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Abstract

Analytic expressions are derived to describe the electron mobility and relaxation rate in the rectan-

gular quantum wire experiencing scattering due to alloy disorder. The dependence of electron mobility

on the temperature and transverse dimension is numerically evaluated and it is found that the mobility

increases continuously with temperature, because there is no new intersubband scattering with increase

in temperature. It is shown that the alternating increase/decrease in the mobility—depending on the

transverse dimension of the quantum wire—occurs due to intersubband scattering. It is found that the

mobility in a quantum wire is significantly greater than mobility in a quantum well.

1. Introduction

Recently there has been considerable interest in systems in which electron motion is confined to one
or two dimensions. The most interesting situation occurs when the confinement is on the order of the de
Broglie wavelength for confined electrons. In a quantum wire, when its width becomes much less than
the mean free path, the motion of the electrons within becomes quasi-one-dimensional (Q1D). The motion
of electrons in such semiconducting structures thus leads to size quantization effects [1–10]. The physical
properties of low-dimensional semiconducting structures differ from the properties of bulk semiconductors
because the translational symmetry is broken [11]. The study of electron transport properties of a Q1D
electron gas in semiconductor structures has continued to be a subject of academic interest from a device
point of view. The mobility of electrons in rectangular [1–2] and cylindrical [3–8] quantum wire has been
investigated theoretically for many different scattering mechanisms. There have been modeling of electron
scattering by acoustic phonons [1], impurity-limited mobility [4, 8], phonon-limited mobility [3], the mobility
of electrons scattered by impurities, and by acoustic and polar optical phonons [2, 9]. Scattering due to alloy
disorder is an important mechanism when the confining quantum well is a ternary semiconductor and has
been subject of many theoretical and experimental investigations [12–28]. Electron mobility and electron
scattering by alloy-disorder has been recently studied theoretically in cylindrical quantum well wires in [7].
In [1–9] electron mobility is evaluated in the size quantum limit, neglecting intersubband scattering.

In the present study, we deal with a derivation of expressions for the momentum relaxation time asso-
ciated with electron-alloy disorder interactions, and calculation of the mobility of the Q1D electron gas in
rectangular quantum wires. We also consider intersubband scattering effects on mobility.
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2. Formalism

We consider the QW of a three part alloy, denoted symbolically as A1−xBxC. We assume that a gas of
carriers is confined to move along a thin wire embedded in insulating cladding. For simplicity, we choose
the cross section of the wire to be rectangular of cross-sectional dimensions a · b, the dimensions along the
x and y directions, respectively; with length L along the z direction, where electrons are assumed to move
freely. Assuming the usual effective-mass approximation for the conduction band, the energy eigenfunctions
and eigenvalues for electrons in a rectangular thin wire can be written as follows:

Eknl = Ek + En + El =
~2k2

2m
+ n2E0

a + l2E0
b

E0
a =

π2~2

2m∗a2
, E0

b =
π2~2

2m∗b2
n, l = 1, 2, 3, (1)

Ψknl =
[
2
/

(abL)1/2
]

sin (πnx/a) sin (πly/b) exp (ikz) .

When the confining quantum well consists of a ternary semiconductor (such as Ga1−−xInxAs), in the virtual
crystal approximation, the alloy-disorder scattering potential asumes the following form [19–22]:

Hdis = δV

{
(1− x)

∑
rIn

YΩ0 (r − rIn)− x
∑
rGa

YΩ0 (r − rGa)

}
. (2)

Here, YΩ0 (ra − rb) = 1/Ω0 when ra and rb are inside the same unity cell and vanishes elsewhere. The
summations run over all the unit cells, and Ω0 is the volume of the unit cell. The momentum relaxation
time τ of the electrons in a Q1D system due to the scattering potential Hdis is given by the relaxation rate
[29] as

τ−1 =
2π

~
∑
f

|< f |Hdis| i > |2 (1− cos θ) δ (Ef −Ei) (3)

Here, i and f represent the initial and final states and θ is the angle between the incident and scattered
wave vectors of electrons along the axis of the wire.
Using (3) for the form of the potential, the square matrix element for transition from state knl to state k′n′l′

may be expressed as [17]

|〈k′n′l′|Hdis|knl〉|2 =
Ω0

V
(δV )2

x (1− x)
(

1 +
1
2
δnn′

)(
1 +

1
2
δll′

)
. (4)

Using Eq. (4) in Eg. (3), we find that the momentum relaxation rate for electron-alloy disorder scattering
is given by

1
τalloy

=
√

2Ω0 (δV )2
x (1− x)m∗

1/2
ab~2

∑
n′l′

(
1 + 1

2
δnn′

) (
1 + 1

2
δll′
)

[Enlk − En′ − El′ ]
1/2

. (5)
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For comparison we also give the result obtained for the momentum relaxation rate electron-acoustic phonon
scattering in a Q1D system [2]:

1
τac

=
2
√

2E2
dkBTm∗

1/2
ab~2ρυ2

s

∑
n′l′

(
1 + 1

2
δnn′

) (
1 + 1

2
δll′
)

[Enlk −En′ −El′ ]
1/2

.

The identical nature of the variation for the two scattering processes can be explained by examining the
matrix elements for scattering. The ratio τ−1

alloy

/
τ−1
ac is

τ−1
alloy

τ−1
ac

=
(δV )2Ω0x(1− x)ρv2

s

2E2
dkBT

.

For Ga0.8In0.2As, we find τ−1
alloy/τ−1

ac = 420/T , so that the rate of momentum relaxation for electron-alloy
disorder scattering is higher than the rate of momentum relaxation for electron-acoustic phonon scattering.

In the quantum size limit, in the temperature range where the intersubband transitions are not allowed
due to energy differences between the subbands being very large (i.e.E0

a

/
kBT > 1, E0

b

/
kBT >1), we can

assume n=n′=l=l′=1. In this case, the expression for τ−1
alloy reduces to

1
τalloy

=
9Ω0 (δV )2

x (1− x)m∗
1/2

2
√

2Ekab~2
. (6)

From Equation (6), we show that, in the intrasubband scattering case, the scattering rate increases and the
momentum relaxation time decreases as the transverse dimension of the wire decreases due to scattering
from alloy-disorder. A formula similar to Eq. (6) has been obtained by Ando [20] and Bastard [21] for Q2D
electron gas in this case.

When it is feasible to define a momentum relaxation time, the mobility µ can be written as

µ =
e

m∗
〈τ 〉, (7)

where 〈...〉 denotes the average, and is defined by the expression

〈...〉 =
√

2m∗
1/2

π~n1D

∑
nl

∫
E

1/2
k (...)

∂f0 (Eknl)
∂Eknl

dEk, (8)

where f0(Eknl) is the distribution function for the carriers in the wire and n1D is the density of electrons
per unit length of the wire.

For the case of a nondegenerate Q1D electron gas, the electron distribution function is

f0 (Eknl) =
(2π)

1/2 ~neab

γδ (m∗KBT )
1/2

exp
[
−n2E0

n + l2E0
l

kBT

]
exp

(
− EK

kBT

)
, (9)

where

γ =
∑
n

exp
(
−n2E0

n

kBT

)
, δ =

∑
l

exp
(
−n2E0

l

kBT

)
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and neis the concentration of electrons. From this expression the Fermi energy can be identified as

ξ = KBT · ln

 √
2π~n1D

γδ (m∗kBT )
1/2

 . (10)

For the case of a nondegenerate carrier statistics, the mobility is given by

µ1D
alloy = 4eab~2

√
2πm

∗3/2Ω0(δV )2x(1−x)Zγδ(kBT )
3
/2

∑
nl

exp
(
− Enl
kBT

)
×

×
[
−B2

nn′ll′ exp
(
Bnn′ll′
kBT

)
Ei
(
−Bnn′ll′kBT

)
− Bnn′ll′kBT + (kBT )2

] , (11)

where

Z = 2 (n′l′) + n′ + l′ + 1/2,

Bnn′ll′ =

[∑
n′l′

(En′ + El′ − En − El) +
1
2

∑
n′

(En′ −En) +
1
2

∑
l′

(El′ −El)

]/
Z.

(12)

Here, Ei (−x) =
−x∫
−∞

et

t dt.

When the carriers are degenerate at low temperature, f0(Eknl) is given by a Fermi-Dirac distribution
and the mobility is eτ (ξ)/m∗:

µ1D
alloy =

2eab~2

πn1Dm∗Ω0 (δV )2
x (1− x)Z

∑
nl

[ξ − (En + El)]
2

[ξ − (En + El) + Bnn′ll′ ]
. (13)

Here, the Fermi energy ξ in this degenerate limit can be shown to be given by

n1D =
(2m∗kBT )1/2

π~
∑
nl

F 1
2

(
ξ − [En + El]

kBT

)
, (14)

where F (η) is the well-known Fermi integral [29].
In general, in the size quantum limit, where there is no approximation for f0(Eknl), from Eqs. (6)–(8),

the mobility can be written as

µ1D
alloy =

4eab~kBTF1

(
ξ−2E0

a

kBT

)
9Ω0πm∗n1D (δV )2

x (1− x)
(15)

It can be seen that in Eq. (15) for the intrasubband scattering case, the mobility increases with increasing
transverse dimensions of the wire. In the size quantum limit, Eq. (11) is written as

µ1D
alloy =

4
√

2kBTeab~2

9
√

πm∗3/2Ω0 (δV )2
x (1− x)

. (16)

In is noteworthy that the mobility due to alloy-disorder scattering in 3- and 2dimensional systems has a
functional dependence on the temperatures according to T−1/2 [11] and T 0 [14] respectively.
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Equations (13)–(16) show that µ varies as T 0 at low temperature and as T 1/2 at high temperature. This
occurs because the density of states in a 3-, 2- and 1-dimensional system has a functional dependence on
energy according to E1/2, E0 and E−1/2, respectively.

If µ2 is the alloy-scattering mobility in the Q2D system [23], then for a nondegenerate electron distribu-
tion,

µ1D
alloy

µ2D
alloy

=
3π3/2ab (kbTm∗)1/2

16
√

2d~
, (17)

where d is the thickness of the well. On the other hand, for a completely degenerate electron distribution in
the size quantum limit, we have

µ1D
alloy

µ2D
alloy

=
27π2abm∗1/2

(
ξ − 2E0

a

)
16d~

(18)

Equations (17), (18) show us that not only can a Q1D system exhibit greater mobility over a Q2D system,
but that the enhancement depends on the temperature and on the cross-section of the quantum wire.

3. Numerical Analysis and Discussion

We have obtained general expressions for the momentum relaxation rate and electron mobility in a
rectangular quantum wire for scattering due to alloy disorder. Electron mobility is expressed as a function
of transverse dimensions of the wire and temperature. On the basis of these expressions, we have constructed
Figures 1–3. For a numerical example, we consider the electron mobility in Ga0.47In0.53As quantum wire
with alloy disorder scattering. The relevant values of physical parameters are taken to be δV = 0.6 eV,Å

m∗(Ga0.47In0.53As) = 0.04m0, and Ω0 =
5.873 Å

3

4
.

Figure 1 shows the mobility as a function of temperature due to alloy disorder scattering in the size
quantum limit for various Q1D systems of selected transverse dimensions. For comparison, we also plot
total mobility due to acoustic phonon, polar optic phonon and background impurity scattering for GaAs
rectangular quantum wire found in the literature [2]. It is shown that the mobility becomes considerably
enhanced as the cross-sectional area of the wire increases. It was predicted in [17] that the free-carrier
absorption coefficient due to alloy-disorder scattering in Q1D structures decreases as transverse dimensions
of the wire increases. This decrease in the free-carrier absorption coefficient explains the increase in the
mobility predicted in our present results. As other scattering mechanisms (polar optical [2] and acoustic
phonons [1, 2]), mobility-limited alloy disorder scattering also increases with increasing cross-sectional area
of the wire.
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Figure 1. Electron mobility for a Q1D structure for alloy-disorder scattering is plotted as a function of temperature

with various values of transverse dimensions of the wire (1′, 2′, 3′). Curves 1, 2, 3, corresponds to the total electron

mobility due to acoustic phonon, polar optic phonon and background impurity scattering in the Q1D systems [2].

We have chosen a= 10 nm (1, 1′), a = 15 nm (2, 2′), a = 20 nm (3, 3′).
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Figure 2. Electron mobility as a function of the transverse dimension of the wire at 300 K.
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Figure 3. Temperature dependence of the mobility due to alloy disorder scattering at a = b = 33 nm.

In Figure 2, we show the electron mobility as a function transverse dimension of the wire at 300 K. It
is shown that the alternate increases/decreases of the mobility depending on the transverse dimensions of
the quantum wire. It is also shown that because, no new intersubband scattering contributes, the mobility
increases with increasing transverse dimension of the wire. At 300 K the electron distribution is classical
and electrons are thermally distributed in energy roughly up to about kBT . Consequently, the appearance
of intersubband scattering due to alloy-disorder into the subband n is roughly determined by the condition

kBT ≥ El1 ≡ El − E1 (19)

It is clear that the hmobility peak roughly corresponds to the transverse dimensions where Eq. (19) is
satisfied.

In Figure 3 we show the temperature dependence of the electron mobility at a = b = 33 nm. Because
no new intersubband scattering contributes, the mobility increases continuously for T < 200 K.
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