In the decay of the excited state an electron makes a transition from state |1〉 to state |0〉. Decay
leads to a finite lifetime T1 of the excited state. Dephasing is the decay of the phase difference between the
states |0〉 and |1〉. It leads to a finite phase coherence time T2.

7.1. Decay of the excited state

Scattering of an electron off the helium surface waves involves absorption or emission of ripplons. During
the decay process energy is absorbed by the in-plane vibrational states and momentum is absorbed by
ripplons. Coupling of electrons to ripplons is weak. The ripplon amplitude δT is small compared to the
average distance 〈z〉 of an electron from the surface,

δT /〈z〉 ∼ 2× 10−3 for T = 10 mK. (22)
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Figure 9. a) A nsec-ramp extracting field applied to the top plate extracts all electrons in the |1〉 state. b) Remaining
electrons are in the |0〉 state and are detected by a superconducting bolometer (not shown in the figure) above the
electrodes. The figure is not to scale.

Collin et. al.[10] measured the electron-ripplon scattering rate as ∼ 2 MHz at T = 300 mK. Decay due to
one-ripplon scattering is exponentially suppressed because the ripplons are very slow,

ω‖ � ωr(q) for q < (mω‖/h̄)1/2. (23)

Two-ripplon scattering can still cause decay. This is shown in Fig. 10. Momentum of electron is absorbed
by two ripplons with wave vectors q1 and q2 ≈ −q1. The energy is then absorbed by the vibrational states.
The decay rate Γ2r due to two-ripplon scattering is < 4× 103 s−1 corresponding to T 2r

1 > 250 µs. Another

Figure 10. Two-ripplon decay process. Momentum of electron is absorbed by two ripplons with nearly equal
momenta going nearly in opposite directions.

mechanism, phonon assisted decay of the excited state, causes a modulation of the helium surface. Phonons
in the liquid also cause a modulation of the dielectric constant via a change in the helium density. The
dominant decay mechanism is the spontaneous emission of a phonon in the bulk liquid and an excitation of
the highest harmonic energy level that is beneath the energy of the excited state. The coupling to phonons
through the phonon-induced modulation of the image potential gives Γph < 104 s−1, T ph2 > 100 µs.
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7.2. Dephasing

Dephasing results from the uncertainty of the energy due to scattering. The phase of the qubit states
advances as,

ψ(t) ≈ ei[U+eV (t)]t/h̄. (24)

where V (t) is the potential on the micro electrode. The energy U of the state is uncertain during a scattering
process. Since the scattering amplitudes are different in states |0〉 and |1〉, the change in the energies
of these states will differ. This can also be thought of as the modulation of the distance between the
energy levels E1 and E2. The two-ripplon process for electrons confined to posts leads[8], at 10 mK, to
Γ2r
ϕ ∝ T 3 ∼ 102 s−1, T 2r

2 ∼ 10 ms.
The dominant process is Johnson noise on the electrodes. The normal applied field can be estimated by

treating the micro-electrode as a sphere with the diameter of the post. A voltage of 100 mV gives a field of
∼ 200 V/cm for h = 1 µm. Such an applied voltage would tolerate a 25 Ω resistor heat sunk at 1 K. The
Johnson noise for these parameters yields Γelϕ < 104 s−1, T 2r

2 > 100 µs.
In summary, the decay T1 and dephasing T2 times for a quantum computer based on electrons on helium

are
T1 ∼ 100 µs , T2 ∼ 100 µs. (25)

Single operations can occur in ≤ 10 ns. Thus 104 serial operations can be performed in a decoherence time.
A computer made of electrons on liquid helium can, in principle, be scaled to an arbitrary number of qubits.

8. Technical difficulties

In a realistic quantum computer based on electrons on helium a number of obstacles must be overcome.
The Stark fields are difficult to control precisely. The field is similar to that of a field emission tip,

Vpost = 1 µV⇒ E = 1 mV/cm⇒ ∆ν = 1 MHz. (26)

The posts are probably non-uniform. Starks shifts will have to be experimentally calibrated for each post.
Phase shifts due to electrostatic potentials must be taken into account. Voltages on posts influence neigh-
boring electrons. Although interactions between qubits can be controlled, they can not be turned off.
Implementation of a CNOT gate is difficult due to interaction with neighboring qubits when there are more
than two qubits.

9. Results and Conclusions

We described a quantum computer based on electrons floating on liquid helium. Each qubit is made of
combinations of ground and first excited states of an electron trapped laterally over micro-electrodes just
below the helium surface. The technical difficulties are no more challenging than those of other proposed
systems for quantum computation. We describe mechanisms for preparing the initial state of the qubit,
operations with the qubits, and a proposed simultaneous readout scheme. The advantage of this system over
other proposed systems is the simultaneous readout and the scalability. This system is capable of 104 serial
operations in a decoherence time of ∼ 100 µs.
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