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Ramazan KOÇ and Derya HAYDARGİL
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Abstract

The Schrödinger equation with one and two dimensional potentials are solved in the framework of
the sl2(R) Lie algebra. Eigenfunctions of the Schrödinger equation for various asymmetric double-well
potentials have been determined and the eigenstates are expressed in terms of the orthogonal polynomials.
The solution of the double-well potential in two dimension have been analyzed.
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1. Introduction

The importance of the double-well potentials in quantum mechanics, condensed matter physics, statistical
physics or field theory can hardly be overestimated [1, 2]. The Schrödinger equation has no exact, analytical
solution with double-well potentials. It can be solved by using approximate methods or numerical methods.
On the other hand, in quantum mechanics there exist potentials for which it is possible to find a number of
eigenvalues and associated eigenfunctions exactly and in a closed form. These systems are said to be quasi-
exactly solvable (QES) and this property is ultimately connected with the existence of a hidden dynamical
algebra [3].

In this article we present a quasi exact solution of the Schrödinger equation with one- and two dimensional
double-well potentials. The Schrödinger equation with one dimensional double-well potential have been
studied by a number of authors and it can be solved by using various methods [4]. Approximate QES and
approximate analytical solutions of the double-well potential have been derived in [5].

There is not much attention for the solution of the two-dimensional double-well potential [6]. In this paper
we develop a simple method to solve the Schrödinger equation which admits separation of variables with
two-dimensional double-well potentials. We show the separated equations are still QES. The Schrödinger
equation does not admit separation of variables in two dimensions, a topic of a future work.

The paper is organized as follows. Section 2 is devoted to a derivation of a QES one-dimensional double-
well potential in the framework of the sl2(R) Lie algebra. Section 3 contains a solution of the two dimensional
double-well potential which admits separation of variables. Finally, the results are discussed in section 4.

2. One dimensional double-well potential

The strategy we follow is described in [7]. One way to construct a quasi-exactly solvable differential
equation is to express the Hamiltonian in terms of the generators of the Lie algebra. Let us consider the
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sl2(R) algebra realized as follows:

J+ = x2 d

dx
− jx, J0 = x

d

dx
− j

2
, J− =

d

dx
. (1)

The generators obey the commutation relation

[J+, J−] = −2J0, [J0, J±] = ±J±, (2)

and it may be verified that the eigensolutions of the generators are given explicitly by

J−|m >= m |m− 1 >, J0 |m >=
(
m− j

2

)
|m>, J+ |m>= (m− j) |m+ 1), (3)

where the basis function is

|m >= Rj+1(x). (4)

If j is a non-negative integer number, the algebra possesses a (j + 1)-dimensional subspace

Rj+1 =
〈
x0, x2, · · · , xj

〉
. (5)

The linear and bilinear combinations of the generators of the algebra form a second order differential equation
possessing polynomial solutions. One possible way to get a QES Schrödinger operator is to transform the QES
algebraic operators acting on the finite dimensional subspace of polynomials Rj+1(x) into the Schrödinger-
type equation. It can be done by a gauge transformation.

2.1. The model Potential I

Consider the double-well potential of the form

V (x) =
A

2
x2 − B

3
x3 +

C

4
x4, (6)

where A, B and C are constants. If 2B2 = 9AC, the potential is a symmetric potential with two minima;
otherwise the potential is an asymmetric potential with two minima. We are interested in the asymmetric
double-well potential. The Schrödinger equation of this potential can be written as(

− d2

dx2
+ V (x)

)
ψ(x) = Eψ(x). (7)

We can write the wavefunction ψ(x) in the form

ψ(x) = exp

(
−1

2

(
−3(j + 1)

Cx

B
− Bx2

3
√
C

+

√
Cx3

3

))
R(x). (8)

Then the Schrödinger equation takes the form

−d
2R(x)
dx2

+
(
−3(j + 1)

C

B
− 2B

3
√
C
x+
√
Cx2

)
dR(x)
dx

−(
ε+ j

(
− B

3
√
C

+
√
Cx

))
R(x) = 0 (9)

with the constraint

A =

(
2B3 − 27(j + 1)C5/2

)
9BC

E = ε− (j + 1)B
3
√
C
−
(

3(j + 1)C
2B

)2

. (10)

162



KOÇ, HAYDARGİL

The potential (6) is asymmetric for all values of j when B > 0 and C > 0, and the location of minimum
points depends on the values of j. In order to solve (9), we introduce the linear and bilinear combination of
the algebraic operators

T = −J2
− − 3(j + 1)

C

B
J− −

2B
3
√
C
J0 +

√
CJ+ (11)

for which one can define the spectral problem

TR(x) = εR(x), (12)

where ε is a spectral parameter. The algebraic structure (11) is quasi-exactly solvable and the insertion of
(1) into (11) leads to the differential equation (9). The basis function (5) can be written as

R(x) =
∞∑
m=0

amPm(ε)xm, (13)

where Pm(ε) is polynomial in ε and it can be given by the recurrence relation

−m(m− 1)Pm−2(ε) − 3m(j + 1)
C

B
Pm−1(ε) +

√
C (m− j)Pm+1(ε) −(

2B
3
√
C

(m− j

2
) + ε

)
Pm(ε) = 0, (14)

with the initial condition P0 = 1. The spectral parameter ε can be determined from the recurrence relation
(14). If εj is a root of the polynomial Pm+1(ε), the series (13) truncates at m 1 (j + 1) and εj belongs to
the spectrum of the double-well potential. The first four of these polynomials are given by

P1(ε) = ε

P2(ε) = 9BCε2 −B3 − 54C5/2

P3(ε) = 9BCε3 − 4
(
B3 + 81C5/2

)
ε+ 36BC2

P4(ε) = 9B2C2ε4 −
(
10B4C + 1080BC7/2

)
ε2 +

216B2C3ε+
(
B6 + 216B3C5/2 + 11664C5

)
(15)

for j = 0, 1, 2 and 3, respectively. Analytical solutions of the recurrence relation (14) are available only for
the first few values of j. For j > 2 the solutions become numerical.

2.2. The Model Potential II

We consider the following potential treated by Burrows [5]:

V (x) = V0 − Ax+
x2

2
(B + Cx)2. (16)

The potential is symmetric when A = 0, with double minima at x = −BC and x = − B
2C . The Schrödinger

equation with the potential (16) is given by(
− d2

dx2
+ V (x)

)
ψ(x) = Eψ(x). (17)

In order to transform the Schrödinger equation to the form of an algebraic equation, we introduce the
transformation

ψ(x) = exp
(
−Bx

2

2
√

2
− Cx3

3
√

2

)
R(x). (18)
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Then the Schrödinger equation takes the form

−d
2R(x)
dx2

−
√

2x(B + Cx)
dR(x)
dx

+ (19)(
V0 −E −Ax+

√
2Cx− B√

2

)
R(x) = 0.

The linear and bilinear combinations of the operators of the Lie algebra

T = −J2
− −
√

2BJ0 −
√

2CJ+; TR(x) = εR(x) (20)

is equivalent to the situation in (19) when the parameters of the Schrödinger equation is constrained to

A = −
√

2C(j + 1)

E = ε− (j + 1)B√
2

. (21)

Since j 1 0, the potential is an asymmetric double-well potential. The Spectral parameter ε can be calculated
from the recurrence relation

−m(m− 1)Pm−2(ε) −
(√

2B
(
m− j

2

)
+ ε

)
Pm(ε) − (22)

√
2C(m− j)Pm+1(ε) = 0,

with the initial condition P0(ε) = 1. The first four values of the Pm(ε) are given as follows:

P1(ε) = ε

P2(ε) = 2ε2 −B2

P3(ε) =
√

2
(
ε3 − 2εB2 − 4BC

)
+ 4εC

P4(ε) = 4ε4 − 20
(
B2 − 2

√
2C
)
ε2 + 96εBC + 9B2

(
B2 − 4

√
2C
)
, (23)

for j = 0, 1, 2, 3, respectively.

3. Two-Dimensional double-well potential

In this section the quasi exact solution of the Schrödinger equation with two dimensional double-well
potential is treated. We develop a systematic procedure for constructing a QES of a double-well potential
and we illustrate our method in the situation where the Schrödinger equation admits separation of variables.
The Schrödinger equation in two dimensions is given by(

− ∂2

∂x2
− ∂2

∂y2
+ V (x, y)

)
ψ(x, y) = Eψ(x, y), (24)

and can be solved exactly for a few potentials. The ground state wave function of the Schrödinger equation
can be written in the form

ψ0(x, y) = exp(−W (x) − F (y) − f(xy)), (25)

where W (x) and F (y) are functions of x and y, respectively, while f(xy) is function of the product of x and
y. The potential and ground state energy of the system with the given ground state wave function takes the
form

V0(x, y)− E0 =
d2W

dx2
+
d2F

dy2
+
∂2f

∂x2
+
∂2f

∂y2
−
(
dW

dx
+
∂f

∂x

)2

−
(
dF

dy
+
∂f

∂y

)2

. (26)
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When f(xy) is zero, then the equation is separable and the general solution of the system can be obtained
by solving two one dimensional differential equation. The wave function of the excited states can be written
as

ψ(x, y) = φ(x, y)ψ0(x, y), (27)

where the function φ(x, y) is polynomial in x and y. Substituting (27) into Schrödinger equation (24) we
obtain the differential equation

−∂
2φ

∂x2
− ∂2φ

∂y2
− 2

(
dW

dx
+
∂f

∂x

)
∂φ

∂x
− 2

(
dF

dy
+
∂f

∂y

)
∂φ

∂y
+ (28)

(V − V0 +E0 −E)φ = 0.

In the exactly solvable case, the potentials V and V0 are same. In the quasi exactly solvable case, the
functional form of the potential remain same for all states, but a parameter changes from state to state. Let
us illustrate our method on the separable systems. In the case f = 0 the potentials can be written as

V − V0 = g(x) + h(y), (29)

then substituting φ = R(x)Q(y) we obtain

−d
2R

dx2
− 2

dW

dx

dR

dx
+ (g(x) +E0 −E + c1)R = 0

−d
2Q

dy2
− 2

dF

dx

dQ

dy
+ (h(y) − c1)Q = 0. (30)

In the following we illustrate our method on two examples.

3.1. The model potential I

Consider the following model potential with the parameter α:

V (x, y;α) = A2x4 +ABx2 +C2y2 + 2Aαx. (31)

The Schrödinger equation with this potential is separable and can be solved by reduction to two one-
dimensional systems. The parameter α is depends on the state of the wave function. Let us call it the “state
parameter”. The wave function of the ground state with the energy E0 can be written in the form

ψ0(x, y) = exp
(
−Ax

3

3
− Cy2

2
− Bx

)
E0 = C − B2. (32)

The wave functions of the excited states with the energy E we write as

ψ(x, y) = R(x)Q(y)ψ0(x, y). (33)

Substituting (30) in (24) with the potential (31), then after a straightforward calculation we obtain two
one-dimensional differential equations:

−d
2Q

dy2
+ 2By

dQ

dy
− c1Q = 0 (34)

−d
2R

dx2
+ 2(C +Ax2)

dR

dx
+ (E − E0 + c1 + 2Ax(1− α))R = 0, (35)

where c1 is a constant. The first equation is exactly solvable and its solution is given by

Q(y) = N11F1

(
1
2
− c1

4B
,
3
2
, By2

)
+N21F1

(
− c1

4B
,
1
2
, By2

)
, (36)
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where N1 and N2 are normalization constants and 1F1 (· · · ) is a confluent hypergeometric function. The
second equation is a quasi-exactly solvable differential equation. The following combinations of the operators
of the Lie algebra

T = −J2
− + 2BJ− + 2AJ+ TR = (E0 − E − c1)R (37)

is equivalent with (35) if α = j + 1. Following the procedure given in section 2, the spectrum of the system
can be obtained by using the following recurrence relation:

−m(m − 1)Pm−2(E) + 2BmPm−1(E) + (38)
2A(m− j)Pm+1(E) − (E0 −E − c1)Pm(E) = 0.

Some of the polynomial is given by

P1(E) = (c1 −E0 +E)

P2(E) = (c1 −E0 +E)2 + 4AB

P3(E) = (c1 −E0 +E)3 + 16AB (c1 − E0 + E)− 16A2

P4(E) = (c1 −E0 +E)4 + 40AB (c1 − E0 + E)2 − (39)
96A2 (c1 − E0 + E) + 144A2B2,

for j = 0, 1, 2, 3, respectively. The roots of the polynomials Pj(E) produce the spectrum of the system.

3.2. The model potential II

The last example is the following double-well potential:

V (x, y;α; β) = A2
1x

4 + A2
2y

4 + 2A1B1x
2 + 2A2B2y

2 − 2A1αx− 2A2βy. (40)

As we mentioned before, α and β are state parameters. The ground state wave function is given by

ψ0(x, y) = exp
(
−A1x

3

3
− A2y

3

3
− B1x−B2y

)
;

E0 = B2
1 + B2

2 . (41)

Since the Schrödinger equation is separable with the given potential, the wave function can be written as

ψ(x, y) = R(x)Q(y)ψ0. (42)

Insertion of (42) into (24) with the potential (40) leads to the following two differential equations:

−d
2R

dx2
+ 2

(
B1 + A1x

2
) dR
dx

+ (E − E0 + c1 + 2A1(1− α)x) = 0 (43)

−d
2Q

dy2
+ 2

(
B2 +A2y

2
) dQ
dy
− (c1 − 2A2(1− β) y) = 0. (44)

These equations are QES.

4. Conclusion

The QES of the double-well potential in one and two dimensions have been discussed. The solution of
Schrödinger equations which does not admit separation of variables are left for treatment in future work.
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