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Abstract

The Born scattering amplitude of a non-relativistic spin one-half particle in an Aharonov-Bohm
potential is calculated up to second order. It is demonstrated that perturbation theory works well for
this model, in contrast with the case of scalar particles, thanks to the spin-magnetic moment interaction
term. The first order amplitude is shown to coincide with the exact amplitude when expanded to the
same order; the second order amplitude is finite and null. The polarized scattering cross section is found
to be different from the unpolarized one only if the incident particle has a spin component perpendicular
to the flux tube.

1. Introduction

The Aharonov-Bohm (AB) effect, a purely quantum mechanical phenomenon with no classical analogue,
was introduced into physics about half a century ago by Aharonov and Bohm in a memorial paper [1].
Charged scalar particles moving in a region with non-vanishing vector potential, but a vanishing magnetic
field except inside an infinitesimally thin (δ-function) infinitely long flux tube that is inaccessible to the
particle undergo scattering so that their scattering amplitude depends on the flux inside the tube, which
is inaccessible. The AB effect was—and is actually still—a field of intense research, both theoretical and
experimental (see the reviews [2] and [3] and references therein).

The first attempts [4, 5] to calculate the AB scattering amplitude perturbatively, however, revealed
the existence of a problem in the application of perturbation theory to this model. It was found that the
first order Born approximation gives rise to an amplitude that is different from the exact amplitude when
the latter is expanded to the same order in powers of the coupling constant of the theory. The second
order amplitude, which should be finite and null, was found to be divergent. Many approaches to remedy
this problem were suggested in the literature [6, 7, 8]. One of these approaches was the introduction of
a δ-function interaction into the Hamiltonian [9, 10]. This interaction was shown to lead to the correct
first order amplitude, and a finite and null second order amplitude. Some authors [9, 10] attributed this
δ-function term—that is introduced “by hand”—to a spin-magnetic moment interaction. However, there’s
no published work, as far as we know, that develops a theory in which this term appears naturally as a
result of the inclusion of the spin degree of freedom into the Hamiltonian of non-relativistic particles. This is
one of the goals of the present work. The other goal is to demonstrate that the inclusion of the spin degree
of freedom into the non-relativistic Hamiltonian leads to a first order cross section with spin dependence
identical to that in the exact cross section reported by Hagen for non-relativistic spin- 1

2 particles [7].
The paper is organized as follows: In section 2 we review the perturbative calculations for scalar non-

relativistic particles and demonstrate the failure of the Born approximation. In section 3, we introduce
the spin degree of freedom into theory starting from the Pauli equation, and show how the spin-magnetic
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moment interaction resolves the perturbative difficulties. We also calculate the differential cross section and
report its spin dependence. We sum up our conclusions in section 4.

2. The Failure of the Born Approximation for Non-Relativistic

Scalar Particles in an AB Potential

The dynamics of a scalar non-relativistic particle in a vector potential A(r) is governed by the Hamilto-
nian (we set ~ = c = 1 throughout this paper):

H =
1

2m
(p− eA)2. (1)

The AB potential A is given by [1]

A =
Φ
2π

ε̂3 × r

|ε̂3 × r|2
=

Φ
2πρ

ε̂ϕ, (2)

where ε̂3 and ε̂ϕ are unit vectors along the z- and ϕ-directions, respectively, ρ =
√
x2 + y2, and Φ is the

flux through the tube. For this vector potential, the Hamiltonian of a scalar particle becomes

H = H0 + V ; (3)

where

H0 =
p2

2m
, (4)

and

V =
ie

mc

Φ
2πρ2

∂

∂ϕ
+

e2

2m

(
Φ
2π

)2 1
ρ2
. (5)

The Schrödinger equation in cylindrical coordinates thus reads

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

[
∂

∂ϕ
+ iα

]2

+
∂2

∂z2
+ k2

]
Ψ(r) = 0. (6)

Here α, (0 < α < 1) is defined as α = −eΦ/2π.
The scattering solutions for the above equation were first calculated in [1] and corrected in [11]. The

exact scattering amplitude reported in the latter work reads (when α is taken to satisfy 0 < α < 1)

f (θ) =
−i√
2πk

sin (πα)
ei
θ
2

cos θ2
, (7)

which for small α reads

f (θ) =
√

π

2ik

(
−α tan

θ

2
− iα

)
+ O

(
α3
)
. (8)
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Note that the above amplitude has no O
(
α2
)

terms.
As we have mentioned in the introduction, attempts to get the amplitude in Eqn. (8) by employing the

Born approximation failed [4, 5]. To see this, recall that generally, the first order Born scattering amplitude
reads [5, 12]

f
(1)
B (θ) =

−i
2
√

2πik

∫
d2x

(
e−ik

′·xU (x) eik·x
)
, (9)

where kand k′ are, respectively, the wave vectors of the incident and scattered waves, with |k| = |k′|, and
θ is the scattering angle. U (x) is related to V (x) defined in Eqn. (5) as U (x) = 2mV (x). For the AB
potential Eqn. (2), f(1)

B thus reads [5]

f
(1)
B (θ) =

−i
2
√

2πik

∫
ρdρdϕ

(
e−ik

′·x
(
−2iα
ρ2

∂

∂ϕ

)
eik·x

)
= −α

√
π

2ik
tan

θ

2
, θ 6= 0.

(10)

It is obvious that the above amplitude misses the iα term of Eqn. (8). This discrepancy is a result of
the fact that the first order Born amplitude-being first order in α-misses the contribution of the s-partial
wave, as was first noted in [5] and demonstrated in details through a partial wave analysis in [13].

Turning to the second order Born amplitude, we see that this receives two contributions: one from
considering the α2-term in V , Eqn. (5), and the second from the iteration of the first order term. The first
of these reads

f
(2,a)
B (θ) =

−iπα2

√
2πik

∫
d2x

ei(k−k′)·x

|x|2

=
−iπα2

√
2πik

∞∫
0

dρ
J0 (qρ)
ρ

,

(11)

where

q = |k− k′| = 2k cos
(
θ

2

)
. (12)

The above integral diverges. However, for later convenience, we isolate this divergence by introducing a
cut off R at the lower limit of the integral. Integrating now, gives:

f
(2,a)
B (θ) =

−iπα2

√
2πik

[
−γ − ln

(
1
2
qR

)
+O (R)

]
=
−iπα2

√
2πik

[
−γ − ln

(
1
2
kR

)
− ln

(
2 cos

θ

2

)
+O (R)

]
,

(13)

γ being the Euler-Mascharoni constant. The second contribution to f(2)
B (θ) reads

f
(2,b)
B (θ) =

i

2
√

2πik

∫
d2xe−ik

′·x
(
−2iα
ρ2

∂

∂ϕ

)∫
d2x′Gk,+ (x − x′)

(
−2iα
ρ′2

∂

∂ϕ′

)
eik.x

′
, (14)

where Gk,+ (~x− ~x′) is the Green’s function for the Lippmann-Schwinger equation that behaves asymptoti-
cally as an outgoing wave
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Gk,+ (x− x′) = i
4H

(1)
0 (k |x− x′|) , (15)

and H
(1)
0 (k |x − x′|) is the zeroth-order Hankel function of the first type. The calculation of f(2,b)

B is most
convenient in momentum space, where an expansion of the integrand in terms of the Gegenbauer polynomials
[9] can be involved. The procedure was sketched in [9], where the result is:

f
(2,b)
B (θ) =

−iπα2

√
2πik

[
ln
(

2 cos
θ

2

)
+
iπ

2

]
, (16)

which is finite. Therefore,

f
(2)
B (θ) = f

(2,a)
B + f

(2,b)
B

=
−iπα2

√
2πik

[
−γ +

iπ

2
− ln

(
1
2
kR

)]
,

(17)

and is divergent.
As we mentioned earlier, we expect f(2)

B (θ) (which is of O
(
α2
)
) to give a null result, to be consistent

with the expansion (8). Obviously, this is not the case here. So, indeed the Born amplitude up to second
order fails in the case of scalar particles. Below we will show that, if the spin degree of freedom is taken into
account, the Born approximation works well as in the relativistic case [14, 15].

3. The Born Approximation for Non-Relativistic Spin-1
2 Particles

The correct inclusion of the spin degree of freedom into the Schrödinger equation of a spin- 1
2

particle in
an AB potential was considered by Hagen [7]. It was demonstrated that the exact differential cross section
for the scattering of a spin-1

2 particle differs from that of scalar particles only when the incident particle’s
spin has a component perpendicular to the AB solenoid. This result was also verified for the first order
Born amplitude of relativistic spin- 1

2 particles [14]. In this section, we will verify that the first order Born
approximation works well for non-relativistic spin- 1

2
particles. First, we will show that the inclusion of spin

leads to an amplitude that is consistent with the expansion of the exact amplitude in powers of α, Eqn.
(8), in that it reproduces the “correct” O (α) term, and a finite and null O

(
α2
)

term, the reason being the
additional spin-magnetic moment interaction in the Hamiltonian. Second, we will show that this particular
term reproduces to this order the spin-dependence of the AB amplitude reported in [11, 14].

The starting point is the Pauli equation

1
2m

[σ · (p− eA)]2 Ψ(r) = EΨ(r) , (18)

where the σi’s (i = 1, 2, 3), are the Pauli spin matrices, and A is the AB potential, equation (2). Expanding
the Hamiltonian in Eqn. (18), we get

H = H0 + V, (19)

where

H0 =
p2

2m
, (20)

and
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V =
−iα
m

1
ρ2

∂

∂ϕ
+

α2

2mρ2
+
π

m
ασ3δ

(2) (r) , (21)

where α was defined earlier.
Note the appearance of a new interaction term in (21) that results from the coupling of the spin-magnetic

moment of the particle to the magnetic field of the solenoid, which is a δ-function at the origin. The
Schrödinger equation in cylindrical coordinates now reads

[
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

(
∂

∂ϕ
+ iα

)2

− 2παδ2 (r) + k2

]
Ψ(r) = 0. (22)

The first order Born amplitude will obviously now receive a new contribution from the new O (α) term
in V . So, we have now

f
(1)
B (θ) = f

(1,a)
B (θ) + f

(1,b)
B (θ) , (23)

where f(1,a)
B (θ) is just the one given by Eqn. (10), except that we have to multiply the incident and outgoing

waves with the Pauli spinors; thus it reads

f
(1,a)
B (θ) = χ+

(
−α
√

π

2ik
tan

θ

2

)
χ, θ 6= 0. (24)

As for f(1,b)
B (θ), it reads

f
(1,b)
B (θ) =

i

2
√

2πik

∫
d2r

(
e−ik

′·rχ+(s′)
(
−2πασ3δ

(2) (r)
)
χ(s)eik·r

)
=

−i
2
√

2πik

∫
d2r

(
ei(k−k′)·r′ α

R
δ (r − R)

)
,

(25)

where we have applied the regularization scheme suggested in [9], to deal with the δ-function through the
introduction of a regulator R:

2παδ2 (r) =
α

R
δ (r −R) . (26)

The regulator R will be set to zero at the end of the calculations. This regularization scheme is powerful,
and will serve to isolate the divergences in the second order amplitude, as will be seen shortly, in a manner
similar to the regularization schemes used in field theory [15]. Integrating, we end up with

f
(1,b)
B (θ) = −iα

√
π

2ik
σ3 + O (R) , (27)

which is finite.
Turning now to f(2)

B (θ), we see that this receives three contributions. The first, f(2,a)
B , comes from the

O
(
α2
)

term in V , Eqn. (21), which is the same as in the scalar case, Eqn. (13). The same holds for the
second contribution, namely f(2,b)

B in Eqn. (16). The third contribution, f(2,c)
B , which is absent in the scalar

case, comes from the iteration of the first order δ-function term in V , and is given by
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f
(2,c)
B (θ) =

i

2
√

2πik

∫
d2rd2r′

(
χ+(s′)ei(k·r′−k′·r)Gk,+ (r, r′)

α2

R2
δ (r′ −R) δ (r − R)χ(s)

)
=

2iπ2α2

√
2πik

χ+(s′)

[
i

4
− 1

2π
ln
(

1
2
keγR

)
+ O (R)

]
χ(s).

(28)

The above expression is clearly divergent in the limit R → 0. Note, however, the way the regulator
divided the result into a finite part (independent of R) and a divergent part. Also note that the above
expression is equal exactly to the negative of the sum of f(2,a)

B andf(2,b)
B , Eqns. (13) and (17), so that the

two divergent terms delicately cancel, and we get for the spinor second order Born amplitude

f
(2)
B (θ) = f

(2,a)
B (θ) + f

(2,b)
B (θ) + f

(2,c)
B (θ) = 0, (29)

a finite and null result, as it should be, thanks to the spin magnetic moment interaction.
One might wonder at this point why we didn’t consider the contribution to f(2)

B (θ) from the crossed iter-
ation of the δ-function and the −2iα∂/∂ϕ terms in V , Eqn. (21), which is O

(
α2
)
, too. These contributions

simply vanish. The reason being that they act in orthogonal Hilbert subspaces, that is, while the contact
(δ-function) interaction only affects the s-waves, the −2iα∂/∂ϕ vanishes in that subspace. This fact is most
transparent if one considers partial wave analysis of the Born amplitude [13].

So, finally we get for the Born scattering amplitude of spin-1
2 particles, up to O

(
α2
)

fB (θ) = χ+(s′)

(√
πα2

2ik

(
− tan

θ

2
− iσ3

)
+ O

(
α3
))

χ(s). (30)

The above result has no α2-terms, neither finite nor infinite, as one expects. Moreover, it makes manifest
the fact that any transitions in the spin space of the particle are induced by the second term in f

(1)
B (θ),

which came up as a result of the inclusion of the spin-magnetic moment interaction into the Hamiltonian,
Eqn. (21) and was absent in the scalar case. To see the effect of the inclusion of the spin degree of freedom
more explicitly, it is best to look at the scattering cross sections.

The unpolarized particle cross section is given by:

(
dσ

dΩ

)Born

unpd.

=
1
2

∑
s,s′

∣∣∣∣∣χ+(s′)

√
πα2

2ik
(
− tan θ

2
− iσ3

)
χ(s)

∣∣∣∣∣
2

=
πα2

2k

(
1 + tan2 θ

2

)
=
e2Φ2

8πk

(
cos2 θ

2

)−1

,

(31)

which, as expected by [7], is just the cross section that one gets from the scalar amplitude at the same
order: Eqn. (8). As for polarized particles, if we take the incident particle to be polarized along an arbitrary
direction given by a unit vector n̂, and we consider transitions to a final state with the same polarization,
we get

(
dσ

dΩ

)Born

pol.

=

∣∣∣∣∣χ+ (n̂)

√
πα2

2ik

(
− tan

θ

2
− iσ3

)
χ (n̂)

∣∣∣∣∣
2

=
(

1− (n̂ × ẑ)2 cos2 θ

2

)(
dσ

dΩ

)Born

unpd.

.

(32)

The above cross section is different from the unpolarized one only if the particle’s polarization has a
component perpendicular to the solenoid. This is in agreement with the results reported earlier for the exact
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cross section of a non-relativistic particle [7], and the first order born amplitude of a Dirac particle [14].
Therefore, our calculations show that the Born amplitude for non-relativistic spin- 1

2 particles, not only gives
a finite and null result at O

(
α2
)

[15], but also reproduces the same-dependence of the cross section as in
the exact theory.

4. Conclusions

We have shown that the spin-magnetic moment interaction of spin-1
2 particles in an AB potential provides

a δ-function term that leads to a correct and finite Born scattering amplitude. This term, which appears
naturally in the Hamiltonian once one starts from the Pauli equation, renders the second order Born ampli-
tude finite and null. It also catches the contribution of the s-wave to the first order amplitude, thus leading
to an amplitude that is consistent with the exact amplitude expanded to the same order. The unpolarized
cross section is the same as the one calculated for scalar particles at the same order, while the cross section
for polarized particles is found to be different from that for unpolarized ones only if the initial polarization
has a component normal to the AB solenoid. The above spin dependence is the same as the one reported
earlier for the exact cross section of non-relativistic spin one-half particles [7], and for the first order Born
cross section of Dirac particles [14].
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