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On Hamiltonian Formulation of Non-Conservative

Systems

Eqab M. RABEI, Tareq S. ALHALHOLY
Physics Department-Mu’tah University, Karak-JORDAN

e-mail: eqab@mutah.edu.jo
A. A. TAANI

Mathematics department-Mu’tah University, Karak-JORDAN

Received 16.02.2004

Abstract

Fractional derivatives are used to construct the Lagrangian and the Hamiltonian formulation for non-

conservative systems. To clarify the theory of Riewe two interesting examples are given. The potentials

are obtained using the Laplace transform operator for fractional derivatives and the Lagrangian and

Hamiltonian formulations are constructed for the two systems. Besides, it is shown that the Hamilton

equations of motion are in agreement with the Euler-Lagrange equations for these systems.
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1. Introduction

It is well known that the use of the Euler-Lagrange equation to set up the equations of motion for certain
physical systems is more convenient and useful than the use of Newtonian mechanics. The important benefit
is that when the Lagrangian and the momenta for a certain system are known, then the Hamiltonian function
can be written, and once the Hamiltonian is known, then the system becomes amenable to the techniques of
quantum mechanics which cannot be done using Newtonian mechanics. But although the mechanics devel-
oped by Newton can be applied to both conservative and non-conservative systems, traditional Lagrangian
and Hamiltonian mechanics cannot be used with non-conservative systems.

Several methods have been proposed and devised in order to introduce dissipative effects such as friction
into classical Lagrangian and Hamiltonian mechanics. One of these methods is the Rayleigh dissipation
function, which can be used when the frictional forces are proportional to the velocity [1, 2]. Whereas in this
method another scalar function is needed in addition to the Lagrangian to specify the equations of motion,
this function cannot appear in the Hamiltonian function, so it is of no use when attempting to quantize
friction.

Another method [3, 4] introduces an auxiliary coordinate in the Lagrangian that describes a reverse-time
system with negative friction. This method leads to the desired equations of motion but the Hamiltonian
leads to extraneous solutions that must be rejected, and the physical meaning of the momenta is unclear.

A good and realistic method is to include the microscopic details of the dissipation directly in the La-
grangian or the Hamiltonian [5]. This method represents a valuable tool in the study of quantum dissipation,
but it is not intended to be a general method of introducing the force of friction into Lagrangian mechanics.

213



RABEI, ALHALHOLY, TAANI

Thus, we see that none of the above techniques exhibits the same directness and simplicity found in the
mechanics of conservative systems. The problem of developing a generalized mechanics to deal with both
conservative and non-conservative systems has been solved when Riewe [6, 7] used fractional derivatives. He
derived a generalized Euler-Lagrange equation following the same pattern as in the conventional calculus of
variations used in classical mechanics. His generalized equation allows fractional derivatives to appear in
the Lagrangian and the Hamiltonian, whereas traditional Lagrangian mechanics often deals with first order
derivatives. In this generalization the fractional derivatives appear in both the Lagrangian and the equations
of motion. In other words, non-conservatives forces can be calculated from potentials that contain fractional
derivatives. Also, this generalization motivated him to define a generalized Hamiltonian, which leads to the
generalized Hamilton’s equations of motion.

An important application of the generalized mechanics, Riewe [6] showed that a frictional force propor-
tional to the velocity would appear in the equations of motion using a Lagrangian that contains a potential
proportional to [ d

1/2x
dt1/2

]2. In addition, if the Lagrangian contains a term proportional to [d
nx
dtn

]2, then the
equation of motion will contain a term proportional to [ d

2nx
dt2n ], where n is any positive integer. Based on this

observation, it was easy for Riewe to guess that a frictional force of the form γ dxdt , where γ is constant, should
follow directly from a Lagrangian containing a term proportional to [d

1/2x
dt1/2

]2. This important result motivates
the investigation about the potentials for other dissipative forces, which cannot be guessed directly as in the
above case. But Riewe didn’t give a general method to write potentials corresponding to other dissipative
forces such as that proportional to (ẋ)1/2 or (ẋ)2. Based on Riewe’s formalism and the techniques of the
Laplace transform of fractional derivatives, a formula was developed to obtain potentials corresponding to
any dissipative force of the form (ẋ)p, p ≥ 0 [8].

In this work the results obtained in references [8] and the Hamiltonian formulation with fractional deriva-
tives developed by Riewe are used to study the Hamiltonian formulation for some dissipative systems; the
Hamiltonian and Hamilton equations of motion for these systems are obtained. Also a general Lagrangian
and Hamiltonian are suggested to represent fractionally damped systems.

2. Hamiltonian Formulation with Fractional Derivatives

The generalized Euler-Lagrange equations developed by Riewe [1, 2] read as

N∑
n=0

(−1)s(n) ds(n)

d(t− a)s(n)

∂L

∂qr,s(n)
= 0, (1)

where r = 1, 2, 3, . . . , R indicates the particular coordinate, s(n) indicates the order of the nth derivative in
the Lagrangian, which is assumed to contain N different derivatives of the coordinates xr = qr with respect
to t (including fractional derivatives). Therefore, n = 1, 2, 3, . . . , N . In other words the Lagrangian is a
function of the coordinates xr, the derivatives qr,s(n),b and the variable t. For generalized mechanics s(n)
can be any non negative real number and for complementation s(0) is defined to be zero, such that qr,s(0)

denotes the coordinate xr. The constants a, b in eq. (1) denote the limits of the time interval t = a to t = b

.
In references [8] a general formula was developed to obtain potentials corresponding to arbitrary forces,

conservative and non-conservative. This formula reads

U = (−1)−(α+1)

∫ [
L−1

(
1
Sα
L [F (qβ)]

)]
dqα (2)

Here, α = β
2 , L denotes the Laplace transform operator and qβ represents the time derivative of q0 = x of

order β, i.e. q1 = ẋ, q 1
2

= d
1
2 x

d(t−b)
1
2

, q2 = ẍ. Also, U is the potential function that gives F (qβ) in the equation

of motion where the Lagrangian reads as L = T − U .
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Following Riewe, the generalized momenta takes the form

pr,s(n),b =
N−n−1∑
k=0

(−1)s(k+n+1)−s(n+1) ds(k+n+1)−s(n+1)

d(t− a)s(k+n+1)−s(n+1)

[
∂L

∂qr,s(k+n+1)

]
, (3)

where n = 0, 1, 2, . . . , N − 1. Then the Hamiltonian will take the form

H =
N∑
n=1

qr,s(n)pr,s(n−1) − L. (4)

The generalized Hamilton equations of motion following the same steps described in many books in
classical mechanics are obtained as

∂H

∂qr,s(n)
= (−1)s(n+1)−s(n) ds(n+1)−s(n)

d(t− a)s(n+1)−s(n)
pr,s(n) (5)

∂H

∂pr,s(n)
= qr,s(n+1) (6)

∂H

∂t
= −∂L

∂t
. (7)

Here n takes the values n = 0, 1, 2, . . . , N − 1.
These equations are equivalent to the Euler-Lagarnge equations and valid for conservative and non-

conservative systems. In addition, these equations are generalizations for Hamilton equations, which deal
only with integer order derivatives.

Before concluding this section, it is important to note that the law of exponents is not generally satisfied
for the fractional differential operators, that is DαDβ 6= Dα+β [9]. However there are several types of
functions for which such a law is satisfied for the fractional differential operators. The one-dimensional case
is considered in the following examples. Therefore the subscript r can be omitted in the above equations.

3. Examples

As an example of the applications of fractional derivatives in Lagrangian and Hamiltonian mechanics,
consider the following general damping force:

F (qβ) = −γDβq0, β > 0 (8)

Here q0 = x, Dβq0 = dβx
d(t−b)β , γ is a positive constant. Using eq. (2), the potential corresponding to this

force reads

U = (−1)−(α+1)

∫
[L−1[

1
Sα
L(−γDβq0)]]dqα. (9)

But α = β
2 ; therefore

U =
γ

(−1)
β
2

∫
[L−1(

1

S
β
2

L[Dβq0])]dq β
2
. (10)

The Laplace transform of the fractional derivative, with zero boundary conditions, is given as [9]

L[Dδf(t)] = Sδf(S), (11)

where f(S) = L[f(t)]. Taking the inverse transform of both sides of the above equation we get,

Dδf(t) = L−1[Sδf(S)] = L−1(SδL[f(t)]). (12)

215



RABEI, ALHALHOLY, TAANI

Using eq. (11), eq. (10) takes the form

U =
γ

(−1)
β
2

∫
[L−1[S

β
2L(q0)]]dq β

2
. (13)

Making use of eq. (12) we have

D
β
2 q0 = L−1[S

β
2 f(s)] = L−1[S

β
2 L(q0)]. (14)

Therefore U becomes

U =
γ

(−1)
β
2

∫
[D

β
2 (q0)]dq β

2
=

γ

(−1)
β
2

∫
[q β

2
]dq β

2
,

U =
γ

2(−1)
β
2

[q β
2
]2 =

γ

2(−1)
β
2

[
d
β
2 q0

d(t− b)β2
]2. (15)

This result represents a generalization of that suggested by Riewe. Substituting β = 1 , one gets the special
case of a frictional force proportional to the velocity.

The Lagrangian for this system takes the form

L =
1
2
mq1

2 − γ

2(−1)
β
2

q β
2

2 − V (q0), (16)

where β is any positive number except 0 and 2, and γ is constant. Noting that N = 2, s(0) = 0, s(1) = β
2
,

s(2) = 1 and using eq. (1), the equations of motion corresponding to this Lagrangian can be obtained as

∂L

∂q0
+ (−1)

β
2

d
β
2

d(t− b)β2
∂L

∂q β
2

− d

dt

∂L

∂q1
= 0.

Substituting the Lagrangian given in eq. (16), we get

− ∂V
∂q0
− γ d

β
2

d(t− b)β2
(q β

2
) −m d

dt
(q1) = 0,

which leads to the following equations of motion:

mẍ = −∂V (x)
∂x

− γD
β
2D

β
2 x. (17)

If x(t) is such that the law of exponents is satisfied for the fractional differential operators in the second
term of the right hand side of eq. (17), then this equation can be rewritten as

mẍ = −∂V (x)
∂x

− γ dβx

d(t− b)β .

For simplicity we will consider the limiting case in which a −→ b while keeping a < b. Hence all fractional
derivatives we encounter in this work can be approximated by derivatives of the form du

d(t−b)u . It is clear
from the above equation that for β = 1 , the second term in the right hand side of this equation represents
a dissipative force proportional to velocity (viscous force), while the corresponding potential that leads to
this force in the equation of motion is

U =
γ

2(−1)
1
2

[
d

1
2 x

d(t− b) 1
2

]2, (18)
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which is the result obtained by Riewe. From eqs. (16) and (17), we see that by using fractional derivatives
of various orders, it is possible to construct Lagrangians that lead to a wide range of dissipative equations of
motion. Hence we can say that these Lagrangians describe non-conservative forces, rather than the functions
more commonly used to describe dissipation. Equations having the form given in eq. (17) are called fractional
differential equations, which are widely used now to describe systems with damping materials [10, 11]. In
general, fractional derivatives are used in vescoelastic representation [12].

Using eq. (3) with N = 2, the momenta reads

p0 =
1∑

k=0

(−1)s(k+1)−s(1) ds(k+1)−s(1)

d(t− b)s(k+1)−s(1)

∂L

∂qs(k+1)

=
∂L

∂qs(1)
+ (−1)s(2)−s(1) ds(2)−s(1)

d(t− b)s(2)−s(1)

∂L

∂qs(2)

=
∂L

∂q β
2

+ (−1)1− β2 d1− β2

d(t− b)1−β2

∂L

∂q1

= − γ

(−1)
β
2

q β
2

+m(−1)1− β2
d1−β2

d(t− b)1− β2
[q1]

p0 = −γ(−1)−
β
2 q β

2
−m(−1)−

β
2D1− β2 [q1]. (19)

Also

p β
2

= (−1)s(2)−s(2) ds(2)−s(2)

d(t− b)s(2)−s(2)
[
∂L

∂qs(2)
] =

∂L

∂q1
= mq1. (20)

Thus, the Hamiltonian reads

H =
2∑

n=1

qs(n)ps(n−1) − L

= qs(1)ps(0) + qs(2)ps(1) − L

= q β
2
p0 + q1p β

2
− 1

2
mq1

2 +
γ

2(−1)
β
2

q β
2

2 + V (q0). (21)

Using eq. (20), eq. (21) can be rewritten as

H =
p β

2

2

2m
+ q β

2
p0 +

γ

2(−1)
β
2

q β
2

2 + V (q0). (22)

Then the Hamilton equations of motion are

∂H

∂qs(0)
= (−1)s(1)−s(0) ds(1)−s(0)

d(t− b)s(1)−s(0)
ps(0),

which can be written as

∂H

∂q0
= (−1)

β
2

d
β
2

d(t− b)β2
p0 = (−1)

β
2D

β
2 p0 (23)

and

∂H

∂qs(1)
= (−1)s(2)−s(1) ds(2)−s(1)

d(t− b)s(2)−s(1)
ps(1),
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which leads to

∂H

∂q β
2

= −(−1)−
β
2D1− β2 [p β

2
]. (24)

Using also eq. (6), we get

∂H

∂p0
= q β

2
(25)

and

∂H

∂p β
2

= q1. (26)

From the above Hamilton equations we deduce that eq. (23) yields the Euler-Lagrange equation, eqs.(24)
and (26) are equivalent to the definition of the momenta, while eq. ( 25) is an identity.

Example 3.2

In this example a dissipative force proportional to (q1)
1
2 is considered. If we assume an object of mass m

projected with initial velocity v0, and is subject to a resistive force proportional to (q1)
1
2 , then the differential

equation of motion reads [13]

F (qβ) = −c(q1)
1
2 = m

dq1

dt
= mq2, (27)

where c is a positive constant. Solving the above equation for the time t, we obtain

t =
−2m
c

[(q1)
1
2 − (v0)

1
2 ],

which is equivalent to

(q1)
1
2 = (v0)

1
2 − c

2m
t. (28)

Substituting in eq. (27), we have

F (qβ) = −c[(v0)
1
2 − c

2m
t] (29)

From eq. (2) the potential corresponding to this force reads

U = (−1)−(α+1)

∫
[L−1[

1
Sα
L(−c[v

1
2
0 −

c

2m
t])]]dqα

= c(−1)−α
∫

[L−1(
1
Sα

[L(v
1
2
0 ) − c

2m
L(t)])]dqα

= c(−1)−α
∫

[L−1(
1
Sα

[
(v0)

1
2

S
− c

2m
1
S2

])]dqα,

(30)

where

L(tn) =
n!

Sn+1
, S > 0, n > −1. (31)

Equation (30) can be rewritten in the useful form

U = c(−1)−α
∫

[L−1(Sα
(v0)

1
2

S1+2α
− c

2m
Sα

1
S2+2α

)]dqα. (32)
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Since β = 1 then α = 1
2 ; therefore U takes the form

U = c(−1)−
1
2

∫
[L−1(S

1
2

(v0)
1
2

S2
− c

2m
S

1
2

1
S3

)]dq 1
2
. (33)

The inverse transform in the integrand of this equation can be evaluated separately with the help of eqs.
(12) and (31) as

L−1[S
1
2

(v0)
1
2

S2
] = (v0)

1
2L−1[S

1
2L(t)] = (v0)

1
2D

1
2 (t), (34)

L−1[
c

2m
S

1
2

1
S3

] =
c

2m
L−1[S

1
2L(

t2

2
)] =

c

4m
D

1
2 (t2). (35)

Using eqs. (34) and (35), U becomes,

U = −ic
∫

[(v0)
1
2D

1
2 (t)− c

4m
D

1
2 (t2)]dq 1

2
. (36)

The fractional derivatives in eq. (36) can be easily evaluated. The results are:

D
1
2 (t) =

2√
π
t

1
2 , (37)

D
1
2 (t2) =

8
3
√
π
t

3
2 . (38)

Thus U takes the form

U = −ic
∫

2t
1
2

√
π

[(v0)
1
2 − c

3m
t]dq 1

2
.

Evaluating the integral, we obtain

U = − 2ic√
π

[t
1
2 [(v0)

1
2 − c

3m
t]]q 1

2
. (39)

We see that U depends on the time explicitly. The Lagrangian for this system takes the form

L =
1
2
mq2

1 +
2ic√
π

[t
1
2 [(v0)

1
2 − c

3m
t]]q 1

2
. (40)

Substituting this Lagrangian in the generalized Euler-Lagrange equation, one gets eq. (27) [8]. To determine
the momenta, we have N = 2, n = 0, 1 and s(0) = 0, s(1) = 1

2 , s(2) = 1, thus eq. (3) gives

p0 =
1∑

k=0

(−1)s(k+1)−s(1) ds(k+1)−s(1)

d(t− b)s(k+1)−s(1)

∂L

∂qs(k+1)

=
∂L

∂q 1
2

+ i
d

1
2

d(t− b) 1
2

∂L

∂q1

=
2ic√
π

[t
1
2 [(v0)

1
2 − c

3m
t]] + imD

1
2 [q1] (41)

and

p 1
2

= (−1)s(2)−s(2) ds(2)−s(2)

d(t− b)s(2)−s(2)

∂L

∂qs(2)
= mq1. (42)
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The Hamiltonian reads

H =
2∑

n=1

qs(n)ps(n−1) − L

= q 1
2
p0 − q1p 1

2
− 1

2
mq2

1 −
2ic√
π

[t
1
2 (v0

1
2 − c

3m
t)]q 1

2
,

(43)

while the Hamilton equations of motion are

∂H

∂qs(0)
=
∂H

∂q0
= (−1)s(1) ds(1)

d(t− b)s(1)
p0 = iD

1
2 [p0], (44)

∂H

∂qs(1)
=
∂H

∂q 1
2

= (−1)s(2)−s(1) ds(2)−s(1)

d(t− b)s(2)−s(1)
ps(1) = iD

1
2 [p 1

2
], (45)

and

∂H

∂ps(0)
= qs(1),

which is equivalent to

∂H

∂p0
= q 1

2
(46)

and

∂H

∂ps(1)
= qs(2),

or

∂H

∂p 1
2

= q1. (47)

From the above Hamilton equations we see that eq. (44) leads to Euler-Lagrange equation, eqs.(45) and
(47) are equivalent to the definition of the momenta while eq. (46) is an identity.

4. Conclusion

It is observed that the Lagrangian and the Hamiltonian formulation can be constructed for different
kinds of non-conservative systems using the definition of fractional derivatives. This motivates us to achieve
the quantization of non-conservative systems in the same manner as in the conservative systems.
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