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Abstract

The angular distributions of 26Mg(3H,2H)27Mg and 30Si(3H,2H)31Si reactions have been suc-

cessfully studied using distorted wave Born approximation (DWBA) calculations. The optical model

potentials are taken to have Woods-Saxon, parity and spin-orbit interactions. The present analysis gives

a satisfactory fit to the forward angle data but grossly over estimates the cross-sections in the backward

regions. The spin-orbit potential provides the best description of the experimental data and is found to

be necessary to account for the large-angle cross sections.

The obtained values of the extracted spectroscopic factors are reasonable.

1. Introduction

Over the years a number of theoretical calculations have been extensively introduced to explain the
resonant structures which usually observed in heavy-ion transfer reactions. Following the microscopic DWBA
calculations [1-3], the angular distributions of both (3He, p) and (3He, n) reactions have been reproduced
reasonably well at energies below and above Coulomb barrier. The calculated differential cross-sections
for 16O(p,d)15N reaction at 40.9 MeV[4] with excitation energies up to 12 MeV were noticeably improved
through the using of both the DWBA calculations and cluster folding model. Interestingly, the measured
cross-sections for the transitions to the ground and several-excited states in 26Mg(3He, n)28Si reaction were
found in reasonable agreement with the DWBA predictions [5]. In a ddition, the use of the coupled channel
calculatios [6] explain the uprising oscillatory structures of various states up to 8 MeV excitation energy in
the (3He, n) reaction.

In the present work, the angular distributions of 26Mg(3H, 2H)27Mg and 30Si(3H, 2H)31Si reactions
have been explored in terms of one-step DWBA calculations using various optical potential prescriptions.
In Section 2, the phenomenological nuclear potential is introduced. Numerical calculations and results are
given in Section 3. Section 4 is left for discussion and conclusion.

2. Nuclear Potential

In the present section, the differential cross sections of one-nucleon transfer reactions have been calculated
in terms of one-step DWBA calculations using various nucleus-nucleus interactions [7–9]. The details of the
present evaluation is given explicitly on the basis of the microscopic analysis [1]. For these calculations,
the optical potential model was modified to include both a parity-dependent real potential and angular
momentum absorptive term. The potential used has the form [7]
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V (r) = [V (Ec.m., `) + iW (Ec.m., J)] f(r) + V C(r), (1)

where the Woods-Saxon form factor is given as

f(r) = { 1 + exp [(r −Ri)/ai] }−1; i = V, W. (2)

The depth of the real potential is taken to have the form

V (Ec.m., `) = Vo + VE Ec.m. + (−1)` Vπ, (3)

where the values of the potential parameters are fixed at Vo = −12.99 MeV, VE = −0.62MeV and Vπ =
0.69MeV. The imaginary part is demonstrated by the superiority of J-dependent strength, given as

W (Ec.m., J) = (Wo +WE Ec.m.) { i + exp [(J − Jc)/∆J] }−1
, (4)

where Wo and WE describe an energy dependent absorptive potential. Jc is the cut-off angular momenta [7]
and ∆J is the angular momenta cut-off diffuseness parameter.

3. Numerical Calculations and Results

To show the sensitivity of the optical potential in reproducing the single nucleon transfer data, the
differential cross sections have been numerically carried out for 26Mg, 30Si(3H, 2H)reactions at 36 MeV. In
a first set of calculations, the optical potential is assumed to have a standard Woods-Saxon potential [8].
As real and imaginary Woods-Saxon form factors give a satisfactory fit to the26Mg(3H,2H)27Mgforward
angle data but grossly over estimate the cross-section magnitudes at the backward region, the six-potential
parameters were varied to give the best fit to the data by minimizing χ2 as

χ2 =
1
N

∑
i=1

(
σiexp − σitheor

)2(
∆σiexp

)2 , (5)

where i is the summation index over N data points. The results obtained are found not to be significantly
different from those results obtained with parameters used to start searches. In general, calculations using
Woods-Saxon potentials have led to as similar results as those obtained in previous DWBA calculations [10];
and it is found that more than one potential parameter sets introduce good fits to the 1.67 MeV and 1.94
MeV states. The resulting parameters are listed in Table 1 and the fits to the data are shown in Figure 1
by dashed lines.

In a second set of optical model calculations, it is found that the fits to the 26Mg (3H, 2H)27Mg data with
parity-dependent potential [7] are of very similar quality to those obtained using Woods-Saxon potential, as
shown in Figure 1 by dash-dot curves. In view of the comparison, although calculations using both of parity
and Woods-Saxon potentials were found not to be significantly different in the forward regions, employing
the parity dependent potential leads to a substantially better description of the large angle cross sections.
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Table 1. Optical potential parameters.

Channel Data Set V◦ rv av W◦ rw aw
(MeV) (fm) (fm) (MeV) (fm) (fm)

2H + 27Mg
i 82.66 1.17 0.65 11.54 1.32 0.74
ii 90.0 1.15 0.59 17.60 1.26 0.83
iii 100.0 1.27 0.61 15.80 1.19 0.79

3H + 26Mg
i 108.4 1.16 0.76 20.11 1.65 0.74
ii 120.0 1.29 0.69 24.20 1.35 0.66

3H + 30Si
i 128.10 1.07 0.80 15.52 1.74 0.67
ii 95.0 1.19 0.63 23.60 1.24 0.85
iii 86.0 1.35 0.71 18.40 1.41 0.76

2H + 31Si
i 83.60 1.17 0.65 11.54 1.74 0.67
ii 92.0 1.08 0.79 17.80 1.45 0.81
iii 98.0 1.12 0.69 16.20 1.49 0.73
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Figure 1. The angular distributions of 26Mg(3H,2H)27Mg reaction at 36.0 MeV. The line denoted by “– • –

” (dash-dot-dash) and “– –” (dashed) lines show DWBA calculations using parity interaction and Woods-Saxon

potential, respectively. The dotted lines (“• • •”) show the previous DWBA calculations and the large dots denote

the experimental data taken from Ref. [10].

To improve the quality of fits, another set of numerical calculations have been performed using the spin-
orbit potential [9]. In this type of analysis, the wave functions by Cohen and Kurath (CK) was used for
the positive-parity states in 31Si[11], together with the Cohen and Kurath interaction [12] for the p-shell.
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The phases and normalization’s of the spectroscopic amplitudes obtained from these wave functions were
carefully checked to make them consistent with the finite-range codes [13, 14]. From the results shown in
Figure 2 by solid curves, it is clear that calculations using spin-orbit potential reproduce the differential
cross sections reasonably well in the whole angular range. In such calculations, the bound-state potential is
expressed to have a Thomas-Fermi spin-orbit of the form
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Figure 2. The angular distributions of 30Si(3H,2H)31Si reaction at 36.0 MeV. The solid lines show the present

DWBA calculations using spin-orbit interaction. The dotted lines show the previous DWBA calculations and the

data taken from Ref. [10].

VS.O. =
λ

45.2
1
r
f (r, rS.O., aS.O.) . (6)

with λ = 25 and the well depth of the real potential adjusted to give each nucleon separation energy. In the
present calculations, the form factor of the transferred particle was calculated using the standard separation
energy method in a Woods-Saxon well with ro = 1.25fm, a = 0.65fm and spin-orbit strength VLS = 6MeV.
The depth is adjusted to reproduce the binding energy of the last nucleon and the number of nodes N for
the radial wave function are fixed using the harmonic oscillator relation.

2N + L =
∑
i

(2ni + `i) (7)

where ni and `i are the number of nodes and orbital angular momenta of transferred particle with respect
to the core, respectively. By matching the results of the present DWBA calculations with the experimental
data, the spectroscopic factors Sij for each state is given as
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(dσ/dΩ)exp
(dσ/dΩ)DWBA

=
1

(2J + 1)
NDC

2Sij , (8)

where ND is the overall normalization constant and C2 stands for the isospin factor. The obtained values
of the spectroscopic factors are contained in Table 2.

Table 2. DWBA Spectroscopic factors.

Excitation Spectroscopic Factors
Reaction Energy Jπ Previous [ref.10] Present

(MeV) a) b) WS Vπ S.O.

26Mg ( 3H, 2H ) 27Mg
1.67 5/2+ 0.04 0.06 0.56 0.67 0.79
1.94 5/2+ 0.005 0.006 0.51 0.64 0.81

30Si ( 3H,2H ) 31Si
1.69 5/2+ 0.03 0.04 0.61 0.66 0.83
2.32 5/2+ 0.044 0.049 0.58 0.70 0.78

a) ZR-DWBA [11]

b) EFR-DWBA [11]

4. Discussion and Conclusion

In the present work, the differential cross sections of 26Mg(3H,2H)27Mg and 30Si(3H,2H)31Si reactions
have been calculated reasonably well using simple one-step DWBA calculations. As shown in Figures 1 and
2, it is clear that the fits to the 36 MeV data are quite good against different optical potentials. From
the dashed lines results shown in Figure 1, it is seen that the fits to 26Mg(3H,2H)27Mg large angle data
within Woods-Saxon potential was noticeably poorer and not significantly different from those shown by the
dotted lines. Interestingly, calculations using parity potential exhibit qualitative similar fits to the forward
angle data and deviated significantly from the data at backward regions. In an attempt to find a more
consistent analysis of the data, another overall fit to the 30Si(3H,2H)31Si data was obtained using a spin-
orbit potential, and is shown in Figure 2 by solid curves. Use of the spin-orbit potential gives the best fit to
the 36 MeV data and provides a much better description of the large angle cross sections than Woods-Saxon
and parity forms. In view of comparison, although the parity potential is found to be reasonable in explaining
the large angle data but a somewhat better description of the data is obtained within spin-orbit potential,
where the calculated cross sections are an order of magnitude smaller for parity potential than spin-orbit
one. Generally, one finds that the forward oscillatory structures are found to be nearly stable through using
of the different potential types, while those at backward angles are greatly affected. Therefore, it is difficult
to favor one of the potential used here over the other two in describing the forward angle data at 36 MeV.
It is found that the various potential parameter sets together with different spectroscopic factors introduce
qualitatively good results. In addition, the best fit to the 1.67 MeV and 1.94 MeV states were found with
15 × 104 MeV2·fm3 normalization factor, while 15 × 104 MeV2·fm3 and 20 × 104 MeV2 ·fm3 seem to be
somewhat superior in reproducing both the (5/2+; 1.69MeV) and (3/2+; 2.32MeV) states, respectively.

For the (5/2+; 1.67MeV) state, the calculated cross-section within parity-dependent potential is found
to be smaller than the experimental measurements by 15% , while 10% smaller was predicted for the
(5/2+; 1.69MeV) state using spin-orbit potential.

In conclusion, the present DWBA calculations show a satisfactory fit to the 36 MeV one-nucleon transfer
data. Since the calculated cross sections doesn’t change appreciably with the potential type in the forward
region, while the large angle data are extremely sensitive to the potential used. The inclusion of spin-orbit
term is found to be reasonable to account for both shapes and magnitudes of the differential cross section.
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