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Abstract

In this work, we calculate the power reflectivity in vertical cavity surface emitting lasers (VCSELs)

using a new method. In VCSELs, the stop band of the reflectivity spectrum should exhibit a dip at the

lasing wavelength, which is a condition for lasing. This current approximation method gives a simple

analytical expression to find the power reflectivity as a function of wavelength in the vicinity of lasing

wavelength, λ◦. The proposed method can generally be applied to semiconductor VCSEL systems for a

given lasing wavelength.

1. Introduction

Various light emitting devices have been developed with the advanced crystal-growth technologies that
have been developed in the last two decades. This progress has led us to design and produce light emitting
semiconductor devices based upon transport parallel to the quantum well layers, as suggested by N. Balkan
et al. [1–3]. Although emission bandwidth of a typical light emitting diode (LED) is 20–40 nm, emission
bandwidth of VCSEL devices is 10–20 nm, depending on wavelength. Lasing wavelength is determined by
the discrete energy levels of carriers confined in the quantum well/s placed in the active region of devices.
Inversion population is obtained through either vertical transport of carriers along the growth direction or
in-plane transport of carriers injected from the adjacent n-p doped regions by tunneling and thermionic
emission. Quantum well/s is/are placed near the standing wave maximum of the radiation electric field to
increase the stimulated emission in the oscillating field. Light emission is, unlike conventional ones, at right
angles to the in-plane direction in vertical cavity surface emitting lasers (VCSELs).

VCSELs are often different from conventional laser diodes in that the beam travels at right angles to
the active region instead of emitting parallel to the active layer. A VCSEL has top and bottom Distributed
Bragg Reflectors (DBRs) which consist of alternating quarter wavelength layers having higher and lower
refractive indices. Here, a basic problem associated with the VCSEL design would be indicated by the
following property: if the layers of the Bragg reflectors have optical thickness nd equal to one-quarter the
lasing wavelength, and if the optical thickness of the active layer is an integer multiple of half of the lasing
wavelength, then the stop band will not exhibit a dip at the lasing wavelength.
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ŞENADIM, Y. ERGUN

Two different methods can be used to obtain the dip in the stop band: one is to change slightly the width
of Bragg layers; and the other is to change the width of the active layer. One of the earliest approaches
to the calculation of reflectivity was shown by T. Sale [4], who calculated the phase in terms of the rate
of change of the refractive index with wavelength (dn/dλ). This would have led to an analytical approach
if he had realized that (dn/dλ) is negligibly small in the vicinity of the lasing wavelength. In this study,
neglecting (dn/dλ) in the vicinity of lasing wavelength results in a new approximate method for a single
mode TE or TM to obtain the dip in the center of the stop band [4–5] of the power reflectivity.

Theoretical description as well as the method of calculation is given in Section 2. The results are compared
to those obtained by an exact method (transfer matrix method) in the vicinity of the lasing wavelength.

2. Theory

Electric and magnetic field components of radiation at each interface (parallel to the interface) can be
related as follows [5]:

Ei(0)
µ◦Hi(0)

=
Cos δi (i/ni)Sin δi

ini Sin δi Cos δi
· Ei(di)
µ◦Hi(di)

(1)

Expecting continuity of the fields at each interface (of thickness di) for two different consecutive materials,
the matrix

M =
N−1∏
i=0

Mi(di)Mi+1(di+1) =
[
m11 m12

m21 m22

]
(2)

relates the output components of the fields to the input values for multiple layers. In equation 1, δi =
(2π/λ)Nidi is optical phase; in eq. 2, Ni = n1 - ik is the complex refractive index and di is the ith layer
thickness. The phase of the reflected field from the top surface is the same as that of the incident field when
ni ¡ ni+1. For a given pair of Ni (where lossless refractive indexes are n1 and n2, and optical phases are δ1
and δ2, respectively) with the substrate refractive index ns, in the absence of absorption, the reflectivity at
the Bragg condition is given by setting δ1 = δ2 = π/2:

r =
n◦ − ns(n1/n2)2N

n◦ + ns(n1/n2)2N
, (3)

where N is the number of periodic pairs. Using Kramers-Kröning relations, loss parameters ki can be shown
to be very small in comparison with known real refractive indices ni which depends on the wavelength [6].
Therefore, in the lossless case, in the vicinity of the Bragg wavelength λ◦ (i.e. λ◦ ± δλ), reflectivity can be
obtained for N on a substrate as,

r = tanh

−.5Ln
iπ2

(
− δλλ0

(n1 + n2)
N/2∑
i=1

(
γ2i−1 + 1

γ2i−1

))
+ 1

γN
ns

γN + ns

[
iπ2

(
− δλλ0

(
1
n1

+ 1
n2

)N/2∑
i=1

(
γ2i−1 + 1

γ2i−1

))]
, (4)

where n2and n1 the refractive indices of the periodic layers, γ = n2/n2, and ns is refractive index of substrate
material. This equation does not depend on the sequence of the layers which may have high-low or low-high
index order. In this approximation, the change of refractive indices in the vicinity of λ◦is neglected (i.e. it
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is assumed dn/dλ|λ=λo
∼= .001nm−1). Reflectivity r in eq. 4, approaches the true value for δλ ≤ 10nm.

Equation 4 also gives eq. (3) when δλ → 0, as expected. In this interval, the reflectivity of the full lasing
structure can be easily examined with the approximation given above, instead of eq. (2), since eq. (2) does
not yield an analytical equation for r in the same interval. Similarly, the approximation of McLeod [5] does
not generally give correct results in the vicinity of the lasing wavelength. Figure 1 shows the exact power
reflectivity obtained from eqs. (1–3) by using transfer matrix method (solid line) and approximate solution
in the neighborhood of the lasing wavelength as given in eq. 4 (dashed line) for single DBRs with N = 20.
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Figure 1. Comparison of power reflectivity for single DBRs (for 20 periods) calculated using exact matrix transfer

method (solid curve) with calculated using a simple approximation (dashed curve) as a function of δλ in eq. 4.

An example of the numerical calculation consists of n1(AlAs) and n2 (Ga.7Al.3As) Bragg pairs while
n3(GaAs) is chosen as the substrate. Optical thickness of the active region placed between the upper and
lower DBRs must be an integer multiple of the lasing wavelength λ◦/2 for a lasing structure (Fabry-Perot).
Optical phase of the active layer is given by δiac = 2π/[λ◦(1 + δλ/λ◦)]pλ◦/2 in the vicinity of the lasing
wavelength. For δλ << λ◦, the optical phase (nacd) of the active region takes the form

δiac = [π(1− δλ/λ◦)]p, (5)

where p is a positive integer, and thus Cos δac ∼= ±1 and Sin δac ∼= πδλ/λ◦. Phases of the Bragg layers
corresponding to optical thickness near the lasing wavelength are

δn1 = δn2 = 2π/[λ◦(1 + δλ/λ◦)](2p+ 1)λ◦/4 = π/2(1− δλ/λ◦)(2p+ 1)

and
Cos[π(p+ 1/2)(1− δλ/λ◦)] ∼= ±π(p+ 1/2)δλ/λ◦
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by means of Sin[π(p+ 1/2)(1− δλ/λ◦)] ∼= ±1 for small p (namely p = 0, 1). If the structure has even (odd)
pairs of quarter wave layers for both upper and lower DBRs, and the active region has an optical width of
λ◦/2, in the lossless case, reflectivity can be approximated to

r = tanh
[
−1/2 ln

−in3πδλ/λ◦u∓ v/γN ∓ fN bw − fNfM bz
−γNu∓ i/n3πδλ/λ◦v ∓ fNas− fN fMat

]
, (6)

where ∓ is (−-) for even and (+) for odd number of layers; a = 1/n1+1/n2; b = n2 + n2; N and M are
periodicity numbers for upper and lower DBRs, respectively; and other variables in eq. 6 are as follows

fN(M) =


−iπ/2δλ/λ◦

N(M)/2−1∑
n=0

(γ2n+1 + 1/γ2n+1), N(M)iseven

iπ/2δλ/λ◦
(N(M)−1)/2∑

n=0
(γ2n + 1/γ2n)− 1, N(M)isodd


where

u = γM ± fMans, v = fM b ± ns/γM ,

w = γM + i/n3πδλ/λ◦ns/γ
M , z = i/n3πδλ/λ◦b+ ans,

s = in3πδλ/λ◦γ
M + ns/γ

M , t = b+ in3πδλ/λ◦ans,

while n3and ns are active and substrate refractive indices, respectively. Comparison of the power reflectivity
for exact calculation (solid curve) and our approximation (dashed curve) is presented in Figure 2 for 18
periods of upper DBRs and 28 periods of lower DBRs placed on top of the substrate. The active region
between upper and lower DBRs has an optical thickness of λ/4.
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Figure 2. Power reflectivity versus wavelength for VCSEL; dashed curve is obtained from approximated calculation

eq. 6 and solid curve shows the power reflectivity from the exact calculations using eqs. (1–3).
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The approximate reflectivity shown in Figure 2 is the same as that obtained from the exact calculation
in the vicinity of λ◦. On the other hand, reflectivity spectrum obtained with approximation shows that
smoothness near the lasing wavelength coincides with the exact calculation of reflectivity, and its width is a
parameter to find the lasing windows. During lasing, power reflectivity decreases at the lasing wavelength
because the reflected part of the oscillation field provide the feedback needed for stimulated emission. For
large number of pairs N(M), a DBR has a wavelength region called “stop band” in which the reflectivity
is close to unity, whose center is at the wavelength, λ◦. Thus, a “dip” at the center of the stop band has a
power reflectivity which is smaller than the reflectivity in the rest of the stop band. In order to obtain this
dip, two different methods can be used: (a) width of the Bragg reflectors can be taken slightly different from
λ◦/4n; or; (b) width of the active region may be chosen slightly different from λ◦/2n for a single mode. We
preferred to apply the second option for the approximate calculation of reflectivity to prevent non in-phase
radiation in the cavity. If the refractive index of active region is n3, the optical phase δacin the vicinity of
lasing wavelength is

δac = π(1− δλ/λ◦)(p+ 2n3dl/λ◦), (7)

where p is any integer and indicates the multiple of λ◦/2. The last term in eq. 7 can be rewritten as
1/2 + ξλ/λ◦, since ξλ = 2n3dl− λ◦/2. For a single mode (p = 1), the optical phase of active region can be
approximated as δac ∼= 3π/2− π((p + 1/2)δλ/λ◦ − ξλ/λ◦). In this case, for the reflectivity of the structure,
we obtain the relation for the even (odd) number of Bragg pairs, (N andM are number of pairs in the top
and the bottom Bragg reflectors, respectively) as

r = tanh
[
−.5 ln−f

NfM bu∓ fM /γNv ∓ fN bw − z/γN
−fN fMav ∓ fNaz ∓ fMγNu− γNw

]
(8)

where,∓ is (−) for even and (+) for odd number of layers,

a = 1/n1 + 1/n2,

b = n1 + n2,

u = i/n3b + aκns,

v = κb+ in3ans,

w = κγM + (i/n3)ns/γM ,

z = in3γ
M + κns/γ

M ,

κ = π((p+ 1/2)δλ/λ◦ − δξ/λ◦), p
indicates the integer multiple of λ◦/2, and n3 is the index of refraction of the active region. Equations (6)
and (8) can also be simplified for small N and M because the summation given in fN(M) is also small and
thus higher terms of δξ in the matrix products are ignored.Reflectivity spectrum given in Figure 3 is the
same as in Figure 2 (power reflectivity between 700 nm and 900 nm is also illustrated in Figure 4); but now,
it has a window at 820 nm, as expected. Numerical interpretation using eq. (8) shows that for dl = -53 nm,
power reflectivity is the same as Figure 2, but dips at the lasing wavelength of 820 nm.
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Figure 3. Power reflectivity of the single mode laser structure. Solid curve shows the exact calculation by using

eqs. (1–3) and dashed line represents the approximation by using eq. (8).
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Figure 4. Power reflectivity to show between 700 nm and 900 nm for exact calculation and present approximation

method. Dashed curve shows present approximation method and solid curve exact calculation obtained from transfer

matrix method.
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3. Conclusions

We have investigated a simple approximation to find the reflectivity and its phase relation around the
neighborhood of the lasing wavelength. In modeling of a VCSEL, this method is considered to be very useful
because of its simplicity. The light emitting dip can be easily obtained using the equations given above by
just varying the active layer thickness with a small of amount dl. This calculation technique is found to be
a very useful method to find the lasing dip with typical parameters of layers such as the periodicity number
and the width of Bragg layers.
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