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Abstract

Teleparallel gravity models, in which the curvature and the nonmetricity of spacetime are both set

zero, are widely studied in the literature. We work a different teleparallel theory, in which the curvature

and the torsion of spacetime are both constrained to zero, but the nonmetricity is nonzero. After

reformulating the general relativity in this spacetime we find a solution and investigate its singularity

structure.

1. Introduction

Einstein’s general relativity provides an elegant (pseudo-) Riemannian formulation of gravitation in
the absence of matter. In the variational approach, Einstein’s field equations are obtained by considering
variations of the Einstein-Hilbert action with respect to the metric and its associated Levi-Civita connection
of spacetime. That is, the absence of matter means that the connection is metric compatible and torsion free,
a situation which is natural but not always convenient. A number of developments in physics in recent years
suggest the possibility that the treatment of spacetime might involve more than a Riemannian structure [1].

Theories of gravity based on the geometry of distant parallelism [2]–[6] are commonly considered as
the closest alternative to general relativity (GR) theory. Teleparallel gravity models possess a number of
attractive features both from geometrical and physical viewpoints. Teleparallelism naturally arises within
the framework of the gauge theory of the group of general coordinate transformations which underlies
GR. Accordingly, the energy-momentum current represents the matter source in the field equations of the
teleparallel gravity.

Since gauge theories seem important for the description of fundamental interactions it appears natural
to exploit any gauge structure present in theories of gravity. Different authors, however, adopt different
criteria in order to determine what properties a theory should possess in order for it to qualify as a gauge
theory. We take the gravitational gauge group to be the local Lorentz group [7].

In this paper we will study a gravity model in a spacetime whose curvature and torsion are both zero,
but the nonmetricity is nonzero. There is a few works in the literature about gravity models in this kind of
spacetimes: the so-called symmetric teleparallel gravity [8].
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2. Mathematical Preliminaries

Spacetime is denoted by the triple {M, g,∇} where M is a 4-dimensional differentiable manifold, equipped
with a Lorentzian metric g, which is a second rank, covariant, symmetric, non-degenerate tensor; and ∇ is a
linear connection which defines parallel transport of vectors (or more generally tensors and spinors). With
an orthonormal basis {Xa},

g = ηabe
a ⊗ eb , a, b, · · ·= 0, 1, 2, 3, (1)

where ηab = (−,+,+,+) is the Minkowski metric and {ea} is the orthonormal co-frame. The local orthonor-
mal frame {Xa} is dual to the co-frame {ea}, where

eb(Xa) = δba . (2)

The manifold M is oriented with the volume 4-form

∗1 = e0 ∧ e1 ∧ e2 ∧ e3, (3)

where ∗ denotes the Hodge map. It is convenient to employ in the following the graded interior operator
ıXa ≡ ıa:

ıae
b = δba . (4)

In addition, the connection ∇ is specified by a set of connection 1-forms Λab. In the gauge approach to
gravity ηab, ea, Λab are interpreted as the generalized gauge potentials, while the corresponding field
strengths; the nonmetricity 1-forms, torsion 2-forms and curvature 2-forms are defined through the Cartan
structure equations

2Qab := −Dηab = ∧ab + ∧ba , (5)

T a := Dea = dea + Λab ∧ eb , (6)

Rab := DΛab := dΛab + Λac ∧ Λcb, (7)

where d and D denote the exterior derivative and the covariant exterior derivative, respectively. These field
strengths satisfy the Bianchi identities∗

DQab =
1
2

(Rab + Rba) (8)

DT a = Rab ∧ eb (9)

DRab = 0 . (10)

The linear connection 1-forms can be decomposed uniquely as follows [9],[10]:

Λab = ωab + Ka
b + qab +Qab , (11)

where ωab are the Levi-Civita connection 1-forms that satisfy

dea + ωab ∧ eb = 0 , (12)

Ka
b are the contortion 1-forms such that

Ka
b ∧ eb = T a , (13)

∗Since Qab = 1
2
Dηab 6= 0, we pay special attention in lowering and raising an index in front of the covariant exterior

derivative.
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and qab are the anti-symmetric tensor 1-forms defined by

qab = −(ıaQbc) ∧ ec + (ıbQac) ∧ ec . (14)

In the above decomposition, the symmetric part is

Λ(ab) = Qab, (15)

while the anti-symmetric part is

Λ[ab] = ωab +Kab + qab . (16)

It is cumbersome to take into account all components of nonmetricity in gravitational models. Therefore we
will be content with dealing only with certain irreducible parts of it to gain physical insight. The irreducible
decompositions of nonmetricity invariant under the Lorentz group are summarily given below [10]. The
nonmetricity 1-forms Qab can be split into their trace-free Qab and the trace parts as

Qab = Qab +
1
4
ηabQ, (17)

where the Weyl 1-form Q = Qaa and ηabQab = 0. Let us define

Λb := ıaQ
a
b , Λ := Λaea,

Θb := ∗(Qab ∧ ea) , Θ := eb ∧Θb , Ωa := Θa −
1
3
ıaΘ (18)

as to use them in the decomposition of Qab as

Qab = (1)Qab + (2)Qab + (3)Qab + (4)Qab, (19)

where

(2)Qab =
1
3
∗(ea ∧ Ωb + eb ∧ Ωa) (20)

(3)Qab =
2
9

(Λaeb + Λbea −
1
2
ηabΛ) (21)

(4)Qab =
1
4
ηabQ (22)

(1)Qab = Qab − (2)Qab − (3)Qab − (4)Qab . (23)

We have ıa(1)Qab = ıa
(2)Qab = 0 , ηab

(1)Qab = ηab
(2)Qab = ηab

(3)Qab = 0 ,
ea ∧ (1)Qab = 0 and ı(a

(2)Qbc).

3. Symmetric Teleparallel Gravity

In the symmetric teleparallel gravity (STPG) [8], we have the two geometrical constraints:

Rab = dΛab + Λac ∧ Λcb = 0 (24)

T a = dea + Λab ∧ eb = 0 . (25)

These equations mean that there is a distant parallelism, but the angles and lengths may change during a
parallel transport.

In the literature there are many works on teleparallel gravity models [2]–[6] in which constraints are given
as

Rab = 0 , Qab = 0 . (26)
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One trivial solution to (26) is ηab = (−,+,+,+) and Λab = 0. Then the orthonormal co-frame {ea} is left
over as the only dynamical variable. We call such a choice a Weitzenbök gauge. This gauge can not be a
solution to STPG because of equations (24) and (25), since when we set ηab = (−,+,+,+) and Λab = 0 this
gives rise identically to ea = dxâ: the so-called Minkowski gauge [8].

Now we give a brief outline of GR. GR is written in (pseudo-) Riemannian spacetime in which torsion
and nonmetricity are both zero, i.e., the connection is Levi-Civita. The Einstein equation can be written in
the form

Ga := −1
2
Rbc(ω) ∧ ∗(ea ∧ eb ∧ ec) = κτa, (27)

or, alternatively,

∗Ga := (Ric)a −
1
2
Rea = κ∗τa, (28)

where Ga is the Einstein tensor 3-form, Rab(ω) is the Riemannian curvature 2-form, (Ric)a = ıbR
b
a(ω) is the

Ricci curvature 1-form, R = ıa(Ric)a is scalar curvature, τa is energy-momentum 3-form and κ is a coupling
constant.

For the symmetric teleparallel equivalent of Einstein equation, we first decompose non-Riemannian cur-
vature 2-form (7) via (11) as follows: with Ka

b = 0,

Rab(Λ) = Rab(ω) +D(ω)(qab +Qab) + (qac + Qac) ∧ (qcb +Qcb), (29)

where D(ω) is the covariant exterior derivative with the Levi-Civita connection. After setting Rab(Λ) = 0
we obtain the symmetric teleparallel equivalent of (27) as

Ga :=
1
2

[D(ω)qbc + qbk ∧ qkc +Qbk ∧Qkc] ∧ ∗(ea ∧ eb ∧ ec) = κτa . (30)

3.1. Spherical symmetric solution to the model

We now proceed to attempt to find a solution to the STPG model. As usual in the study of exact solutions,
we have two steps. The first one is to choose the convenient local coordinates and make corresponding ansatz
for the dynamical fields. The second step concerns providing the invariants of the resulting geometry. While
the choice of an ansatz helps to solve the field equations easily, the invariant description provides the correct
understanding of the physical contents of a solution.

Since metric and connection are independent quantities in non-Riemannian spacetimes, we have to predict
separately appropriate candidates for them. Therefore we first write a line element in order to determine
the metric. We naturally start dealing with the case of spherical symmetry for realistic simplicity:

g = −F 2dt2 + G2dr2 + r2dθ2 + r2 sin2 θdϕ2 , (31)

where F = F (r) and G = G(r). A convenient choice for a tetrad reads

e0 = Fdt, e1 = Gdr, e2 = rdθ, e3 = r sin θdϕ . (32)

In addition, for the non-Riemannian connection, we choose

Λ12 = −Λ21 = −1
r
e2, Λ13 = −Λ31 = −1

r
e3, Λ23 = −Λ32 = −cot θ

r
e3,

Λ00 =
F ′

FG
e1, Λ11 =

1
r

(1− 1
G

)e1, Λ22 =
1
r

(1 − 1
G

)e1,

Λ33 =
1
r

(1− 1
G

)e1, others = 0 . (33)
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These gauge configurations (32) and (33) satisfy the constraint equations Rab(Λ) = 0 , T a(Λ) = 0. One
can certainly perform a local Lorentz transformation

ea → Labe
b , Λab → LacΛcdL

−1d
b + LacdL

−1c
b , (34)

which yields the Minkowski gauge Λab = 0. This may mean that we propose a set of connection components in
a special frame and coordinate which seems contrary to the spirit of relativity theory. However in physically
natural situations we can choose a reference and coordinate system at our best convenience.

We deduce from equations (32)–(33)

ω01 = − F ′

FG
e0, ω12 = − 1

rG
e2, ω13 = − 1

rG
e3, ω23 = −cot θ

r
e3

Q00 =
F ′

FG
e1, Q11 =

1
r

(1− 1
G

)e1, Q22 =
1
r

(1− 1
G

)e1, Q33 =
1
r

(1− 1
G

)e1

q01 =
F ′

FG
e0, q12 =

1
r

(
1
G
− 1)e2, q13 =

1
r

(
1
G
− 1)e3, others = 0 . (35)

When we put (35) into (30) we obtain, with τa = 0,(
dqbc + 2ωbf ∧ qfc + qbf ∧ qfc

)
∧ ∗(ea ∧ eb ∧ ec) = 0 , (36)

whose components read explicitly

Zeroth component
[

2(G−1)′

rG
− G2−1

r2G2

]
e1 ∧ e2 ∧ e3 = 0 (37)

First component −
[

2F ′

rFG2 − G2−1
r2G2

]
e0 ∧ e2 ∧ e3 = 0 (38)

Second component
[

(F ′G−1)′

FG + F ′

rFG2 + (G−1)′

rG

]
e0 ∧ e1 ∧ e3 = 0 (39)

Third component −
[

(F ′G−1)′

FG
+ F ′

rFG2 + (G−1)′

rG

]
e0 ∧ e1 ∧ e2 = 0 . (40)

Then from (37) and (38)

G(r) = 1/F (r) , (41)

and from (39) and (40)

F 2(r) = 1− C

r
, (42)

where C is a constant.
In order to have a correct understanding of the resulting solution, we need to construct invariants of the

Riemannian curvature and nonmetricity. Although the total curvature is identically zero in the teleparallel
gravity, the Riemannian curvature of the Levi-Civita connection is nontrivial:

R01(ω) =
(F ′G−1)′

FG
e10 , R02(ω) =

F ′

rFG2
e20 , R03(ω) =

F ′

rFG2
e30 ,

R12(ω) =
(G−1)′

rG
e21 , R13(ω) =

(G−1)′

rG
e31 , R23(ω) =

1
r2

(1 − 1
G2

)e32 . (43)

Thus the quadratic invariant of the Riemannian curvature reads

Rab(ω) ∧ ∗Rab(ω) =

{
2
[

(F ′G−1)′

FG

]2

+ 4
(

F ′

rFG2

)2

+ 4
[

(G−1)′

rG

]2

+ 2
[

1
r2

(
1− 1

G2

)]2
}
∗1

=
6C2

r6
∗1 (44)
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and the spacetime geometry is naturally characterized by the quadratic invariant of the nonmetricity

Qab ∧ ∗Qab =

{(
F ′

FG

)2

+ 3
[

1
r

(
1− 1

G

)]2
}
∗1

=

{
C2

4r3(r − C)
− 3C
r3
− 6
r2

[
1−

(
1− C

r

)]1/2
}∗

1 . (45)

These two quadratic invariants provide the sufficient tools for understanding the contents of the classical
solutions.

4. Discussion

In this paper we have studied a gravity model in the spacetime only with nonmetricty. A similar analysis,
the so-called symmetric teleparallel gravity (STPG), was performed in [8]. The main motivation for studying
STPG is to determine the place and significance of the symmetric teleparallel GR-equivalent model since the
GR-equivalent models are satisfactorily supported by observations. Thus we hope to gain physical insights
to nonmetricity. Important observation is that the Riemannian curvature invariant (44) is singular at r = 0,
but regular at the zero (r = C) of the metric function F (r), which means that we have a horizon here. The
resulting geometry then describes the well known Schwarzschild black hole at r = 0 with the horizon at
r = C. Since we are dealing with symmetric teleparallel gravity, it is necessary also to analyze the behavior
of nonmetricity. As seen from (45), the nonmetricity invariant diverges not only at the origin r = 0, but also
at the Schwarzschild horizon r = C. The horizon is a regular surface from the viewpoint of the Riemannian
geometry, but it is singular from the viewpoint of symmetric teleparallel gravity. We intend to clarify the
geometrical and physical meaning of the singularities in STPG by investigating matter coupling to STPG
in a separate paper.

Acknowledgement

This work is supported by the Scientific Research Project (BAP) 2002FEF007, Pamukkale University, Deni-
zli, Turkey.

References

[1] M. Adak, T. Dereli and L. H. Ryder, Int. J. Mod. Phys., D12, (2003), 145.

(arXiv: gr-qc/0208042)

[2] K. Hayashi and T. Nakano, Prog. Theor. Phys., 38, (1967), 491.

[3] K. Hayashi and T. Shirafuji, Phys. Rev., D19, (1979), 3524.

[4] Y. N. Obukhov and J. G. Pereira, Phys. Rev., D67, (2003), 044016.

(arXiv:gr-qc/0212080)

[5] J. W. Maluf, Phys. Rev., D67, (2003), 108501.

(arXiv:gr-qc/0304005)

[6] H. I. Arcos, V. C. De Andrade and J. G. Pereira, Int. J. Mod. Phys., D13, (2004), 807.

(arXiv:gr-qc/0403074)

[7] I. M. Benn, T. Dereli and R. W. Tucker, J. Phys., A15, (1982), 849.

6



ADAK, SERT

[8] J. M. Nester and H. J. Yo, Chinese J. Phys., 37, (1999), 113.

(arXiv:gr-qc/9809049)
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