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Abstract

Eigenvalues and eigenfunction of two-boson 2 x 2 Hamiltonians in the framework of the superalgebra
0sp(2,1) are determined by presenting a similarity transformation. The Hamiltonians include two bosons
and one fermion have been transformed in the form of the one variable differential equations and the
conditions for its solvability have been discussed. It is observed that the Hamiltonians of the various
physical systems can be written in terms of the generators of the osp(2,1) superalgebra and under some
certain conditions their eigenstates can exactly be obtained. In particular, the procedure given here is
useful in determining eigenstates of the Jaynes-Cummings Hamiltonians.

1. Introduction

The Lie (super)algebras have played important role in the study of quantum physics in particular they
are associated with the symmetry properties of physical systems and improve the understanding of physical
structures [1, 2, 3, 4]. In the last decade a lot of effort, has been attracted on the quasi-exactly solvable(QES)
equations whose finite number of eigenvector can be obtained by solving an algebraic equation [5, 6, 7, 8, 9].
Yet, even today, new contributions to this problem are being made. They appear, however, not to have
been fully exploited in the analysis of QES equations. These systems have found application in the different
fields of the physics. Recently, great attention is being paid to examine different quantum optical models
[10, 11, 12, 13, 14] with Hamiltonians given by nonlinear functions of the bosonic and/or fermionic operators
since they enable to reveal new effects and phenomena.

The natural step to relate the quantum optical systems and Lie (super)algebras is to express the gen-
erators of the Lie (super)algebra in terms of bosons and/or fermions. The Hamiltonians can be written as
combinations of the generators of a relevant symmetry group. Hence, one can able to compute (a part of)
the spectrum by performing a suitable transformation of the generators.

One major symmetry group candidates for system of two differential equation and 2 x 2 matrix Hamil-
tonians is the supergroup osp(2,1). It is well known that unlike a purely bosonic algebra, the superalge-
bra admits different Weyl inequivalent choices of simple root systems, which corresponds to inequivalent
Dynkin-diagrams. In the case of 0sp(2,1) one has two choices of simple roots which are unrelated by Weyl
transformations: a system of fermionic and bosonic simple roots, or a purely fermionic simple roots [15]. Our
aim, in this paper, is to construct bosonic and fermionic realization of the osp(2,1) algebra and to obtain
solution of the some quantum mechanical problems by performing a suitable transformation operation for
the bosons and fermions.
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The paper is organized as follows: In section 2 the construction of the boson-fermion realization of
the osp(2,1) algebra briefly reviewed and two different realization have been given. Section 3 includes the
general method to transform the boson and fermion operators in the form of the QES. In section 4 we present
the solution of the Jaynes-Cummings Hamiltonian with Kerr nonlinearity and modified-Jaynes-Cummings
Hamiltonian as an application of the method. The paper ends with a brief conclusion.

2. Construction of the two-boson one fermion osp(2,1) superalge-
bra

A convenient way to construct a spectrum generating superalgebra for systems with a finite number of
bound states is by introducing a set of boson and fermion operators. We introduce two boson operator, a;
and as, which obey the usual commutation relations

[a1,a1] = [a1,a3] = [az2,a]] =0, [a1,a]] = [az,af] = 1. (1)

The bilinear combinations aj a1, al as, ad a1 and aj as generate the group su(2) and a7 a1, af af, aza;
and a;ag generate the group su(1,1). Let us start by introducing three generators of su(2),

1
Jy = afag, J_ = a;al, Jo = 5 (afal — a;ag) . (2)

These are the Schwinger representation of su(2) algebra. The fourth generator is the total boson number
operator

N =afa +afas (3)

which commutes with the su(2) generators. The superalgebra osp(2,1) might be constructed by extending
su(2) algebra with the fermionic generators

V+ = f+a25V—:_f+alaW+:faii_aW—:fa;_ (43.)
Vi = fas, Vo =—fa, Wy = fraf , W_ = ftaf, (4b)

where fT and f are fermions and they satisfy the anticommutation relation

{r.ft}=1 (5)

The superalgebra osp(2, 1) can be constructed with the generators (2) and (4a) or (4b). It is easily seen that
the generators given in (4a) and (4b) can be mapped on to each others by a change of the fermionic creation
and annihilation operators. As discussed in [16, 17], the generators of the osp(2,1) algebra are written as
follows:

{Jx,Jo, J €0sp(2,1)g | Vi, Wy €o0sp(2,1)1}, (6)

where J is the total number operator of the system and is given by

J o= %N+f+f (72)
J = %N+ff+ (7b)
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for the generators (2, 4a) and (2, 4b), respectively. The generators of the osp(2,1) superalgebra satisfy the
following commutation and anticommutation relations:

[J+,J_] = 2Jy, [JO,Ji]:iJi, [J,Ji70]:0

o Val = E5Va, Lo Wal =£3Wa, [AVi]= Vi

Ui Vel = Vi, [Ja,Wal = We, [J,Wi]:—%Wi

[Jt,Vi] = 0, [J, Wi] =0 (8)
{Vi,Wi} = +Q4, {Vi,W:F}:_JOiJ

(ViV} = {Vi, Vi) = {Wa, Wl = {Wa, W} = 0.

It is well known that the osp(2,1) algebra has been constructed by extending purely bosonic su(2) algebra
with fermionic generators. Meanwhile, we mention here, one can construct osp(2,2) algebra by extending
su(1,1) algebra.

In general, the spectrum of the physical system can be calculated in a closed form when the Hamiltonian
of the system can be written in terms of number operator and diagonal operator Jy, it can be diagonalized
within the representation [N]. The abstract boson and/or fermion algebra can be associated with the
exactly solvable Schrodinger equations by using the differential operator realizations of boson operators.
This connection opens the way to an algebraic treatment of a large class of potentials of practical interest
[18].

The Hamiltonian of the some physical systems can be constructed up to quadratic combination of the
generators of the osp(2, 1) algebra. It will be shown that the associated Hamiltonian includes various physical
system Hamiltonians. In order to relate the osp(2,1) algebraic structure with the two dimensional 2 x 2
matrix Hamiltonians one can use standard matrix representations of the fermions:

e (1) e (12).

r-ri=a= (g %)

The bosons can be realized in the Bargmann-Fock space. In order to obtain a (quasi)exactly solvable
Hamiltonian, in the next section, we prepare a suitable transformation procedure.

3. Transformation of the operators

As discussed in [18], the Schwinger representation of su(2) and su(1, 1) algebra with two boson operator
can be mapped onto the generalized Gelfand-Dyson representation by a similarity transformation. The
connection between the two representation can be obtained by introducing the operators

I = (ag)‘ﬁ“1 or I'y = (a;)alﬂ“. (10)

Since a; and as commute, I'y and I's are well defined and their actions on the state are given by

/ na!
Fl |7’L1, TL2> = (a2)"1 |n1, n2> = (nTQnI)' |7’L1, no — TL1> (11&)
+\n1 nQ!
FQ |7’L1, TL2> = (a2 ) |7’L1, n2> = m |7’L1, no + TL1> . (11b)
2 1 .
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Our task is now to develop a transformation procedure to obtain generalized Gelfand-Dyson like representa-
tion of the osp(2, 1) superalgebra. This can be done by introducing the following similarity transformation
induced by the metric:

‘g = (a;)afa1+aa+a,, (12)

where « takes the values +1 . Since a1, and a; commute and o4 o also commute with the bosonic operators,

the transformation of a; and a] under S can be obtained by writing af = e®, with [a1,b] = [a]", b] = 0,
1 2 1
Sa S™' = ay(af)?
SafS™' = afad; (13)

the transformations of as and a;’ are

SasS™' = ag —n(af)!

SafS™' = af, (14)
and the transformations of the o4 are given by
So4+S7t = oi(ad)t? (15)
where n is given by
n=ala +aoc,o_. (16)

The transformations of the bosons and fermions (13) through (16) play a key role in the construction
of QES one-variable 2 x 2 matrix Hamiltonians. For two different values of @ = +1, the two component
polynomial spinors form a basis function for the generators of the osp(2,1) algebra. Consequently, we obtain
two classes of Hamiltonians which can be solved (quasi)exactly under some certain conditions.

3.1. Case: S = (af)u@tooto— o =1

In the case of @ = 1, under the transformations (13-16), the generators (2), (4a) and (7a) of the osp(2, 1)
algebra take the form

J. = SJ.S'=—ajafar +af(afaz —oi0-)
J o= SIS =a
1
Jy = SJS'= 3 (2af a1 —ajaz +o10-)
1
J = SJS!= 5 (afaz+o40-)
Vi = SV.S!'=o0.(afaz—ajar—o0) (17)
VI = SV.§ = —o1aq
W, = SWiS'=o_af
W, o= SW_S'=o_.

The difference between the representations of osp(2,1) given in section 1 and primed representations
(17) is that, while in the first the total number of a1, az bosons and f, fT fermions characterize the the
system, in the later it is only the number of as bosons that characterize the system. When we characterize
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the algebra by a fixed number a;ag = j in the primed representation, the generators can be expressed in

terms of one-boson operator a; and yield the following realization:

J. = SIS =—alafar +af(j—os0o)
Jo= SIS =a
1
Jy = SJS'= 3 (2afa1 —j+o40-)
1
J = SJS!= §(j+a+a_)
Vi = SVyS'=—oy(afar —j) (18)
VI = SV.8'=_—06,a;
W, = SWyS!'=o0_af
W o= SW_.Sl'=o_.

These generators play an important role in the quasi-exact solution of the matrix Schrédinger equation. The
generators of the osp(2, 1) algebra can be expressed as differential equation in the Bargmann-Fock space by
defining the bosonic operators:

d +

o=, af =1 (19)

The two component polynomials of degree j and j + 1 form a basis function for the generators of the
0sp(2, 1) algebra in the Bargmann-Fock space:

$O,$1, . ,xn—i-l
Ppyin(z) = ( 0 .1 n > . (20)

x ,x ,...,x

The general QES operator can be obtained by linear and bilinear combinations of the generators of the
0sp(2, 1) superalgebra. Action of the QES operator on the basis function (20) gives us a recurrence relation;
therefore, the wavefunction is itself the generating function of the energy polynomials. The eigenvalues are
then produced by the roots of such polynomials. Before illustrating this application of the procedure given
here on the physical examples, let us construct another representations of the osp(2, 1) superalgebra.

3.2. Case: § = (af)simtooto— o =]

Using the same similarity transformation procedure given in section 3, we obtain the second class of the
0sp(2,1) superalgebra. In this case, the generators Ji ¢ remain the same as in (18), while the generators
Vi, Wy and J given in (4b) and (7b), respectively, take the form

1
J = 8JS7!= §(j+1+a_a+)
Vi = SViSt'=-0_(afar—j—1)
VI = SV.S8'=—0_a (21)
W_Ii_ = SW+S_1 = a+af
W' o= SW_.S'l=o,.

The basis function of this structure takes the form
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The other transformation can be done by introducing the following similarity transformation induced by

the metric

T = (ag)_

where 71 takes the values +1. By using the similar
obtain the following transformations:
TaT!
TaT™!
Ta>T™!
TajT™!
To T™!

With this transformation we can construct two
n = +£1.
3.3.

Case: T = (a2)_‘11~_@1+770'+0'_; n=1

af ai+no4o—
Y

(23)

arguments given in the previous section one can easily

aray

af (af)™!

as (24)
ag +n(ad)™!

o+ (af)e.

more different realizations of the osp(2,1) algebra for

In the case of n = 1, under the transformations (24) the generators (2), (4b) and (7b) of the osp(2,1)

algebra take the form

J! TJ.T7'=af
J. = TJ.T'=af
o, 1
Jy = TJT'= 3
1
J = TJT'=_
2
Vi = TV,T '=o0_
v’ VT !
W, TW, T ' =04a
W, = TW_-T '=o04(a

This realization can also be characterized by a3

Priin(z) = (

in the Bargmann-Fock space.

3.4. Case: T = (a2)—a§”a1+na+a_;

The generators (2) of the osp(2, 1) superalgebra
ators can be expressed as:

x€X ,x yoee

+

Jas —afar +1+0,0.).

az = j. The basis function of the realization is given by

)

0 .1

,xn—i-l
0 1 (26)

x ,x ,...,xn

n=-1

take the same form as in (25) and the remaining gener-

1
J = TJT = 3 (a;ag — 0’+0'_)

Vi = TV,T '=o0, (27)
VN = TV.T'=—0,a;

W TW, T ' =o_af

W, = TW.T'=o0_(afas —ajar +1—0,0.).
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The basis function of this structure is given by

xO x]‘, Y ,xn
Pn,n—l(x) = ( 20 1 n—1 > (28)

)
,x ,...,x

Consequently we have obtained four classes generators for the osp(2,1) superalgebra by using two trans-
formation operators S and 7. These generators can be expressed as one-variable 2 x 2 matrix differential
operators useful in the study of (quasi) exactly solvable systems.

4. Application

This section includes solution of the some physical Hamiltonians by using the procedure given in the
previous sections of this article. In particular, our approach is useful for the study of nonlinear optical
systems.

4.1. Jaynes-Cummings Hamiltonian with the Kerr nonlinearity

The effective Hamiltonian, which represents the Jaynes-Cummings model with Kerr nonlinearity, has
been expressed as [19]

1
H=wa"a+ 5000 + k(ato_ +aocy)+ ataata, (29)

where a and a™ are annihilation and creation operators of the radiation mode which, with a frequency o4 o,
are the standard Pauli matrices for the atom, and has a frequency of transition wg; x, A are the coupling
constant of the field and atom and the coupling constant of the field and Kerr medium, respectively. The
eigenvalue equation can be written as

i = Ev. (30)

Our task is now to express the Hamiltonian (29) in terms of the generators of the osp(2, 1) algebra. In terms
of the generators given in (2), (4a) and (7a) and number operator N, the Hamiltonian can be written as

H = w(2Jy+N) + % (J =N —Jo—1)+A2Jo + N)2 + k(W4 — V_). (31)

Note that the bosonic operators a; = a and a] = a*t. By considering the transformation procedures given
in (18) one can obtain the single variable differential equation, which in the Bargmann-Fock space reads:

d d d
H = (w +w0)(2x% +1—3j)+ (w—wo)og + )\(230% +1+00—j) + k(o + %0'4_). (32)

The action of the Hamiltonian on the two component spinor

Pom(z) = ( u"(x)) > (33)

gives us the following recurrence relation:

(2w — (w+wo)(j —2n) + A(j —2(n + 1))* = E) up(E) + kmuy—1(E) = 0 (34a)
—(E+({G-2m)(w—=AJ—m)+ (§j —2m — 2)wo) vm(E) + Kunt1 0. (34b)

The recurrence relation implies that the wavefunction is itself the generating function of the energy polyno-
mials. The eigenvalues are then given by the roots of such polynomials. If E; is a root of the polynomial, the
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wavefunction is truncated at n+1 = m = j and belongs to the spectrum of the Hamiltonian H. Considering
the initial condition v; 41 = uj4+1 = 0, we have obtained first few eigenvalues of the Hamiltonian H:

IN+3w+wy—F 0 Uy —0
0 A—wHwi—E vo )

Therefore we can obtain
E={92+3w+wy, A—w+wo}

for j = 1. Similarly for j = 2, the eigenvalues of the Hamiltonian are given by

E={2wy, 2w+2)\), w+10A+wo* K2+ 3w+ 6A+wp)?. (35)
Analytical solutions of the recurrence relations (34a) and (34b) are available only for the first few values of

j, for large j the solutions become numerical.

4.2. Modified Jaynes-Cummings Hamiltonian

The modified Jaynes-Cummings Hamiltonian has been constructed to investigate single two level atom
placed in the common domain of two cavities interacting with two quantized modes. It is given by [20]

w
H = w(af a1 +afaz) + ?an + (a1 +af o) + Xa(azoy +afo). (36)

Using the same procedure as in section 4.1, we can obtain the the transformed form of the Hamiltonian (36)
in terms of the generators osp(2, 1) algebra, given in (2), (4a) and (7a) and with number operator N; then
the Hamiltonian can be written as

N
szN—l-% (J—1—5> + A (W = Vo) + X (Wo + V). (37)

The eigenvalues of this Hamiltonian can be obtained by using the transformation procedure given (17)
or (27). The transformed Hamiltonian can be expressed as one variable differential operator:

. w d d )
H =w(j—1-09)+ ?an + M\ (xo_ + %a+> + Ao (a_ — (x% —j)0'+> : (38)

Therefore two component one variable spinor (33) from a basis function for the Hamiltonian (38)

o1 ($) = Cl()\g + )\1.%)"()\1 — )\Qx)j_"
(bg(x) = CQ()\Q + )\1.%)"_1()\1 - )\Qx)j_" ,
where n =0,1,---,j, and eigenvalues of the Hamiltonian are given by

E=w(lG-1)=+ \/(wo —2w)2 +4n(M\? + \3).

Consequently we have obtained the exact result for the eigenvalues of the modified Jaynes-Cummings Hamil-
tonian. The procedure given here can be applied to obtain eigenfunction and eigenvalues of various physical
Hamiltonians. In this section we have discussed solution of the some simple physical Hamiltonians by using
the transformation of the osp(2, 1) superalgebra, without further details.
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5. Conclusion

The basic features of our approach is to construct osp(2,1) invariant subspaces. We consider systems
whose Hamiltonian can be expressed in terms of two bosons and one fermions. Furthermore, we have
presented two different boson-fermion realization of osp(2,1) algebra. The corresponding realizations have
been transformed in the form of one dimensional differential equations. Meanwhile, we have shown that our
procedure is appropriate to obtain eigenvalues and eigenfunctions of various systems. In particular, we have
constructed solutions to the Jaynes-Cummings and Modified Jaynes-Cummings Hamiltonians.

The suggested approach can be generalized in various directions. Invariant subspaces of the multi-boson
and multi-fermion systems can be obtained by extending the method given in this paper. In particular, the
subspace of the osp(2,2) superalgebra can easily be constructed.
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