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Abstract

Using the most general model-independent effective Hamiltonian comprising local four-Fermi oper-

ators (scalar, vector, and tensor operators), we study the sensitivity of the zero position of the lepton

asymmetry to the new operators beyond the Standard Model (SM) in the B → K`+`− decay. It is

found that among all operators, only the scalar and tensor operators contribute to the forward-backward

asymmetry, in which case the forward-backward asymmetry has a non-vanishing value.
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1. Introduction

The flavour-changing neutral current (FCNC) processes provide an excellent testing ground for the Stan-
dard Model (SM), and are possibly the most sensitive to the various extensions to the SM, because these
transitions occur at the loop level in the SM. Among all the FCNC phenomena, the rare B decays are
especially important [1], since one can both test the SM and search for possible new physics effects. Rare
B meson decays induced by b → s`+`− transitions has been studied in the framework of the SM and its
various extensions [2, 3, 4, 5, 6, 7, 8, 9, 10].

Concerning the semi-leptonic B decays, B → Xs`
+`− (Xs = K∗, K, ` = e, µ, τ) decay is an example hav-

ing both theoretical and experimental importance. This work is a study of the zero of the forward-backward
asymmetry (AFB) in the B → K`+`− decay using the most general form of the effective Hamiltonian. The
symmetry of those decays is a particularly interesting quantity, since it vanishes at the specific value of
the dilepton invariant mass [11, 12]. In the recent literature, the dilepton invariant mass spectra, and the
forward-backward asymmetry in B → Xs`

+`− decays has been analyzed in detail [12, 13, 14].
It has been found that AFB may become zero for the certain value of the dilepton invariant mass for the

exclusive B → K∗`+`− decay. On the other hand the forward-backward asymmetry is zero for the exclusive
B → K`+`− decay within the SM [12]. In addition, the zero position of the forward-backward asymmetry
has been analyzed in the most general model in the B → K∗`+`− decay and found that the zero of the AFB
is sensitive to the new Wilson coefficients [15].

The organization of the present work is as follows. In Section 2, starting from the most general effective
Hamiltonian, we compute the differential decay width of the exclusive B → K`+`− decay and the numerator
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of the forward-backward asymmetry. Its intersectional value with the zero axes will determine the zero
position of the forward-backward asymmetry. In Section 3, we carry out the numerical analysis to the study
the dependence of the zero position on the new Wilson coefficients. We conclude in Section 4.

2. The Model

The matrix element of the b → s`+`− decay can be written as the sum of the SM contribution and the
contribution from the model-independent part [16, 17]

M =MSM +MMI , (1)

where MSM is given by

MSM =
GFα√

2π
V ∗tsVtb

{
(Ceff9 −C10)sLγµbL`Lγµ`L

+ (Ceff9 + C10)sLγµbL`Rγµ`R

− 2Ceff7 siσµν
q̂ν

ŝ
(m̂sL + m̂bR)b `γµ`

}
. (2)

The model-independent part has ten independent local four-Fermi operators and is defined as

MMI =
GFα√

2π
VtbV

∗
ts

{
CLLs̄LγµbL ¯̀

Lγ
µ`L + CLRs̄LγµbL ¯̀

Rγ
µ`R

+ CRLs̄RγµbR ¯̀
Lγ

µ`L +CRR s̄RγµbR ¯̀
Rγ

µ`R

+ CLRLRs̄LbR ¯̀
L`R + CRLLRs̄RbL ¯̀

L`R + CLRRLs̄LbR ¯̀
R`L

+ CRLRLs̄RbL ¯̀
R`L + CTsσµνb`σ

µν`

+ iCTEsσµνb`σαβ`ε
µναβ

}
. (3)

Among ten Wilson coefficients, there are four vector type interactions (CLL,
CLR, CRL, CRR), four scalar type (CLRLR, CLRRL, CRLLR, CRLRL) and two tensor type (CT , CTE) interac-
tions. Here L and R denote (1± γ5)/2 and bL,R = [(1∓ γ5)/2]b, ŝ = q2/m2

B, m̂b = mb/mB , m̂s = ms/mB ,
and q = pB − pK . With these definitions the matrix element can be written as

M =
GFα

4
√

2π
V ∗tsVtb

{[
(2Ceff9 + CLL + CLR)sγµ(1− γ5)b

+ (CRL +CRR)sγµ(1 + γ5)b

− 4
m̂b

ŝ
Ceff7 siσµν q̂

ν(1 + γ5)b

]
(`γµ`) +

[
(2C10 −CLL +CLR)sγµ(1 − γ5)b

+ (CRR − CRL)sγµ(1 + γ5)b

]
(`γµγ5`)

+

[
(CLRLR + CLRRL)s(1 + γ5)b+ (CRLLR + CRLRL)s(1− γ5)b

]
(``)

+

[
(CLRLR − CLRRL)s(1 + γ5)b+ (CRLLR − CRLRL)s(1− γ5)b

]
(`γ5`)

+ 4CTsσµνb`σµν`+ 4iCTEsσµνb`σαβ`εµναβ
}
. (4)
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The expression for Ceff9 (ŝ) in the above equation is given by

Ceff9 (ŝ) = C9 + g(z, ŝ)(3C1 +C2 + 3C3 + C4 + 3C5 + C6)

− 1
2
g(1, ŝ)(4C3 + 4C4 + 3C5 + C6)

− 1
2
g(0, ŝ)(C3 + 3C4) +

2
9

(3C3 + C4 + 3C5 + C6), (5)

where z = mc
mb

, and the values of g(z, ŝ), g(1, ŝ), g(0, ŝ) can be found in [18, 19], and the values of Ci in the
SM are given in the numerical analysis.

In Eq. (4) we have neglected the strange quark mass. In order to calculate the matrix element describing
the exclusive B → K`+`− decay, with the effective Hamiltonian over B and K meson states, we need the
following expressions [17]:

〈K(pK ) |sγµb|B(pB)〉 =

[
(pB + pK)µ −

1− m̂2
K

ŝ
(pB − pK)µ

]
f+

+
1− m̂2

K

ŝ
(pB − pK)µf0 (6)

with f+(0) = f0(0);

〈K(pK ) |sσµνb|B(pB )〉 = −i
[

(pB + pK)µ(pB − pK)ν

− (pB + pK)ν(pB − pK)µ

]

× fT
mB + mK

; (7)

〈K(pK) |siσµνqνb|B(pB)〉 =

[
(pB + pK)µ(pB − pK)2

− (m2
B −m2

K)(pB − pK)µ

]

× fT
mB +mK

; (8)

〈K(pK) |sb|B(pB)〉 =
mB(1− m̂2

K)
m̂b

f0; (9)

With the help of Eqs. (1–4) the matrix element of the B → K`+`− decay is written as

M =
GFα

4
√

2π
V ∗tsVtb

{
M1(pB + pK)µ(`γµ`) +M2(pB − pK)µ(`γµ`)

+ M3(pB + pK)µ(`γµγ5`) +M4(pB − pK)µ(`γµγ5`)

+ M5(``) +M6(`γ5`)

+ iM7

[
(pB + pK)µ(pB − pK)ν − (pB + pK)ν(pB − pK)µ

]
(`σµν`)

+ M8

[
(pB + pK)µ(pB − pK)ν − (pB + pK)ν(pB − pK)µ

]
(εµναβ`σαβ`),

(10)
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where

f− =
1− m̂2

K

ŝ
(f0 − f+)

and Mi(i = 1, . . . , 8) are auxiliary functions given by the following:

M1 = (2Ceff9 +CLL +CLR + CRL +CRR)f+ − 4m̂bC
eff
7

fT
1 + m̂K

M2 = (2Ceff9 +CLL +CLR + CRL +CRR)f− + 4m̂bC
eff
7

1− m̂K

ŝ
fT

M3 = 2C10 + CLR +CRR − (CLL +CRL)

]
f+

M4 =

[
2C10 + CLR +CRR − (CLL +CRL)

]
f−

M5 = (CLRLR + CLRRL +CRLLR + CRLRL)
mB(1− m̂2

K)
m̂b

f0

M6 =

[
CLRLR + CRLLR − (CLRRL + CRLRL)

]
mB(1− m̂2

K )
m̂b

f0

M7 = −4CT
fT

mB +mK

M8 = 4CTE
fT

mB + mK
. (11)

Using the matrix element of the B → K`+`− decay (Eq.(10)) for the differential decay width, we get

d2Γ(B→K`+`−)

dŝdu
=

vλ1/2(1, m̂2
K , ŝ)

210π5
m3
BG

2
Fα

2|V ∗tsVtb|2
1
8

{
|M1|2 λ(1− v2 cos2 θ)

+ |M3|2 [λ(1− v2 cos2 θ) + 4m̂2
` (2 + 2m̂2

K − ŝ)]
+ |M4|2 [4m̂2

` ŝ]

+ 2Re(M3M∗4)[4m̂2
` (1− m̂2

K )]

− 2Re(M1M∗5)[2vλ1/2 cos θ
m̂`

mB
]

+ 2Re(M1M∗7)[4m`λ] + 2Re(M3M∗6)[2
m̂`

mB
(1− m̂2

K)]

+ 2Re(M3M∗8)[8m`vλ
1/2 cos θ(m̂2

K − 1)]

+ 2Re(M4M∗6)[2
m̂`

mB
ŝ]− 2Re(M4M∗8)[8vλ1/2 cos θŝ]

+ |M5|2 [
v2

m2
B

ŝ] + |M6|2 [
ŝ

m2
B

]

− 2Re(M5M∗7)[
1
2
vλ1/2 cos θŝ]

− 2Re(M6M∗8)[4vλ1/2 cos θŝ]

+ |M7|2 [4v2λŝ cos2 θm2
B + 4λŝm2

B − 4λŝm2
Bv

2]

+ |M8|2 [16v2λŝ cos2 θm2
B ]. (12)

In Eq. (12) the variables are defined as

λ(1, m̂2
K , ŝ) = 1 + m̂4

K + ŝ− 2ŝ− 2m̂K − 2m̂K ŝ (13)
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v =

√
1− 4m̂2

`

ŝ
(14)

u = cos θ. (15)

θ is the angle between the four-momentum of K-meson and that of `− in the dilepton CMS-frame [20] and
v lepton velocity. Next, we want to determine the zero position of the forward-backward asymmetry,

d

dŝ
AFB(ŝ) =

∫ 1

0 du
d2Γ
dŝdu −

∫ 0

−1 du
d2Γ
dŝdu∫ 1

0
du d2Γ

dŝdu
+
∫ 0

−1
du d2Γ

dŝdu

. (16)

To discuss the effects of the new Wilson coefficients on the zero position of the forward-backward asymmetry,
we compute its numerator; thus we get

R =
G2
Fα

2

210π5
|V ∗tsVtb|2 m3

B

1
4
N , (17)

where

N = 4vλ1/2mBm`(
m̂2
K − 1
m̂b

)f+f0

[
2Re(Ceff9 C∗LRLR) + 2Re(Ceff9 C∗LRRL)

+ 2Re(Ceff9 C∗RLLR) + 2Re(Ceff9 C∗RLRL) + Re(CLLC∗LRLR)

+ Re(CLLC∗LRRL) + Re(CLLC∗RLLR) + Re(CLLC∗RLRL) + Re(CLRC∗LRLR)

+ Re(CLRC∗LRRL) + Re(CLRC∗RLLR) + Re(CLRC∗RLRL) + Re(CRLC∗LRLR)

+ Re(CRLC∗LRRL) + Re(CRLC∗RLLR) + Re(CRLC∗RLRL) + Re(CRRC∗LRLR)

+ Re(CRRC∗LRRL) + Re(CRRC∗RLLR) + Re(CRRC∗RLRL)

]

+ 8vλ1/2(mB −mK)fT

{
m`f0

[
2Re(Ceff7 C∗LRLR)

+ 2Re(Ceff7 C∗LRRL) + 2Re(Ceff7 C∗RLLR) + 2Re(Ceff7 C∗RLRL)

]

− 8(m`f+ + ŝ(
f−

1− m̂2
K

))

[
2Re(C10C

∗
TE) + 2Re(CLRC∗TE) + 2Re(CRRC∗TE)

− 2Re(CLLC∗TE)− 2Re(CRLC∗TE)

]}

+ vλ1/2ŝm2
B(

1 − m̂K

m̂b
)fT f0

[
4Re(CLRLRC∗T )

+ 4Re(CLRRLC∗T ) + 4Re(CRLLRC∗T ) + 4Re(CRLRLC∗T )

− 32Re(CLRLRC∗TE) + 32Re(CLRRLC∗TE)

− 32Re(CRLLRC∗TE) + 32Re(CRLRLC∗TE)

]
. (18)

From Eq. (18) one could see that the zero of the forward-backward asymmetry depends on only the scalar
and tensor type coefficients coming from the model-independent part of the matrix element. Although the
forward-backward asymmetry is zero for the exclusive B → K`+`− decay in the SM, it is different from zero
beyond the SM, depending on the sign and value of the new Wilson coefficients.

Naturally, to find the zero position of the AFB , it is reasonable to find the roots of the function N .
However, due to the coefficient Ceff9 (ŝ), the computation is quite complicated. Therefore, in determining
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the zero position of the AFB , we analyze the variation of function N with the dilepton invariant mass.
The intersectional value of N with the zero axis will determine the zero position of the AFB , which can
be interesting as an alternative testing platform for the SM, and provide clues about the nature of the new
operators beyond the SM.

3. Numerical Analysis

For the numerical analysis we used the following values of the input parameters: |V ∗tsVtb| = 0.0385,
1/α = 129, GF = 1.16639 × 10−5 GeV2, mB = 5.28 GeV, mK = 0.495 GeV, mb = 4.8 GeV and the
numerical values of the coefficients at µ = mb within the SM given in Table 1.

Table 1. Values of the SM Wilson coefficients used in the numerical calculations.

C1 C2 C3 C4 C5 C6 C7 C9 C10

− 0.248 1.107 0.011 −0.026 0.007 −0.031 −0.313 4.344 −4.669

We choose the light cone QCD sum rules method to compute the form factors [21]. Thus, using the
results of Ref. [21] the ŝ-dependence of any of the form factors could be parametrized as

F (ŝ) =
F (0)

1− aF ŝ+ bF ŝ2
. (19)

The parameters for F0, aF and bF for each form factor are given as follows:

f+ f0 fT
F (0) 0.341 0.341 0.374
aF 1.41 0.410 1.42
bF 0.406 −0.361 0.434

With the help of Eqs. (16–17) we will analyze the variation of function N with the dilepton invariant
mass. In forming the scatter plots, we consider two cases where each new coefficients have the values of C10

and −C10 to analyze the zero position of N .
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Figure 1. The dependence of N on ŝ for B → Ke+e− decay corresponding to the cases CLRLR = −C10 (top curve),

CLRLR = C10 (bottom curve).
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Figure 2. The dependence of N on ŝ for B → Ke+e− decay which corresponds to the cases : CTE = −C10 (top

curve), CTE = C10 (bottom curve).
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Figure 3. The dependence of N on ŝ for B → Kµ+µ− decay which corresponds to the cases : CLRLR = −C10 (top

curve), CLRLR = C10 (bottom curve).

6

4

2

0

-2

-4

-6
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4. The dependence of N on ŝ for B → Kµ+µ− decay which corresponds to the cases : CTE = −C10 (top

curve), CTE = C10 (bottom curve).
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Figure 5. The dependence of N on ŝ for B → Kτ+τ− decay which corresponds to the cases : CLRLR = −C10 (top

curve), CLRLR = C10 (bottom curve).
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Figure 6. The dependence of N on ŝ for B → Kτ+τ− decay which corresponds to the cases : CTE = −C10 (bottom

curve), CTE = C10 (top curve).

In all plots, the dependence of the zero position of the forward-backward asymmetry for three scalar
operators (CLRRL, CRLLR, CRLRL) is the same with the dependence for CLRLR in all lepton cases. In
addition, the plot of the tensor type coefficient CT is the same as the plot of CTE in the e, µ, τ lepton cases.
In Figs. (1) and (2) we plot the dependence of N on ŝ for the Wilson coefficients CLRLR = ±C10 and
CTE = ±C10 in the B → Ke+e− decay. Similarly, Figs. (3) and (4) show the dependence of N on ŝ for the
Wilson coefficients CLRLR = ±C10 and CTE = ±C10 for B → Kµ+µ− decay. In Figs. (5) and (6), we show
the dependence of N on ŝ for the Wilson coefficients CLRLR = ±C10 and CTE = ±C10 in the B → Kτ+τ−

decay.
A comparative analysis of Figs. (1–6) shows that the zero of the asymmetry are highly sensitive to the sign
and size of the tensor operators. On the other hand its zero are less sensitive to scalar type coefficients
for three cases. We would like to note that in the B → K`+`− decay, the forward-backward asymmetry is
zero in the SM [12]. However, in the existence of scalar and tensor operators, it is seen that the forward-
backward asymmetry has a non-vanishing value. Therefore, any non-zero measurement of the asymmetry in
this system will certainly signals for new physics effects.

4. Conclusion

We have analyzed the sensitivity of the zero position of the forward-backward asymmetry to the new
physics effects for the B → K`+`−(` = e, µ, τ) decay. It is found that the asymmetry is different from zero
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although it vanishes in the SM. The numerator of the AFB depends on only six new Wilson coefficients.
The dependence of the zero position of the AFB is sensitive to the scalar and tensor type coefficients and
the asymmetry does not vanish anywhere in the kinematical region.
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