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Abstract

X-ray powder diffraction patterns and infra-red absorption spectra have been evaluated and analysed

for the Y1Ba2Cu3O7−δ − Gex compound samples prepared by the solid state reaction with x values

ranging from 0.0 to 1.13. All samples show bulk superconductivity above liquid nitrogen temperature

using the levitation test (Meissner effect). Samples with Ge content up to x = 0.2 have offset Tc between

83K and 92K while the sample with x = 1.13 shows semiconducting behavior above 100K. As a result

of the solid state interaction between YBCO and Ge, new phases are observed and determined, mainly

three phases are concluded from X-ray powder diffraction analysis: (i) Ba2GeO4 (ii) Y2BaCuO5 (iii)

BaCO3. The unit cell parameters a, b and c of the orthorhombic superconducting phase are calculated

for all the prepared samples. The anisotropy factor is evaluated and related to the new structural phases

in YBCO-Ge composite system.

The I-R absorption spectra for the samples with orthorhombic symmetry have been determined.

The phonon modes between ∼ 400 cm−1 and 630 cm−1 are attributed to the Cu − O octahedron and

pyramid vibrations for the CuO2-planes and CuO-chains, while the peaks in the range from ∼ 700 cm−1

to ∼ 860 cm−1 may be due to defects such as the new phase Ba2GeO4 and the green phase Y2BaCuO5.

The obtained results are discussed according to the superconductor - semi-conductor composite model

and with the phonon-mediated charge transfer between CuO2-planes and CuO- chains through apex

oxygen (BaO).
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1. Introduction

An important problem encountered in the study of the possible applications of high-Tc superconductors
in electronics is the superconductor - semiconductor contact, i.e. selection of such pairs of materials whose
elements of the composition would have the smallest effect on each others properties.
∗Corresponding author
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In particular, the doping of a superconductor by the atoms of a semiconductor should not degrade the
characteristics of the superconductor. There is therefore the need to study the properties of a superconductor
doped with semiconductor elements.

The superconducting properties of high- Tc superconductors are known to be degraded for YBCO 1-2-3
system doped with various elements (except for Ag and Au) [1]. At the same time, a partial substitution by
lead for bismuth in a 2-2-2-3 Bi-system stabilizes the superconducting phase transition near Tc = 108−110 K
[1], rendering it a more abrupt transition.

Since lead is an element of the fourth group, it would be of interest to study the effect of doping with
semiconductor elements of the same group, in particular doping with Ge produces a new superconducting
phase transition at Tc = 130 K in the Bi1.64Pb0.36Sr2Ca2Cu3−yGeyO10 system [2].

The interaction between YBCO and Ge with mole ratio of 1:1 was recorded for only one sample by the
Japanese group [3]. Their results indicated that Ge destroyed the superconducting phase.

In this study, we report the crystallographic parameters of YBCO-Ge composite system and separate
the new structural phases due to semiconductor superconductor interaction by X-ray powder diffraction
patterns and I-R absorption spectra, to clarify the nature of interaction towards possible high performance
superconductor applications. Among these applications is the preparation of high-Tc superconductors as
YBCO thin films deposited directly on semiconductors as Ge, for electronic usage incorporating the best of
what superconductors and semiconductors have to offer in new devices [4-6].

2. Experimental

2.1. Samples preparation

The YBCO-Ge powders were synthesized following the conventional ceramic route. High purity Y2O3,
BaCO3, CuO and Ge (Aldrich) were mixed in molar ratio 1 : 2 : 3 : Gex (x = 0 to 1.13) and calcined in an
alumina crucible firstly at 900oC for 24 hr, secondly at 920oC for 60 hr, then ground, pressed into pellets and
finally treated by a heat cycle from 920oC to room temperature with oxygen flow to get the orthorhombic
structure of YBCO-Ge composite system.

2.2. D. C. resistance

The D. C. resistance was measured by the standard four-probe method. The constant current source
model YOKOGAWA 7651 was used. The voltage drop was measured by a nano-voltmeter type Keithely
model 181 and the temperature was recorded with a calibrated platinum resistance Pt-100 attached to a
Keithely DMM model 196.

2.3. X-ray powder diffraction

X-ray powder diffraction is used for crystal structure determination of the prepared samples by using
X’pert type Philips diffractometer 2000 with wavelength of Cu−Kα1(λ = 1.54056 Ao).

2.4. Infra-red measurements

The infra-red absorption spectra were recorded at normal incidence of light in the range from 200 to
1000 cm−1 by ATI Mattson Genesis I IR-Spectrometer. A small amount of each sample was mixed with
KBr powder and pressed into pellets of 13 mm diameter for IR absorption measurements.
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3. Results and Discussion

3.1. Resistance versus temperature results

A levitation test (Meissner effect) carried out on all the prepared samples of the YBCO-Ge composite
system shows bulk superconductivity above liquid nitrogen temperature. Samples with Ge content up to x
= 0.2 show metallic behavior of resistance at temperatures higher than the transition temperature Tc.

The offset Tc decreases from 92 K to 83 K with the Ge content ranging from x = 0 to x = 0.12, then
increases from 86 K for Ge content x = 0.15 to 92 K for x = 0.2 as listed in Table 1 [7].

The sample with x = 1.13 shows a semiconducting behavior at temperatures higher than 100 K, then a
sudden fall in resistance is observed at T ≈ 100 K, but did not reach zero till T = 77 K [7] which suggests
the existence of a Tc value less than 77 K. The detection of such Tc value requires either a different cooling
technique to reach temperature lower than liquid nitrogen, or a non-contact inductive method to reveal the
superconductivity of the isolated grains.

Table 1. Unit cell parameters and offset Tc (determined at zero resistance) of the YBCO-Gex composite system.

x
a b c V Tc (K)

Anis. = 100 (b−a)
0.5 (b+a)(Å) (Å) (Å) (Å)3 offset

0.0 3.82 3.89 11.69 173.71 92 1.81
0.03 3.81 3.88 11.68 172.66 92 1.82
0.06 3.80 3.87 11.67 171.62 89 1.82
0.12 3.78 3.85 11.64 169.40 83 1.83
0.15 3.79 3.86 11.66 170.58 86 1.83
0.20 3.80 3.88 11.68 172.21 92 2.08
1.13 3.82 3.88 11.68 173.12 <77 1.56

Note: Anisotropy
h
Anis. = 100 (b−a)

0.5 (b+a)

i
is the percentage deviation from tetragonal structure.

3.2. X-ray diffraction results

X-ray powder diffraction patterns are illustrated in Figures 1, 2. It is clear that the sample with x =
0 has an orthorhombic structure with the phase related to (1-2-3 YBCO) which is responsible for the
superconducting state. The characteristic peaks of this phase are indexed as Miller indices (hkl). The
strongest peaks are (013) and (103) planes as shown in Figure 1.

The samples with Ge content of x = 0, 0.03 and 0.2 are polycrystalline and have 1-2-3 orthorhombic
phase with Tc = 92 K.

The relative intensities of (00l) and (hkl) planes are affected due to Ge doping in YBCO with x = 0.06,
0.12, 0.15 and 1.13, where the intensity of (00l) family planes are larger for those samples compared with
the pure sample (x = 0), which is not the case for the other (hkl) planes, Figure 2.

This is due to the presence of preferential orientations. The (002), (003), (005), and (006) planes for these
samples are grown due to the expected fast growth rate in a and b directions and slow growth rate along
c-direction, since the c-axis is nearly three times as a and b axes. This behavior is in good agreement with
that reported in ref. [8] where they attributed it to the strongly anisotropic crystal structure of Y1Ba2Cu3Ox
compounds. The resulting intensities are strongly affected, for instance, the peaks corresponding to planes
(002), (003), (005) and (006) are amplified while those corresponding to planes (013) and (103) are depressed
as indicated in Figure 2. These samples tend to form plate type of single crystals [8] with 1-2-3 orthorhombic
phase.
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Figure 1. X-ray diffraction patterns for Y1Ba2Cu3GexO7−δ where x = 0.00, x = 0.03 and x = 0.2, with orthorhom-

bic phase (∗ new phases).

By doping YBCO with Ge, there exist new phases at 2θ values of 23.92, 29.85 and 30.60◦ which are
indexed to be BaCO3, Ba2GeO4 and Y2BaCuO5 respectively [9].

The first phase (BaCO3) appears only for the higher Ge content x = 1.13 but the second phase (Ba2GeO4)
and the third phase (Y2BaCuO5) generally increase with increasing Ge content; Table 2.

Table 2. The relative intensities (relative to plane (103)) of the superconducting phase and Non-superconducting

phase of YBCO-Gex composite system, obtained from X-ray results.

Sample Superconducting Non-Superconducting phase
YBCO phase Ba2GeO4 Y2BaCuO5 BaCO3
x = 0.0 100 0.0 0.0 0.0
x = 0.03 100 1.93 2.74 0.0
x = 0.06 50 2.20 5.63 0.0
x = 0.12 41.31 9.25 6.20 0.0
x = 0.15 30.01 7.02 6.70 0.0
x = 0.20 100 13.23 5.26 0.0
x = 1.13 50.85 43.03 23.41 18.95

These new three phases are created and appear along side with the orthorhombic 1-2-3 structure.
The calculated unit cell parameters of pure YBCO 1-2-3 orthorhombic phase are a = 3.82, b = 3.89 and

c = 11.69 Ao. The addition of Ge to YBCO produces a depression of the unit cell parameters and so the
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volume of the unit cell is depressed, as shown in Table 1. This can be explained as a result of fractional
replacement of Cu2+ by Ge2+ (ionic radius of Cu2+ equals 0.72 Ao and that of Ge2+ equals 0.73 Ao[10]).

1500

1000

500

0

Counts/s

3500

3000

2500

2000

1500

1000

500

0

Counts/s

Counts/s

2500

2000

1500

1000

500

0

x = 0.15

x = 0.12

20 30 40 50 60 70°2Theta

x = 1.13

00
5

10
3

01
3

00
3

00
2

11
3

00
6

20
0

12
3

20 30 40 50 60 70°2Theta

20 30 40 50 60 70°2ThetaCounts/s

3000

2500

2000

1500

1000

500

0
20 30 40 50 60 70°2Theta

21
3

22
0

x = 0.06

Figure 2. X-ray diffraction patterns for Y1Ba2Cu3GexO7−δ where x = 0.06,x = 0.12, x = 0.15 and x = 1.13, (∗

new phases).

Since Ge− O bond length is shorter than that of Cu− O (Atomic number of Ge equals 32 and that of
Cu equals 29).

The anisotropy, Anis. = 100 (b−a)
0.5 (b+a)

which is the percentage deviation from tetragonal structure is calcu-
lated and listed in Table 1. The anisotropy increases from 1.81 for pure YBCO to 2.08 for Ge content of
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x = 0.2 but the lowest anisotropy equals 1.56 for the highest Ge content with x = 1.13.
The changes in the volume of the unit cell and in the anisotropy are related to the Tc values and the

structure of YBCO-Ge composite system, which can be explained as follows:
For low Ge content of x = 0.03 introduced into YBCO, there is a fractional substitution of Cu by Ge

atoms, so the result is the reduction of lattice parameters a, b, and c of 1-2-3 orthorhombic structure. As
Ge doping ratio is increased (x ≥ 0.06), new phases are observed and indexed to be BaCO3, Ba2GeO4 and
Y2BaCuO5, which are gradually increasing with Ge along side with the 1-2-3 orthorhombic phase.

The superconducting phase, is considered to be related to the height of the strongest peak of the or-
thorhombic structure of YBCO, which corresponds to (103) plane. The non-superconducting phases, are
considered to be related to the heights of the BaCO3, Ba2GeO4 and Y2BaCuO5 new peaks as listed in Table
2.

From the results in Table 2, it is clear that:
1. For pure YBCO and the samples doped with Ge of x = 0.03 and x = 0.2, the 1-2-3 superconducting

phase is the dominant in the polycrystalline structure.
2. The samples with Ge content of x = 0.06, 0.12 and 0.15 are multiphase with single crystals of 1-2-3

superconducting phase and an increase of non-superconducting phases. The superconducting phase is mixed
with the nonsuperconducting and Ge-phases.

3. In the sample with a higher Ge content x = 1.13 doped in YBCO, there is a decomposition of the
structure into two equal separate phases:

(i) The first phase is the 1-2-3 orthorhombic which is responsible for superconductivity.
(ii) The second phase is due to the creation of Ba2GeO4, Y2BaCuO5 and BaCO3 which are responsible

for the semiconducting and non-superconducting behavior.

3.3. Infra red results

The infra-red absorption spectra have been recorded for the YBCO and YBCO-Ge doped samples in the
energy range of 200-1000 cm−1 as shown in Figure 3.

The infra-red active modes are listed in Table 3 for our samples and compared with the reference modes
for YBCO in the literature [11-13].

Table 3. IR active modes of YBCO and YBCO-Gex composite system.

IR-modes Present work IR-modes ( cm−1)
(cm−1) YBCO
[11-13] x = 0.0 x = 0.03 x = 0.06 x = 0.12 x = 0.15 x = 0.2 x = 1.13

255 229 226 221 224 225 224 225
295 - - 309 - - - -
335 338 341 342 - - - -
395 397 401 384 386 406 388 -
420 - - - - - - -
470 472 505 487 499 - 494 -
575 - - 570 - 531 552 -
625 624 630 630 622 637 619 630
690 654 - 704 - - 696 -
780 - 781 769 756 758 767 -
860 - 878 877 - - 830 854

From the total number of 21 expected IR-active modes, derived from the factor group analysis of the
orthorhombic space group Pmmm [11], only 11 of them namely (255, 295, 335, 395, 420, 470, 575, 625, 690,
780 and 860 cm−1) are detected in IR-spectrum of YBCO [12]. This can be understood as arising from an
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isotropic screening which prevents phonon modes along a and b crystal axes from interacting with IR-electric
field, but allows those modes with dipoles oscillating parallel to c-axis to appear [13-16].
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Figure 3. Infra-Red absorption spectra for Y1Ba2Cu3GexO7−δ where x = 0.00, x = 0.03, x = 0.06, x = 0.12,

x = 0.15, x = 0.20 and x = 1.13.

The mode at ∼ 225 cm−1 is present for all samples and may be due to Ba −O vibrations.
The mode around 335 cm−1appears for YBCO and low Ge doped samples with x = 0.03 and x = 0.06

then disappears for the samples with higher Ge content. This mode is probably due to Cu2 − O2 and
Cu2−O3 out-of plane bending vibrations [17]. The disappearance of this mode for the samples with higher
Ge content is due to the suggested Ge replacement of Cu2-sites.

The two peaks around 400 cm−1 and 470 cm−1 are possibly concerned with vibrations of Cu− O basal
planes of the pyramids [18]. These two modes disappear for the higher Ge content sample with x = 1.13
which support the hypothesis that Ge occupies fractional sites of Cu2. The position and energy of these
two modes are also varying with different Ge content, which is another indicator of fractional replacement
of Cu2-sites by Ge2+ ions.

The modes around 550 cm−1 and 570 cm−1 are attributed to the tetragonal phase [18], they approach
each other, disappear for pure YBCO and low doped Ge samples, then split into two peaks at 570 cm−1 and
∼ 550 cm−1 for samples with Ge content x = 0.06, x = 0.15 and x = 0.20. The behavior of these two modes
is complicated and may be concerned with the modes of Cu− O octahedron bending vibrations.

The peak at ∼ 630 cm−1 can be assigned probably to the O − Cu− O stretching related mode for the
copper in the mid plane and the adjacent oxygen at the top of the pyramid [18], since the Cu − O4 bond
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length is the shortest in the Cu-O bonds of YBCO unit cell [18]. This peak (630 cm−1) appears also in the
Raman-Spectrum [19] and it is attributed to impurity content, particularly of Y2BaCuO5 green phase.

The phonon modes around 700 cm−1, 750 cm−1 and 860 cm−1 are mainly due to defects arising
from the Ge-phase (Ba2GeO4) and the decomposition of 1-2-3 YBCO superconducting phase into non-
superconducting phases as concluded from X-ray diffraction analysis of the prepared YBCO-Ge samples.

According to the superconductor-semiconductor composite model, the YBCO unit cell has a crystal
structure with oxide layers of CuO2, BaO and CuO stacked along c-axis. The CuO2 layers are supercon-
ducting and the layers CuO and BaO are semiconducting [20]. For simplicity it is considered that YBCO
within this model to be constructed of mainly two layers [21]:

(i) Superconducting layer of CuO2-planes and,
(ii) Semiconducting layer of CuO-chains and BaO apex oxygen.
The addition of Ge to YBCO will logically increase the semiconducting layers and decrease the super-

conducting layers. This produces a changeover from metallic to semiconducting behavior of resistance for
the higher Ge content x = 1.13 sample. The doping of YBCO with Ge as illustrated from X-ray diffraction
patterns, produces mainly two phases, Ba2GeO4 and Y2BaCuO5. This starts to weaken the link between
CuO2-planes and CuO-chains through the BaO layer. The result of this is the increase in resistance and
decrease in Tc by doping YBCO with Ge.

The main peculiarity of the YBCO system responsible for the charge transfer effect is the presence of
CuO-chains conserving normal charge carriers at all temperatures. The charge transfer occurs between apex
oxygen band (BaO), on one hand, and both CuO2-plane and CuO-chain bands on the other hand, so there is
an important role of the BaO plane (apex oxygen) for electron-phonon interaction [22-24]. The apex oxygen
serves as gates for leaking charge between CuO2-planes and CuO-chains.

The addition of a semiconductor element such as Ge to a superconductor like YBCO, produces a change
in the IR-spectrum, as seen in Figure 3, where the superconductivity should be related to electron-phonon
coupling. The transition temperature Tc of a superconductor- semiconductor composite is different from that
of the original superconductor. This is an experimental evidence for the importance of the phonon-mediated
charge transfer mechanism in high-Tc superconductors along side with the superconductor- semiconductor
composite model.

4. Conclusion

1. The transition temperature Tc decreases with Ge doping (x < 1.13) and the resistance is transformed
from metallic to semiconductor behavior.

2. All the peaks of orthorhombic phase are still present by increasing the Ge contents and new peaks
(phases) are produced which are indexed as mainly Ba2GeO4, Y2BaCuO5 (2-1-1) green phase which are
semiconducting and non-superconducting phases.

3. Samples with Ge content of x = 0.06, 0.12, 0.15 and 1.13 tends to form plate- type of single crystal
structure.

4. The I-R absorption modes around 400 cm−1 are attributed to CuO2-planes and that around 630 cm−1

are attributed to CuO-chains. The peaks at ∼ 700 cm−1 to 860 cm−1 may be due to defects as Ba2GeO4
new phase and Y2BaCuO5 green phase.

5. The addition of a semiconductor element such as Ge to a superconductor like YBCO produces a change
in IR-spectrum and Tc of the superconductor - semiconductor YBCO-Ge composite. The superconductivity
should be related to electron-phonon interaction.

6. Our results suggest that the presence of certain amount of Ge in the YBCO matrix may produce
a superconducting - semiconducting interface without destroying the superconducting properties of the
composite system, which could be the base of new electronic devices using thin film technique.
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