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Abstract

By using the dielectric continuum approximation, the polar optical phonon modes of coaxial cylin-

drical quantum cables with arbitrary layer-number were studied. In order to describe the vibrating

of the longitudinal-optical (LO) phonons, a set of legitimate eigenfunctions for LO phonon modes are

constructed and adopted. In order to deal with the interface optical (IO) phonon modes, the transfer

matrix method is employed. The quantized LO and IO phonons fields, as well as their corresponding

Fröhlich electron-phonon interaction Hamiltonians, are also derived. Numerical calculations on a four-

layer GaAs/AlxGa1−xAs QC have been performed. Results reveal that there are six branches of IO

phonon modes. When the wave vector kz in the z direction and the azimuthal quantum number m are

small, the dispersion frequencies of IO modes sensitively depend on kz and m, and the frequency for-

bidden behaviors of IO phonon modes were observed and the reason was analyzed. When kz and m are

relatively large, with increasing kz and m, the frequency for each mode converges to the limit frequency

value of IO mode in a single heterostructure, and the electrostatic potential distribution of each branch

of IO mode tends to be more and more localized at some interface; meanwhile, the coupling between

the electron-IO phonon becomes weaker and weaker. The calculation also shows that the phonon modes

with higher frequencies have more significant contribution to the electron-phonon interaction. At last,

it is found that kz and m have analogous influences on the frequencies and the electrostatic potentials

of the IO phonons.
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1. Introduction

During the last decade, with the rapid progress in semiconductor nanotechnology, such as molecular-
beam epitaxy, metal-organic chemical-vapor deposition and chemical lithography, not only multi-layer planar
quantum wells (QWs), but also many sophisticated curve-surface semiconductor heterostructures are now
able to be fabricated. For example, in 1993, by using the method of wet chemical synthesis, Eychmüller
et al. [1] synthesized the inhomogeneous spherical quantum dot (QD) with an centric core barrier and
several shell wells, which were called quantum dot quantum well (QDQW). The experimental [2, 3] and
theoretical works [4–7] on QDQWs reveal that, due to their inner configurations for electrons and holes,
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many physical properties in these systems are obviously different from those in homogeneous QDs. In 1997
and 1998, by means of reactive laser ablation, Suenaga and Zhang’ group [8, 9] successfully synthesized
the inhomogeneous coaxial cylindrical quantum-well wires (QWW), termed quantum cables (QC). On the
basis of these structures brought forward, Zeng et al. [10] predicted the single-electron subband properties
in a five-layer GaAlAs/GaAs inhomogeneous QWW systems, and the systems exhibit some interesting and
unique behaviors unexpected in other nanostructures. Recently, Aktas et al. [11] studied the ground state
binding energy of a impurity in a four-layer coaxial QWW system with an applied electric field. Meanwhile,
in these low-dimensional quantum systems, it is well-known that the phonons are also confined, which makes
the phonon modes more complicated than those in bulk materials [12]. Furthermore, the electron-phonon
interaction in these confined systems is one of the important aspects in determining their properties in
physical processes, such as in the transport process or the electron relaxation process. Therefore, in order
to describe the coupling between electron and phonon properly in the low-dimensional quantum systems, a
trustworthy phonon mode and electron-phonon interaction Hamiltonian are essential.

Since the pioneer works of Licari [13] and Fuchs [14] on the phonon modes in confined quantum systems,
several authors have made their contributions in studying the phonon modes and electron-phonon interaction
in various low-dimensional quantum systems by adopting various theoretical models such as the dielectric
continuum (DC) model [15–20, 23, 28–37], the Hydrodynamic model [21, 22], Huang-Zhu (HZ) models [23]
and the microscopic calculation model [24–27]. Among them, the DC model had been widely used for its
simplicity and efficiency. Wendler and Haupt [15] developed the framework of the theory of optical phonons
and electron-phonon interaction for the spatially confined systems. Mori and Ando [16] have investigated
the phonon modes in single and double heterostructures QW within the framework of DC approach. Liang
and Wang [17] have derived the transverse-optical (TO) and longitudinal-optical (LO) modes as well as four
branches of interface optical modes in a GaSb-InAs-GaSb QW. Jun-jie Shi et al. [18] have studied the phonon
modes in the coupled and step QWs with four and five layers of GaAs/AlxGa1−xAs, and the electron-phonon
interaction Fröhlich Hamiltonian were also given and the electron-interface phonon coupling functions were
discussed. By using transfer matrix method, Yan et al. [19] and Yu et al. [20] deduced and discussed
the interface optical-phonon modes in asymmetric double-barrier structures and in multiple-interface plane
heterostructure systems, respectively.

The optical phonon modes in homogeneous QWWs have also been sufficiently investigated. For rectan-
gular QWWs, microscopic calculations of the phonon dispersion have been reported in Refs. [24–26], and
macroscopic DC approximations have been adopted to deduce the confined LO and surface optical (SO)
phonon modes in Refs. [28, 29]. For cylindrical QWWs, Comas et al. [30] studied the optical phonon modes
and electron-phonon interaction Hamiltonian in quantum wire and free-standing quantum wire based on a
Lagrangian formalism and phenomenological treatment, respectively; Bergues and co-workers [31] presented
a complete description of the phonon modes in the cylindrical QWW systems, including a correct treatment
of the mechanical and electrostatic matching conditions at the surface; Wang and Lei [32] described the LO
and SO phonons as well as the corresponding Fröhlich couplings with electrons by using DC model, hydrody-
namic continuum model and HZ models [23]; Constantinou and Ridley [21] and Enderlein [22] also used the
Hydrodynamic continuum model to study the optical modes in wires of circular geometry; Recently, Xie et
al. [33] have studied the phonon modes and derived the electron-phonon interaction Hamiltonians in cylin-
drical QWWs with infinite and finite potential boundary conditions. For QWWs of arbitrary cross-section
shapes (including the elliptical QWWs), Bennett et al. [34] and Knipp et al. [35] have also investigated
the LO and interface optical (IO) phonons under DC models. Klimin et al. [36] have determined the vi-
brational modes of inertial polarization in the multilayer QWW and QD, and they calculated the polaron
ground state energy as well as the effective mass in the cylindrical QWW and polaronic shift of electron
energy levels in the spherical QD. More recently, we investigated the phonon modes and electron- phonon
interaction Hamiltonians in multilayer spherical inhomogeneous QD systems under the DC approximation
[37]. However, to our knowledge, the optical phonon modes and their interactions with electron in some
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inhomogeneous QWWs, such as in multilayer coaxial cylindrical QCs, have not been investigated in detail.
Thus, in the current work, a multilayer coaxial QC model is chosen, and the DC approximation is adopted.

The main extents of this work are that, (i) the works of optical phonon mode have been extended from
multi-layer QW systems [18–20] and multi-layer inhomogeneous QD systems [37] to inhomogeneous QC
system; (ii) In order to describe the vibrating of the LO phonons, a set of legitimate eigenfunctions for
LO phonon modes are constructed. In order to treat the interface optical (IO) phonon modes, the transfer
matrix method [19, 20] has been employed to deal with the dispersion relation and the coefficients in functions
of phonon electrostatic potential in multilayer coaxial cylindrical QCs; (iii) the orthonormal relations for
the polarization vector of all the phonon modes in the QC have been obtained, and via the orthonormal
relations and the dynamic equation of motion of the crystal lattice, the Fröhlich electron-phonon interaction
Hamiltonians have been derived; (iv) when the wave-vectors kz in z direction and azimuthal quantum number
m approach 0 and infinity, respectively, the limit frequencies of IO phonons have been analyzed. It is found
that, as kz and m → 0, the frequency forbidden behaviors of IO phonons in the QC have been observed,
which is obviously different from the case in multilayer asymmetrical planar QWs [18]. When kz or m→∞,
the IO phonons frequencies converge to those in corresponding single heterostructures; (v) the IO phonon
potential distributions, and the electron-IO phonon coupling functions have been analyzed and specified,
and the detailed comparison for these characters between the inhomogeneous QD and inhomogeneous QC
systems has been exhibited. The model of the multilayer coaxial QC is given in Figure 1.

The paper is organized as follows. The confined LO phonon modes and IO phonon modes as well as the
corresponding Fröhlich electron-phonon interaction Hamiltonians are deduced in section 2. As an example,
the numerical results for the dispersion relation, the electron-phonon coupling functions of the IO phonon
modes for a four layers Ga1−xAlxAs/GaAs QC system are carried out and discussed in section 3. In section
4, we summarized the main results and gave some extended conclusions.

Figure 1. The schematic structure of the multilayer coaxial cylindrical quantum cable system and its potential

profile.
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2. Theory

Under the dielectric continuum approximation, and starting from the classic electrostatics equations, we
have

D =εE = E+4πP, (1)

E = −∇φ(r), (2)

∇ ·D =4πρ0(r). (3)

For free oscillation, the charge density ρ0(r) = 0, so we get the equation

ε∇2φ(r) = 0 (4)

with

ε(ω) = ε∞ +
ε0 − ε∞

1− ω2/ω2
TO

, (5)

where ε0, ε∞ are the static and high-frequency dielectric constants and ωTO is the frequency of transverse-
optical phonon.

There are two possible solutions to equation(4); one is

ε(ω) = 0, (6)

and the other being

∇2φ(r) = 0. (7)

2.1. Confined LO phonon modes

To the first solution, via equation (5) and the Lyddane-Sachs-Teller (LST) relation, one can get

ω2 = ω2
TO

ε0
ε∞

= ω2
LO, (8)

which describes the confined bulk LO modes of frequency ω = ωLO, where ωLO is the frequency of the LO
phonon.

For the LO phonon modes in the core region (R0 ≤ ρ ≤ R1, and R0 = 0) and in each shell region
(Ri−1 ≤ ρ ≤ Ri, i = 2, 3, . . . , n + 1, and Rn+1 → ∞), because ε(ωLOi) ≡ 0, the eigenfunctions [17, 21–22]
in equation (7) can be arbitrary functions of r, which need only satisfy the boundary condition that the
eigenfunctions should be zero at ρ = Ri−1, Ri. Thus, the eigenfunctions for the LO phonon modes can be
chosen as

φLOi
lmkz (r) =

ALO1
lm Jl(χlmR1

ρ)eimϕeikzz R0 ≤ ρ ≤ R1(i = 1)

ALOi
lm TLOi

lm ( alm
Ri−1

ρ)eimϕeikzz Ri−1 ≤ ρ ≤ Ri(i = 2, 3, . . . , n+ 1)
, (9)

where TLOi
lm (alm/Ri−1ρ) is a radial function we constructed for LOi (i = 2, 3, . . . , n+ 1) phonon modes, and

is given by

TLOi
lm

(
alm
Ri−1

ρ

)
= Jl

(
alm
Ri−1

ρ

)
+ blmYl

(
alm
Ri−1

ρ

)
, (10)
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where Jl(x) and Yl(x) are the Bessel function and the Bessel function of the second kind of order l, re-
spectively. χlm is the mth zero of Jl(x), namely, Jl(χlm) ≡ 0. The function constructed TLOi

lm (almρ/Ri−1)
satisfies the boundary conditions at ρ = Ri−1 and ρ = Ri. That is,

TLOi
lm (

alm
Ri−1

ρ)|ρ=Ri−1 = Jl(alm) + blmYl(alm) = 0, (11)

TLOi
lm (

alm
Ri−1

ρ)|ρ=Ri = Jl(
alm
Ri−1

Ri) + blmYl(
alm
Ri−1

Ri) = 0,

so alm and blm can be solved by equations (11). m in the radial function TLOi
lm (almρ/Ri−1) denotes the

number of zeros within the range of Ri−1 ≤ ρ ≤ Ri (i = 2, 3, . . . , n+ 1). Thus, the polarization fields for
the LO phonon modes of the system are obtained by P = 1/4π∇φ, namely,

PLO1
lmkz =

1
4π
∇φLO1

lmkz

=
ALO1
lm

4π

{
1
2

[
Jl−1

(
χlm
R1

ρ

)
− Jl+1

(
χlm
R1

ρ

)]
χlm
R1

eρ (12)

+Jl

(
χlm
R1

ρ

)
im

ρ
eϕ + Jl

(
χlm
R1

ρ

)
ikzez

}
eimϕeikzz,

and

PLOi
lmkz

= 1
4π
∇φLOi

lmkz

= ALOi
lm

4π

{
1
2

[
Tl−1,m( alm

Ri−1
ρ)

−Tl+1,m( alm
Ri−1

ρ)
]
alm
Ri−1

eρ
+Tlm( almRi−1

ρ) imρ eϕ

+Tlm( alm
Ri−1

ρ)ikzez

}
eimϕeikzz.

, (i = 2, 3, . . . , n+ 1) (13)

It is easy to get the orthogonal relation for the polarization vector of the LO phonons PLOi
lmkz

, i.e.,∫
PLO1∗
l′m′k′z

·PLO1
lmkzd

3r

=
L
∣∣ALO1

lm

∣∣2
8π

{
1
2

(χ2
lm +R2

1k
2
z)J

2
l+1(χlm)

}
δl′lδm′mδk′zkz , (14)

∫
PLOi∗
l′m′k′z

·PLOi
lmkz

d3r

=
L|ALOi

lm |2
32π {a2

lm[γ2T 2
l−1,m(almγ) + γ2T 2

l+1,m(almγ) − T 2
l−1,m(alm)

−T 2
l+1,m(alm)]− 2k2

zR
2
i−1[γ2Tl−1,m(almγ)Tl+1,m(almγ)

−Tl−1,m(alm)Tl+1,m(alm)]}δl′lδm′mδk′zkz ,

(i = 2, 3, . . . , n + 1) (15)

where L is the length of the QC, and γi is defined as Ri/Ri−1.
In order to derive the free-phonon Hamiltonian, we need the dynamic equation of motion of the crystal

lattice [38]:

µü =µω2
0u+eEloc , (16)

P = n∗eu + n∗αEloc, (17)

where µ is the reduced mass of the ion pair and u = u+ − u− is the relative displacement of the positive
and negative ions, ω0 is the frequency associated with the short-range force between ions, n∗ is the number
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of ion pairs per unit volume, and α is the electronic polarizability per ion pair, and Eloc is the local field at
the position of the ions. The Hamiltonian of the free vibration is given by

Hph =
1
2

∫
[n∗µ

.
u · .u +n∗µω2

0u · u−n∗eu · Eloc]d3r. (18)

For LO phonon modes, making use of the well-known Lorentz relation Eloc = E + 4πP/3, the relation
E = −4πP (noting ε(ω) = 0) and equation (18), we have

Eloc = −8
3
πP, (19)

u =
1 + 8

3πn
∗α

n∗e
P. (20)

Substituting equation (20) into equation (18), we can write the confined LO phonon Hamiltonian as

HLO =
1
2

∫
[n∗µ(

1 + 8
3πn

∗α

n∗e
)2

.

P∗ ·
.

P +n∗µω2
LO1(

1 + 8
3πn

∗α

n∗e
)2P∗·P]d3r, (21)

Substituting relations (14) or (16) into equation (21), it can be see that, if we choose ALOi
lm to be

∣∣ALOi
lm

∣∣2 =
16π
n∗µL

(
n∗e

1 + 8πn∗α/3

)2

× (22)
[
(χ2
lm + R2

1k
2
z)J2

l+1(χlm)
]−1

, i = 1
2{a2

lm[γ2
i T

2
l−1,m(almγi) + γ2

i T
2
l+1,m(almγi) − T 2

l−1,m(alm)
−T 2

l+1,m(alm)]− 2k2
zR

2
i−1[γ2

i Tl−1,m(almγi)Tl+1,m(almγi)
−Tl−1,m(alm)Tl+1,m(alm)]}−1

i = 2, 3, ...n+ 1
,

then PLOi
lmkz

may form an orthonormal and complete set. We introduce creation and annihilation operators
a†lmn and almn to express the polarization vector PLOi and the standard Hamiltonian HLOi:

PLOi=
∑
lmkz

(
~

ωLOi
)

1
2 [a†lm(kz) + alm(kz)]PLOi

lmkz
, (23)

·
P

LOi

= −i
∑
lmkz

(~ωLOi)
1
2 [a†lm(kz)− alm(kz)]PLOi

lmkz
, (24)

HLOi =
∑
lmkz

~ωLOi[a
†
lm(kz)alm(kz) +

1
2

]. (25)

The operators for the LOi phonon of the lmkz satisfy commutation relation

[alm(kz),a
†
l′m′(k

′
z)] = δl′ lδm′mδ(k′z − kz), (26)

[alm(kz),al′m′ (k′z)] = [a†lm(kz),a
†
l′m′ (k

′
z)] = 0. (27)

The eigenfunction of the LOi phonon modes φ(r) could be expanded in term of the normal modes, so the
Fröhlich Hamiltonian between the electron and LOi phonon is derived as

He−LOi = −eφLOi(r) (28)

= −
∑
lmkz

[
ΓLOi
lm eimϕeikzza†lm(kz)×

{
Jl(χlmR1

ρ) i = 1
TLOi
lm ( almRi−1

ρ) i = 2, 3, ..., n+ 1
+ H.c.

]
,
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where ∣∣ΓLOi
lm

∣∣2
=

∣∣ALOi
lm

∣∣2 e2~
ωLOi

=
4e2~ωLOi

L
(

1
εi∞
− 1
εi0

)× (29)
[(χ2

lm +R2
1k

2
z)J2

l+1(χlm)]−1, i = 1
2× {a2

lm[γ2
i T

2
l−1,m(almγ) + γ2

i T
2
l+1,m(almγ) − T 2

l−1,m(alm)
−T 2

l+1,m(alm)]− 2k2
zR

2
i−1[γ2

i Tl−1,m(almγi)Tl+1,m(almγi)
−Tl−1,m(alm)Tl+1,m(alm)]}−1

i = 2, 3, ..., n+ 1
.

2.2. The IO phonon modes

The second possible solution of electrostatic equation (4) is Laplace equation (7), and it will give the IO
phonon modes. For IO phonon modes, because ε(ω) 6= 0, via equation (17), (18), we have [37]

Eloc =
µ

e
(ω2

0 − ω2)u, (30)

u =
P

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

. (31)

Following equation (21), we then get the Hamiltonian for the IO phonon as

HIO =
1
2

∫
[n∗µ(

1
n∗e[1 + (αµ/e2)(ω2

0 − ω2)]
)2

.

P∗ ·
.

P

+n∗µω2(
1

n∗e[1 + (αµ/e2)(ω2
0 − ω2)]

)2P∗·P]d3r. (32)

Taking the phonon potentials couplings between the IO phonons into account, the IO phonon electrostatic
potential in an n-layer coaxial cylindrical QC system can be written as

φ(r) =
∑
m,kz

n+1∑
i=1

{eimϕeikzz[AiIm(kzρ) +BiKm(kzρ)]θ(Ri − ρ)θ(ρ − Ri−1)}, (33)

where Km(x) and Im(x) are the first and second kind modified Bessel functions, respectively, and θ(ρ) is
the step function. In order to guarantee the potential functions of phonon being limited at ρ = 0 and ∞,
the conditions of An+1 = B1 = 0 should be satisfied. The continuity of the phonon potential functions and
their normal components of electric displace at ρ = Ri (i = 1, 2, . . . , n) imply{

φm,kzi (r)|ρ=Ri = φm,kzi+1 (r)|ρ=Ri
εi(ω)∂φ

m,kz
i (r)

∂ρ
|ρ=Ri = εi+1(ω)

∂φm,kzi+1 (r)

∂ρ
|ρ=Ri

,i = 1, 2, . . . , n. (34)

Other than the LO phonons, the dielectric functions εi(ω) of the IO phonons are not zero and they are given
by Eq. (5) and the LST relations as

εi(ω) = εi∞
ω2 − ω2

LOi

ω2 − ω2
TOi

,i = 1, 2, . . . , n + 1, (35)

where εi∞ is high-frequency dielectric constant of ith layer material, and ωLOi and ωTOi are the corresponding
frequencies of longitudinal-optical and transverse-optical vibrations. We define the 2× 2 matrices

Mi =

 Im(kzRi) Km(kzRi)

εiI
′
m(kzρ)|ρ=Ri εiK

′
m(kzρ)|ρ=Ri

 , (36)
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M′
i =

 Im(kzRi) Km(kzRi)

εi+1I
′
m(kzρ)|ρ=Ri εi+1K

′
m(kzρ)|ρ=Ri

 , (37)

and the vectors

Ci =

 Ai

Bi

 , (38)

then Eqs (34) can be expressed by

MiCi = M′
iCi+1 ,(i = 1, 2, . . . , n). (39)

Via solving the inverse matrix, it is easy to derive the relation

Ci = (
n−1∏
j=i

Dj)Cn , (40)

where

Di = M−1
i ·M′

i. (41)

It should be noted that, when the factorial for matrix Dj in Eq. (40) is calculated, the order of calculation
of matrix should be done from right to left. In particular, when i = 1, via Eq.(40), one can get

C1 =
n−1∏
j=1

DjCn. (42)

Moreover, we notice that An+1 = B1 = 0 in Eq (33). Via this condition and Eq. (42), the next relation is
obtained:

B1 =

n−1∏
j=1

Dj


2,2

= 0, (43)

which just gives the dispersion relation for the IO phonon modes. Substituting dielectric functions Eqs (35)
into above Eq. (43), the dispersion frequencies ω for the IO phonons are solved. When ω is worked out,
the values for dielectric functions can be obtained by Eq.(35). Thus, the rest coefficients in the electrostatic
potential function can be expressed by Bn+1, and they are given by

Ai =

n−1∏
j=i

Dj


1,2

Bn+1 = giBn+1, (44)

Bi =

n−1∏
j=i

Dj


2,2

Bn+1 = hiBn+1. (45)

Using eqs. (44) and (45), the phonon potential function (33) can be rewritten as

φ(r) = Bn+1

∑
m,kz

n+1∑
i=1

{eimϕeikzz[giIm(kzρ) + hiKm(kzρ)]θ(Ri − ρ)θ(ρ −Ri−1)}. (46)
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Thus, the polarization fields for the IO phonon modes of the system are obtained by P = (1− ε)/4π∇φ,

PIO
m,kz =

1− ε
4π
∇φ(r)m,kz (47)

=
Bn+1

4π

n+1∑
i=1

(1− εi)∇{eimϕeikzz[giIm(kzρ) + hiKm(kzρ)]θ(Ri − ρ)θ(ρ −Ri−1)}.

It is easy to get the orthogonal relation for the polarization vector of IO phonon PIO
m,kz

,∫
PIO∗
m′k′z

·PIO
mkzd

3r

=
|Bn+1|2 k2

zL

16π
{
n+1∑
i=1

(1− εi)2

∫ Ri

Ri−1

{[g2
i (I

2
m−1 + I2

m+1 + 2I2
m) + h2

i (K
2
m−1 +K2

m+1 + 2K2
m)]

+2gihi(2ImKm − Im−1Km−1 − Im+1Km+1)}ρdρ}δm′mδk′zkz . (48)

Using the orthogonal relation of the polarization vector (48) and choosing

|Bn+1|−2 =
k2
zL

2ω2
{
n+1∑
i=1

(
1

εi − εi0
− 1
εi − εi∞

)−1Int(i, m,kz)} (49)

with

Int(i,m,kz) =
∫ Ri

Ri−1

ρdρ{[g2
i (I2

m−1 + I2
m+1 + 2I2

m) + h2
i (K

2
m−1 +K2

m+1 + 2K2
m)]

+2gihi(2ImKm − Im−1Km−1 − Im+1Km+1)}, (50)

we can make PIO
m,kz

form orthonormal and complete sets, which can be used to express the IO phonon field
HIO and the electron-phonon interaction Hamiltonian He−IO. Then the IO phonon field is given as

HIO =
∑
mkz

~ω
[
b†m(kz)bm(kz) +

1
2

]
, (51)

where b†m(kz) and bm(kz) were creation and annihilation operator for IO phonon of the (m,kz)th mode.
They satisfied the commutative rules for bosons.

[bm(kz),b
†
m′ (k

′
z)] = δm′mδk′zkz ,

[bm(kz),bm′ (k′z)] = [b†m(kz),b
†
m′ (k

′
z)] = 0. (52)

The Fröhlich Hamiltonian describing the interaction between the electron and the IO phonon is given by

He−IO = −
∑
mkz

ΓIO
m,kzR1

(ρ)[bm(kz)eimϕeikzz + H.c.], (53)

where ΓIO
m,kzR1

(ρ) was the coupling function which was defined as

ΓIO
m,kzR1

(ρ) = Nm,kz × fm(kzρ)

= Nm,kz

n+1∑
i=1

[giIm(kzρ) + hiKm(kzρ)]θ(Ri − ρ)θ(ρ − Ri−1) (54)

with

|Nm,kz |2 =
2~ωe2

k2
zL
{
n+1∑
i=1

(
1

εi − εi0
− 1
εi − εi∞

)−1Int(i, m, kz)}−1. (55)
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3. Numerical Results and Discussion

In order to see more clearly the behaviors of the phonon modes in the multi-layer coaxial cylindrical QCs,
as an example, numerical calculations on a four-layer QC system made by GaAs/Ga1−xAlxAs materials
have been performed. Due to the simplicity of the electron-LO phonon coupling functions, which are just
the oscillating and attenuating Bessel functions, thus, the next discussions mainly focus on the dispersion
frequencies for the IO phonons and their couplings with electrons. The material parameters originate from
Ref. [39] and are listed in Table 1.

Table 1. The material parameters [39].

Material parameters
GaAs Ga1−xAlxAs AlAs

~ωLO (meV) 36.25 36.25 + 3.83x+ 17.12x2− 5.11x3 50.09
~ωTO (meV) 33.29 33.29 + 10.70x+ 0.03x2 + 0.86x3 44.88

ε0 13.18 13.18− 3.12x 10.06
ε∞ 10.89 10.89− 2.73x 8.16

Figure 2 shows the dispersion frequencies of the IO modes ~ω as functions of the phonon wave-vector
in the z direction kz in the four-layer Ga0.8Al0.2As/GaAs- /Ga0.9Al0.1As/Ga0.6Al0.4As QC system with
thicknesses 5 nm/5 nm/5 nm/∞. (In the following figures, the structure of the QC is kept unchanged.)
In fact, the azimuthal quantum number m is kept at 0. Other than the inhomogeneous QDQW system
[37], in which the dispersion frequencies are a discrete function of the quantum number since there is no
wave vector in the QC system, the dispersion frequencies can be a continuum function of the wave vector
in the z direction. From the figure, it is observed that there are six branches of IO phonon modes, labeled
1, 2, 3, 4, 5 and 6 in order of the increasing frequency (i.e. Eq. (43) has just six solutions for ω). When
kz is small (such as kzR1 ≤ 1 ), the dispersions are more obvious; but when kz is relatively big (such as
kzR1 ≥ 1.5), the dispersions for each mode almost can be negligible. In detailed calculations for kz → 0,
the frequencies of the six branches the IO phonon modes (mode 1 to mode 6) are found to approach ωTO2,
ωTO3, ωTO1, ωLO2, ωLO3 and ωLO4, respectively. It is noted that, ωTO1 and ωLO4 appear, but ωLO1 and
ωTO4 are forbidden. The frequencies forbidden behaviors in the QC are obviously different from the case in
a multi-layer asymmetrical planer hetero system [16, 18]. In the asymmetrical planer hetero system, when
the wave-vector in z direction kz → 0, both frequencies of the TO and LO phonons in the outermost-layer
materials were forbidden, but two new frequencies ω+ and ω− appeared. This difference of the IO phonon
limit (kz → 0) frequencies in the two systems may originate from the distinctions of the symmetry of the
two quantum systems, namely, one is a planar symmetrical system, and the other is an axial symmetrical
system. On the other hand, when kz → ∞, the frequency of each branch of the IO phonon approaches a
constant. In order to distinguish and label the six branches of the IO phonon modes, the limit frequencies
of the IO phonons when kz → ∞ in the homogeneous cylindrical QWW formed by the two materials on
both sides of the three interfaces are listed in Table 2. These limit frequency values can be computed by
the equation ε1(ω)/ε2(ω) = −Km(kzR1)I′m(kzr)|r=R1/[Im(kzR1)K′m(kzr)|r=R1 ] [33], which determines the
IO phonon frequencies in a single heterostructure. It is well known that, when x → ∞, Im(x) and Km(x)
approach ex/

√
2πx and e−x

√
π/
√

2x, respectively, so ε1(ω)/ε2(ω) → −1. Via this relation, it is easy to
calculate the two limit frequency values of the IO phonon in the single heterostructure. The branch with
lower frequency is labeled by ~ωiL; the other branch, with higher frequency, is labeled by ~ωiH ; and the
index i in Table 2 denotes the i th interface. According to the data in Table 2, it is easy to label the six IO
phonon modes in Figure 2. For example, 2H and 2L denote the two modes mainly localized in the vicinity
of the second interface (these characters can be seen clearly in Figure 4), and they represent the higher
frequency branch and lower frequency branch at the second interface, respectively.
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Figure 2. The dispersion frequencies ~ω as functions of kz in a four-layer Ga0.8Al0.2As/GaAs/Ga0.9Al0.1As/Ga0.6Al0.4As

QC system with thicknesses 5 nm/5 nm/5 nm/∞, with azimuthal quantum number m is kept at 0.

Table 2. The limit frequencies of the IO phonon modes in single heterostructures.

IO phonon limited frequencies in single heterostructures
Interface materials ~ωiL (meV) ~ωiH (meV)
Al0.2Ga0.8As/GaAs (i = 1) 34.13 37.20
GaAs/Al0.1Ga0.9As(i = 2) 33.78 36.57
Al0.1Ga0.9As/Al0.6Ga0.4As(i = 3) 35.20 39.29

In order to investigate the dependence of ~ω on the azimuthal quantum number m, when kz is kept
at 1/2R1, phonon frequencies as a function of m are plotted in Figure 3. The frequencies are the discrete
functions of quantum number m, and the dash lines in each curve are guided for eyes. Analogous to the
case in Figure 2 when m is small, the dispersions are more obvious. As m → ∞, each frequency of the
IO phonon also approaches some constant, which is the same as the corresponding limit value in Figure 2.
This is not a casual observation. Our calculation reveals that, for a certain x0, when m → ∞, the value of
Km(x0)I′m(x)|x=x0/[Im(x0)K′m(x)|x=x0 also approaches 1, so the corresponding limit frequencies for large m
and kz converge to the same values. That the observation in Figure 2 and Figure 3 is of physical significance,
reveal that only six branches of IO modes with different energies exist in the four-layer QC system. The
corresponding polaron may be formed by virtue of the interaction between and electron and these six IO
phonon modes [18].

The electron-IO phonon coupling functions ΓIO
m,kzR1

(ρ) as functions of ρ are depicted in Figure 4 for
m = 0 and 2, and kzR1 = 1 and 3. Via comparing Figures 4a–4d, it can be seen that, when m and kz
are small (see Figure 4a), the distributions of ΓIO

m,kzR1
(ρ) for each mode on the interfaces are comparatively

average, namely, the peaks in the curve at each interface are not very sharp. But with the increasing of kz
or m, the distribution of ΓIO

m,kzR1
(ρ) of each mode tend to be more and more localized at an interface (see

Figures 4b–4d), namely, modes 2 and 5 are mainly localized at the first interface ρ = 5 nm, modes 1 and 4
are mainly localized at the second interface ρ = 10 nm, and modes 3 and 6 are at the third interface ρ = 15
nm. So modes 2 and 5 can be seen as the IO modes at the first interface; modes 1 and 4 can be treated as
the IO modes at the second interface; and modes 3 and 6 can be treated as IO modes at the third interface.
Furthermore, the frequencies of modes 1, 2 and 3 are lower than those of modes 4, 5 and 6. On the basis of
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these two features, the six branches of IO phonon modes have been labeled in Figure 2. It is also noticed
that, at the position of the origin, ΓIO

01(0) and ΓIO
03(0) do not equal zero, while ΓIO

21(0) and ΓIO
23(0) do equal

zero, because I0(0) 6= 0 and Ii(0) = 0 (i = 1, 2, . . . ).

Figure 3. Dispersion frequencies of the IO phonon modes ~ω as a function of m with kz kept at 1/2R1. The signs

in the dash lines denote the frequency values, and the dash lines in each curve are guides for the eyes.

Figure 4. The electron-IO phonon coupling functions ΓIO
m,kzR1

(ρ) as functions of ρ for m = 0, 2, and kzR1 = 1, 3.
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In Figure 5, we show the absolute values
∣∣∣ΓIO
m,kzR1

(ρ)
∣∣∣ as a function of kz for m = 0 and 2. According

to the analysis in Figure 4, ρ = 5 nm is chosen for modes 2 and 5, ρ = 10 nm is chosen for modes 1 and
4, and ρ = 15 nm for modes 3 and 6. In the case of m = 0, when kzR1 < 1.5, the curves cross each other;
but when kzR1 > 2, each curve decreases monotonically. In the case of m = 2 (the embedded figure), as
kz increases from 0, the six curves all decreases monotonically. It is also noticed that, the three branches
of phonon modes with higher frequencies 3, 4 and 5 modes, compared with the other three modes with
lower frequencies 1, 2 and 3, have stronger coupling with electrons. With this feature specified, the higher
frequency IO phonons have more obvious contribution to the electron-phonon interaction in the QC system.

Figure 6 plots the dependence of the absolute values
∣∣∣ΓIO
m,kzR1

(ρ)
∣∣∣ on azimuthal quantum number m when

kz is kept at 1/2R1. The same coordinate value in ρ as in Figure 5 for each mode is chosen. With increasing
m, modes 1, 2, 5 and 6 decrease monotonically, and modes 3 and 4 have a maximum at m = 1. Over the
whole range of m, the coupling between the electron and the high frequency phonon modes 4, 5 and 6 is
more significant. This character is analogous to the case in the inhomogeneous QDQW system [37].

Figure 5. The absolute values
�
�ΓIO
m,kzR1

(ρ)
�
� as functions of kz for m = 0 and 2.

Figure 6. The dependence of the absolute values
�
�ΓIO
m,kzR1

(ρ)
�
� as functions of m with kz kept at 1/2R1.

337



ZHANG, XIE

Via a comparison of Figure 2 with Figure 3, and Figure 5 with Figure 6, we found the wave-vector in z
direction kz and the azimuthal quantum number m have very analogous effects on the frequencies and the
electrostatic potentials of the IO phonons in the QC systems. For example, with increasing m and kz, the
corresponding IO phonon frequencies converge to the same limit frequencies, and the electrostatic potentials
tend to be more and more localized at certain interfaces; and the couplings of electron-IO phonon become
weaker and weaker. This analogy originates from the fact that, when kz and m are large enough, the IO
modes do not feel the curvature of the wire surfaces [22], so the frequencies and the potential distributions
in QCs approach those in plane heterostructure quantum systems.

4. Summary and Conclusions

Under the DC model, the confined LO and IO phonon modes and Fröhlich electron-phonon interaction
Hamiltonians in coaxial cylindrical QCs with arbitrary layer-number have been deduced in the present paper.
A set of legitimate eigenfunctions for LO phonon modes are constructed to describe the vibration of the
LO phonons. Transfer matrix method [19, 20] are employed to deal with the IO phonon modes. Numerical
calculations on a four-layer GaAs/AlxGa1−xAs QC have been performed, and the calculations mainly focus
on the dispersion relation of IO phonon modes and the coupling function between electron and IO phonon.
The main results are as follows:

1. In the inhomogeneous coaxial cylindrical QC model chosen, there exists six branches of IO phonon
modes. The curves of the dependences of these dispersion frequencies on the wave-vector in z direction kz
and the azimuthal quantum number m have been plotted. Results reveal that the dispersion is obvious only
when kz and m are small; when kz and m approach 0, only ωLO1 of central region material and ωTO4 of
the outermost region material are forbidden, which is obviously different from the case in multi-layer planar
heterosystem due to the different symmetries of the two models [18]; with increasing kz and m, the dispersion
frequency for each mode converge to a certain IO frequency value in single heterostructure [33], and these
observations have reasonable explanation.

2. Study of the coupling function of the electron-IO phonon interaction ΓIO
m,kzR1

(ρ) reveals that, with
increasing m and kz, each phonon mode tends to be more and more localized at interfaces, and the couplings
between the electron and the IO phonon become weaker and weaker. Meanwhile, the high frequency phonon
modes have more significant contributions to the coupling of the electron-phonon interaction.

3. Via the discussion associated with Figures 2–5, we found the wave-vector in z direction, kz, and the
azimuthal quantum number m have very analogous effects on the frequencies and the electrostatic potentials
of the IO phonons. This analogy originates from the observation that the IO modes do not feel the curvature
of the wire surfaces for large kz and m [22], so the frequencies and the potential distributions in QCs approach
those in QWs.

From the results of four-layer QC system, it is reasonable to infer, for the n-layer coaxial cylindrical
QC system showed as in Figure 1, there exists 2n− 2 (n ≥ 3) branches of IO phonon modes. It is obvious
that the theoretical results described in the present work will contribute the investigation of the IO phonon
effects on the physical properties in the QC systems, such as the polaronic effect [40, 41], and the bound
polaronic effect [33], the subject of future research projects.
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