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Abstract

YBa2Cu3Oy polycrystalline superconductor has been studied in weak rotating ac magnetic fields with

existence of constant dc field. Measurements were carried out in various temperature intervals, and in

various variable and constant fields. Results of our experiments are in good agreement with the isotropic

model.
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1. Introduction

Polycrystalline superconductors are associated as a collection of superconducting particles weakly con-
nected to their neighbors by Josephson junctions. Such systems typically show a two-peak transition to
superconductivity upon cooling in a magnetic field; the first peak shows flux shielding from grains, and the
second between the grains [1–2]. In polycrystalline superconductors the penetration depth into weak links
for weak magnetic fields can be estimated by the relation [3–4]

λ =
(

cΦ0

16π2aµeff jc

)1/2

. (1)

Here, a is the average characteristic size of granules; Φ0 is the magnetic flux quantum; µeff is the
effective permeability of the ceramic material, taking into account the fact that the field does not penetrate
into granules; and jc is the junction critical current density.

When λ >> a, a granular superconductor behaves as a classical type II superconductor, in which the
field penetrates in the form of vortices, and anisotropy induced by the field becomes an important factor.

The present approach is directly connected with a very important though sparsely studied problem of
longitudinal currents in hard type II superconductors. The essence of the problem can be briefly formulated
as follows. It is well known [5] that, in the presence of uncut vortices and pinning, the critical current
jcll , which is longitudinal relative to the magnetic field, is equal to infinity, while the longitudinal electric
field EII is always equal to zero. However, experiments [6–11] show that jcll and jc⊥are of the same order

9



METSKHVARISHVILI, METSKHVARISHVILI, KHORBALADZE, ELIZBARASHVILI, MIMINOSHVILI, NEKRASOVA

of magnitude, and EII differ from zero. In order to explain these phenomena, a model involving flux-
line cutting (FLC) was proposed [12–15]. According to this model, nonparallel external magnetic fields
penetrate into a superconductor through mutual cutting of the flux lines formed by these fields, followed by
their cross restoration. As a result, finite jcll and EII are formed. In such a case, the local current-voltage
characteristic (CVC) connecting the electric field ~E and the current density ~j is strongly anisotropic relative
to the magnetic induction vector ~B.

When λ << a, the local CVC does not depend on the angle between the current and the magnetic field
and is isotropic. Such behavior was predicted by other theoretical approaches [16–18].

2. Rotating ac Magnetic Field

We consider an infinitely large slab in the yz -plane, having a thickness d along the x-axis and the
penetration of rotating alternating current (ac) fields of amplitude h in the presence of a direct current (dc)
constant field H for the anisotropic and isotropic models. In all cases, we assume that the dc field is directed
strictly along the z-axis, while the ac field h (t) = h cosωt lies in the zy-plane at an angle γ to H .

In the case of the rotating ac magnetic field, the dependencies of the z and y components of the odd
and even harmonics on the inclination γ angle of the variable magnetic field with regard of the constant
magnetic fields are different in the anisotropic and isotropic theoretical models [18] which are presented in
subsections 2.1 and 2.2.

2.1. Anisotropic model

Since the FLC model describes the cases of rotating ac field in the presence of a dc field in a very similar
way, we consider them here in parallel, beginning with the following characteristic equations:

~h (t) = hz (t)~ez + hy (t)~ey ,

hz (t) =
∑
k

akz cos (kωt) + bkz sin (kωt),

hy (t) =
∑
k

aky cos (kωt − ϕ) + bky sin (kωt − ϕ) , (2)

a1z =
h2 cos2 γ

4πjc⊥(H)d
, a1y =

h2 sin2 γ

4πjcii(H)d
,

a2k+1,z = a2k+1,y = 0, k ≥ 1

b2k+1,z = − h2 cos2 γ

8π2jc⊥ (H)d (k2 − 1/4) (k + 3/2)
, b2k+1,y = − h2 sin2 γ

8π2jcii (H) d (k2 − 1/4) (k + 3/2)
,

a2z =
h3 cos3 γ

32πd

(
∂

∂H

1
jc⊥ (H)

)
,
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a2k,z = 0, , k ≥ 2

b2k,z = −h
3 cos3 γ

16π2d

k

(k2 − 1/4) (k2 − 9/4)

(
∂

∂H

1
jc⊥ (H)

)
, b2k,y = 0,

where, a, b denote high harmonics, k is the high harmonics number, h is a variable field, d is thickness of
sample, H is the strength of the constant field, and jc is the junction critical current density. It can be seen
from these equations that z and y components oscillate independently with their jc, and odd harmonics are
proportional to h2 cos2 γ and h2 sin2 γ, while even harmonics differ from zero only for the z component and
are proportional to h3 cos3 γ.

2.2. Isotropic model

As in the previous case, we assume that the variable field is directed at an angle γ to the constant field.
For the isotropic model, the expressions for the z and y components are given by:

a1z =
h2 cos γ

4πjc(H)d
, a1y =

h2 sin γ
4πjc(H)d

,

a2k+1,z = a2k+1,y = 0; k ≥ 1

b2k+1,z = − h2 cos γ
8π2jc (H) d (k2 − 1/4) (k + 3/2)

, b2k+1,y = − h2 sin γ
8π2jc (H) d (k2 − 1/4) (k + 3/2)

,

a2z =
h3 cos γ
32πd

(
∂

∂H

1
jc (H)

)
, a2y =

h3 sin γ cos γ
32πd

(
∂

∂H

1
jc (H)

)
,

a2k,z = a2k,y = 0; k ≥ 2 (3)

b2k,z = −h
3 cos2 γ

16π2d

k

(k2 − 1/4) (k2 − 9/4)

(
∂

∂H

1
jc (H)

)
,

b2k,y = −h
3 sin γ cos γ

16π2d

k

(k2 − 1/4) (k2 − 9/4)

(
∂

∂H

1
jc (H)

)
.

It can be seen that the isotropic model strongly differs from the flux-line cutting model; and odd harmonics
are proportional to h2 cos γ and h2 sin γ, while even harmonics are proportional to h3 cos γ and h3 sin γ cos γ.
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3. Experimental Results and Discussion

To study the behavior of the junction critical current density in a rotating low ac magnetic field, we used
the method of high harmonics. The harmonic ac susceptibilities were first interpreted by Bean’s critical
state model. According to Bean [19, 20], amplitudes of each harmonics are inversely proportional to the
critical current density Cn ∼ 1/jc; therefore it is a very good contactless method for the investigation of
the Josephson junction critical current density. As known, as the high harmonic amplitudes decreases with
increase of harmonic numbers [1], it will be very useful to use low frequency harmonics. As such, we use
only the second and third harmonics.

Our tests were carried out on YBaCuO ceramic pellet samples of 10 mm diameter and 2 mm thickness.
Textolite block of dimensions 18×18×2 mm was made with 10 mm diameter holes, into which the

investigated samples were placed (see Figure 1a). For measurements, two multilayer 0.05 mm diameter
copper coils were close wound and tightly wrapped perpendicular to each other, as shown in Figure 1 and
denoted by coilm(y) and coilm(z), respectively. To produce a rotating magnetic field, the textolite forms
were wrapped in a single layer of 0.1 mm diameter wire, as schematically shown in Figure 1 as coilac(y) and
coilac(z). As indicated, the axes of all coils were oriented along the y- and z-axis. A solenoid of constant
current around the form created a constant field in the z-axis direction.

Figure 1. (a) coilm(Y), coilm(Z) are the measurement coils; coilac(Y), coilac(Z) are the coils used to create the

rotating ac fields. (b) Schematic diagram of measurement system.
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To induce the variable fields via the coils in the y- and z-directions, the coils were driven by sinusoid
generators, as shown in Figure 1b. The total amplitude is found via the equation h =

(
h2
z + h2

y

)1/2. Signals
from the y and z coils pass through the filters (to dampen the base frequency) then are transmitted to the
selective harmonic amplifiers, individually adjusted to the second and third harmonics; the output of the
amplifiers were then measure and registered on voltmeters (see Fig. 1b). The amplifiers had a noise level
of about 0.1–0.2 µV and the amplitude of the signal measured signal was less than 0.2 µV; the precision of
measurement was 2% , but did not exceed 0.5 % at the upper amplitudes.

By placing the sample block within a Permalloy box, the magnetic field due to the Earth about the
sample blocks was kept less than 10−3 Oe. The measurements were carried out at a frequency of 20 kHz.

The procedure for measurement was as follows. Investigated sample was cooled in zero magnetic field
down to the predetermined temperature T = const. After establishing equilibrium at temperature T , a
constant magnetic field H was established via the solenoid. Then the magnetic field was induced to rotate
by appropriately exciting coilac(y) and coilac(z). Values of C2z and C2y were measured simultaneously. After
measurement, the sample was heated to remove any residual magnetization. The sample was then cooled
down in zero magnetic field; the same procedure was carried out for different temperatures, from 78 K to 90
K. Figure 2 shows that the angular dependence of the z-component of the second harmonic is proportional
to cos2 γ and the y-component is proportional to cos γ sin γ.
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Figure 2. Angular dependences of C2z , C2y : 2 show data for the condition T = 78 K, h = 1 Oe, H = 8 Oe; ©
show data for the condition T = 82 K, h = 0.6 Oe, H = 6 Oe; � show data for the condition T = 86 K, h = 0.3 Oe,

H = 3 Oe; and + show data for the condition T = 88 K, h = 0.1 Oe, H=1 Oe.

The same experiment was carried out for C3z and C3y. Results are presented in Figure 3, which show
angular dependence of the z-component of third harmonic corresponds to cosγ, and the y-component is
proportional to sin γ.
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Figure 3. Angular dependences of C3z , C3y : 2 show data for the condition T = 78 K, h = 1 Oe, H = 8 Oe; ©
show data for the condition T = 82 K, h = 0.6 Oe, H = 6 Oe; � show data for the condition T = 86 K, h = 0.3 Oe,

H=3 Oe; and + show data for the condition T = 88 K, h = 0.1 Oe, H = 1 Oe.

4. Conclusions

We presented experimental results of measurements in a rotating ac magnetic field, investigating the
longitudinal and transverse critical currents of Josephson junction in YBa2Cu3Oy polycrystalline supercon-
ductor samples, and we find our results concur with the isotropic model.
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