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Abstract

In this study, we use perturbation approximations and semiclassical methods to investigate the bound-

ary solutions of non-linear vibrating systems. The extended Mathieu Equation, related to the perturbed

Van der Pol oscillator with periodic coefficients, is solved using multiple time scales. Then, using the

Von Zeipel Method, which is based on the Hamilton-Jacobi theory, stability conditions are presented. It

is shown that the stability boundaries are the same with those obtained by both methods.
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1. Introduction

The study of non-linear oscillators has been important in the development of the theory of dynamical
systems. Van der Pol and Van der Mark [1] studied a simple non-linear electronic circuit (using a neon
tube as the non-linear element) and experimentally found—but were not much interested in—noisy behavior
that can be identified as chaos. There have been many recent studies about the Van der Pol equation [2–4].
The mechanism for the action of time delay in a non-autonomous system such as the VdP-Duffing oscillator
with excitation is investigated by Xu and Chung [5]. Dynamics of relaxation oscillations of VdP equation
is investigated using an analytical method requiring only connection at a point of interface between the two
dynamic fast and slow regions [6]. We study a variation of the Van der Pol Oscillator equation in the form

ÿ − ε
(
1− x2

)
ẏ(t) + (1 + 2εẋ(t))y = 0. (1)

Straightforward application of perturbation theory to non-linear equations of motion in classical me-
chanics gives rise to secular terms that increase with no bound with time, even for periodic motion; and
unphysical terms also appear in the application of time dependent perturbation theory to quantum mechan-
ical systems [7]. Although there has been considerable research in non-linear vibrating systems, in general,
exact analytic solutions to non-linear differential equations are possible for only a limited number of classes
of systems. However, in order to analyze many of the real systems, we must resort to approximate methods.
Multiple-Scale Perturbation Theory (MSPT) is one effective technique among approximate methods that
can be applied to many problems in physics and natural sciences [8]. Reformulating the perturbation series
to get through secular growth, MSPT is an extremely useful method for solving such perturbation physical
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problems with a small parameter, ε. Developed by Sturrock, Frieman and Nayfeh, MSPT is applicable to
both linear and non-linear differential equations through classical and quantum mechanical problems [9–13].
The main goal underlying MSPT is that dynamical systems have distinct characteristic physical behavior
at different lengths or slow/ fast time scales [14]. Eliminating the secular terms in the fast time variable
T0 = t leads to the well-known solvability conditions. For two-scale problems, the solutions oscillate on a
time scale of order t with an amplitude and phase which drifts on a time scale of order εt.

This paper is organized as follows. In section 2, we discuss the first variational equation of the VdP and
eliminate the first order derivative in the equations describing the perturbed motion, developing a second
order non-linear differential equation with periodic coefficients. The perturbed VdP equation is solved in
section 3, without secular term growth, using MSPT as one of the effective singular perturbation methods.
Stability boundaries and steady states are obtained. In addition, results with greater accuracy are obtained
in order to find the stability boundary to second order and the steady states. Using Von Zeipel’s method,
new momenta coordinates for perturbed VdP equation are obtained in section 4; then it is shown that both
methods produce the same stability boundaries. Conclusions are presented in Section 5.

2. Perturbed Van der Pol Equation

Before introducing MSPT, we introduce in this section the Van der Pol (VdP) equation using Saaty’s
discussion [15]. Consider the well-known VdP equation:

ẍ− ε
(
1− x2

)
ẋ(t) + x(t) = 0. (2)

Applying the variational method to eq. (2) we get

δ(ẍ− ε
(
1− x2

)
ẋ(t) + x(t)) = 0, (3)

then setting δx = y, δẋ = ẏ and δẍ = ÿ, we get the perturbed motion in the form [15]

ÿ − ε
(
1− x2

)
ẏ(t) + (1 + 2εẋ(t))y = 0. (4)

In order to study the stability of the approximate periodic solution, we set x = a sin t and y = ev(t)u(t),
with v(t) = − ε

2

[(
a2

2
− 1
)
t− a2

4
sin 2t

]
and substitute these relations into eq. (4). We then see that ẏ

vanishes (as per the discussion in [15]) and (4) becomes

ü(t) +

(
1 +

1
2
εa2 sin(2t)− 3

4
ε2

(
1− a2 sin2 t

2

)2
)
u(t) = 0. (5)

If the terms in ε2 are neglected and t is transformed into t = t+ π
4
, (5) reduces to the well-known Mathieu

equation:

ü+
(

1 +
εa2

2
cos 2t

)
u(t) = 0. (6)

The Mathieu equation is an example of a differential equation with periodic coefficients [8, 15–17].

3. Stability Boundary of the Perturbed Van der Pol Equation

Using Multiple Scales

One can solve the perturbed VdP eq. (5) using MSPT; so we seek a perturbative solution to (5) having
two variables: the short-time scale t, and the long-time scale τ = ε t when ε is sufficiently small. We presently
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YEŞİLTAŞ, ŞİMŞEK

investigate the solutions of (5) via the perturbation of this equation. To find stable solutions of (5), time
variable should be changed as t→ t

2 + π
4 and (5) becomes

ü+

(
1
4

+
1
8
εa2 cos t − 3

16
ε2

(
1− a2

2
(1 + sin t)

)2
)
u(t) = 0. (7)

Applying the multiple-scale perturbation theory, we find the boundaries between the regions in the (∆ , ε)
plane for which all solutions to the perturbed VdP equation are stable. Putting parameter ∆ in (7), we get

ü+

(
∆
4

+
1
8
εa2 cos t− 3

16
ε2

(
1− a2

2
(1 + sin t)

)2
)
u(t) = 0, (8)

and expand it as a power series in ε [16]. The transition curves in the (∆, ε) plane separate stable solutions
from unstable solutions corresponding to periodic solutions of (8). Some of these curves are determined by
expanding both δ and u as functions of ε:

∆ = 1 + εδ1 + ε2δ2 + . . . . (9)

Then (8) can be rewritten as

ü+

(
1
4

+ ε(
δ1
4

+
1
8
a2 cos t) + ε2(

δ2
4
− 3

16

(
1− a2

2
(1 + sin t)

)2

)

)
u(t) = 0, (10)

which is the general equation. An uniform expansion can be written in the form

u(t) = U0(t, τ ) + εU1(t, τ ) + ε2U2(t, τ ) +O(ε3). (11)

Applying the chain rule for partial differentiation to compute derivatives of u(t), we get

ü =
∂2U0(t, τ )

∂t2
+ ε

(
2
∂2U0(t, τ )
∂τ∂t

+
∂2U1(t, τ )

∂t2

)
+ ε2

(
∂2U2

∂t2
+ 2

∂2U1

∂τ∂t
+
∂2U0

∂τ2

)
+O(ε3), (12)

where we have employed the relation dτ
dt = ε.

Substituting (11) and (12) into (10), we obtain partial differential equations for the dependent variables
U0(t, τ ), U1(t, τ ) . . . . So, in this solution there are less secular terms to order in the perturbation series.
The first three terms of the series are now given by

∂2U0(t, τ )
∂t2

+
1
4
U0(t, τ ) = 0, (13)

∂2U1(t, τ )
∂t2

+
1
4
U1(t, τ ) = −2

∂2U0(t, τ )
∂τ∂t

− (
δ1
4

+
1
8
a2 cos t)U0(t, τ ), (14)

∂2U2(t, τ )
∂t2

+
1
4
U2(t, τ ) = −2∂

2U1(t,τ)
∂τ∂t − ( δ14 + 1

8a
2 cos t)U1(t, τ )− ∂2U0

∂τ2

−
(
δ2
4
− 3

16

(
1− a2

2
(1 + sin t)

)2
)
U0(t, τ ). (15)

A general solution to (13) can be chosen as

U0(t, τ ) = A0(τ )eit/2 +A?0(τ )e−it/2. (16)
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In order to determine τ (τ = εt)-dependent coefficients A0(τ ) and A?0(τ ), we substitute U0(t, τ ) into the
right hand side of (14). One can see that eit/2 and e−it/2 are the solutions of the left-hand side equation, i.e.,
homogeneous equation ∂2U1(t,τ)

∂t2
+ 1

4
U1(t, τ ) = 0. Therefore, the right-hand side contains terms that produce

secular terms in U1. For a uniform expansion, these terms must be eliminated; thus we proceed by setting
coefficients of eit/2 and e−it/2 equal to zero. So, A0(τ ) satisfy:

−i∂A0

∂τ
− a2

16
A?0 −

δ1
4
A0 = 0, (17)

i
∂A?0
∂τ
− a2

16
A0 −

δ1
4
A?0 = 0. (18)

Setting A0(τ ) = w0(τ ) + iv0(τ ), we find:

−w′0(τ ) − δ1
4
v0(τ ) +

a2

16
v0(τ ) = 0, (19)

v
′
0(τ )− δ1

4
w0(τ ) − a2

16
w0(τ ) = 0, (20)

and from (19) and (20),

v
′′
0 (τ ) +

1
4

(δ2
1 −

a4

16
)v0 = 0, (21)

and the solutions of w0(τ ), v0(τ ) are thus:

v0(τ ) = C1 cosλτ +C2 sinλτ, (22)

w0(τ ) =
λ

δ1 + a2

4

(−C1 sinλτ +C2 cos λτ ), (23)

where

λ =
1
2

√
δ2
1 −

a4

16
. (24)

Here, for the perturbed VdP equation, we get unstable solutions for U0(t, τ ) if δ2
1 − a4

16
is negative. That

is, |δ1| > a2

4 gives stable solutions and |δ1 | < a2

4 gives unstable solutions. Near ε = 0, the stability boundary
for perturbed VdP oscillator is given as:

∆ = 1± a2

4
ε+ O(ε2), ε −→ 0. (25)

If the initial conditions are specified as U(0, 0) = 1, U̇(0, 0) = 0 and U0(0, 0) = 1, U̇0(0, 0) = 0, then C1 = 0,

C2 = δ1+ a2
4

2λ
and

U0(t, τ ) =

(
cosλτ cos

t

2
− δ1 + a2

4

λ
sinλτ sin

t

2

)
. (26)

Equation (26) is a solution of the Mathieu equation; and it is obvious that, with the appropriate parameters,
the result is the same as obtained by Bender [8]. The differential equation in the present case is the simple
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harmonic oscillator with an external periodic force and amplitude damping factor for ε > 0. Furthermore,
one can find the periodic solutions of (14) as

U1(t, τ ) = A1(τ )e
it
2 + A∗1(τ )e−

it
2

− a2

512λ

[(
a2 + 4δ1

)
sinλτ sin

3t
2

+ 4λ cosλτ cos
3t
2

]
, (27)

where A1(τ ) and A∗1(τ ) are unknown integral coefficients. To find these coefficients, (15) is used. However,
inserting U0(t, τ ) and U1(t, τ ) into (15) could give rise to another resonance case. At this step, let the
coefficients of cos t2 and sin t

2 be zero. Substitute U1(t, τ ), U0(t, τ ) and trigonometric formulas into the right
hand-side of (15) and set A1 = w1 + iv1. We get

−16384
∂v1

∂τ
− η1 sinλτ − η2 cosλτ = 0, (28)

1024λ
(
4δ1 + a2

)
w1 + η3 sinλτ + η4 cos λτ = 0. (29)

Here, A1(τ ) = −A∗1(τ ), η1, η2 are constants and are given respectively as:

η1 = (λ − 36) a6 + (96 + 16λδ1 − 576δ1) a4 −
(
6656− 8192λ2

)
δ1

+
(
1536δ1 + 512δ2 − 512λ2 − 96

)
a2, (30)

η2 = 384a2λ
(
1− 2a2

)
, (31)

η3 = 24a2
(
a4 − 2a2 + 16a2δ1 − 32δ1

)
, (32)

η4 = 64λ
(
−24− 128λ2 + 128δ2 + 24a2 − 9a4

)
; (33)

A1(τ ) = iC1 + sinλτ
(
− η3

1024λ (a2 + 4δ1)
− iη2

16384λ2

)
+

cosλτ
(
− η4

1024λ (a2 + 4δ1)
+

iη1

16384λ2

)
(34)

A∗1(τ ) = −iC1 + sinλτ
(
− η3

1024λ (a2 + 4δ1)
+

iη2

16384λ2

)
+ cos λτ

(
− η4

1024λ (a2 + 4δ1)
− iη1

16384λ2

)
. (35)

Here, C1 is an arbitrary constant and we say C1 = 0. U1(t, τ ) can then be written as

U1(t, τ ) = α(η3 sinλτ cos
t

2
+ η4 cos λτ cos

t

2
) + β(η2 sinλτ sin

t

2
− η1 cos λτ sin

t

2
)

− a2

512λ

[(
a2 + 4δ1

)
sinλτ sin

3t
2

+ 4λ cos λτ cos
3t
2

]
(36)

where α = − 1
512λ(a2+4δ1) and β = 1

8192λ2 .
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3.1. Higher Order Corrections

We now examine the the higher order terms in order to to determine with greater precision than given
by eq. (25) the location of the stability boundary of the perturbed VdP oscillator.

Toward this end, we write the states U0 and U1 in a more accurate and simple form than in (26) and
(36). We return to (21):

v
′′
0 (τ ) +

1
4

(
δ2
1 −

a4

16

)
v0(τ ) = 0. (37)

Write v0(τ ) again, but this time in the form

v0(τ ) = A exp

(
±i
√
δ2
1 −

a4

16
τ

)
, (38)

where A is a constant. Thus, a new time scale for the problem occurs: assume that δ1 = a2

4 + δ2ε in (38).

Then v0(τ ) becomes approximately K exp
(
±i
√

a2

2 εδ2τ

)
= K exp

(
±i
√

a2

2 δ2ε
3/2t

)
, which advances that a

new time scale σ = ε3/2t must be introduced. Therefore substitute ∆ into (8), and it is noted that σ = ε3/2t:

Ü(t) +

(
1
4

+ ε(
a2

4
+

1
8
a2 cos(t)) + ε2(2δ2 −

3
16

(
1− a2

2
(1 + sin t)

)2

)

)
U(t) = 0. (39)

Thus we can expand U(t) in a new series and second order differential operator as

U(t) ' U0(t, σ) + ε
1
2U1(t, σ) + εU2(t, σ) + ε

3
2U3(t, σ) + ε2U4(t, σ) + . . . , (40)

Ü(t) = ∂2U0
∂t2 + ε

1
2 ∂

2U1
∂t2 + ε∂

2U2
∂t2 + ε

3
2 (∂

2U3
∂t2 + 2∂

2U0
∂t∂σ ) + ε2(∂

2U4
∂t2 + 2∂

2U1
∂t∂σ ) + . . . . (41)

Putting these equations into (39) and equating powers of ε
1
2 , we get

ε0 :
∂2U0

∂t2
+
U0

4
= 0, (42)

ε
1
2 :

∂2U1

∂t2
+
U1

4
= 0, (43)

ε1 :
∂2U2

∂t2
+
U2

4
= −a

2

4
(
1 + eit + e−it

)
U0, (44)

ε
3
2 :

∂2U3

∂t2
+
U3

4
= −2

∂2U0

∂t∂σ
− a2

4
(
1 + eit + e−it

)
U1, (45)

ε2 :
∂2U4

∂t2
+
U4

4
= −2

∂2U1

∂t∂σ
− a2

4
(
1 + eit + e−it

)
U2

−(2δ2− 3
16

(
1− a2

2
(1 + sin t)

)2

)U0 . (46)

Solutions to (42) and (43) are, respectively,

U0(t, σ) = A0(σ)e
it
2 + A∗0(σ)e

−it
2 , (47)
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U1(t, σ) = A1(σ)e
it
2 +A∗1(σ)e−

it
2 . (48)

Following the same procedure, from the right hand side of (43), secularity can be removed and one can
find A0(σ) = −A∗0(σ) and say A0(σ) = iB0(σ). Now U2 can be solved as

U2(t, σ) = A2(σ)e
it
2 +A∗2(σ)e

−it
2 +

a2

8
A0e

3it
2 − a2

8
A0e

−3it
2 . (49)

Vanishing the coefficients of e±
it
2 in (44) gives

∂B0

∂σ
=
a2

4
(A1(σ) + A∗1(σ)) , (50)

From (42)–(46),

−i d
dσ

(A1 +A1) = (4δ2 +
3a2

8
)A0, (51)

and from (49)

B
′′
0 (τ ) +

a2

4

(
4δ2 +

3a2

8

)
B0 = 0, (52)

the solution of the B0 is then found in the form

B0(σ) = C4 cos µσ + C5 sinµσ, (53)

where µ =
√
δ2 + 3a2

32 . We can choose a =
√

2 as an arbitrary parameter. If we look at the stability
boundaries of perturbed VdP oscillator, stability occurs for the oscillator when δ2 < 3

16
and instability

occurs when δ2 >
3
16 . Thus, the higher order stability boundary is given by:

∆ = 1± 1
2
ε− 3

16
ε2 + O(ε3), ε −→ 0. (54)

Then A1(σ) is given as

A1(σ) = 4µ (−C4 sinµσ +C5 cos µσ) . (55)

Using the initial conditions as U0(0) = 0, U̇0(0) = 1, U1(0, 0) = 0, U̇1(0) = 0, one can find U0 and U1 as

U0(t, σ) = 2 cosµσ sin
t

2
, (56)

U1(t, σ) = −8µ sinµσ cos
t

2
. (57)

With a similar algorithm, higher order can be calculated with a power series in ε.

4. Stability Boundaries by Using Von Zeipel Method

The classical method of generating canonical transformations is called Von Zeipel’s method. The problem
with this method is the awkward mixture of odd and new variables that has to be unscrambled. To find
higher order approximations, Von Zeipel [18] employed a technique in which the main idea is to expand the
generating function S in powers of a small parameter ε. First of all, by using generalized momentum vector
p and coordinate vector q, one can write the following canonical equations of motion [17]:

q̇i =
∂H

∂pi
, (58)
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Ṗi = −∂H
∂qi

. (59)

Under a transformation from q and p to Q(q,p, t) and P(q,p, t), (58) and (59) are transformed into:

Q̇i = fi(P,Q, t), (60)

Ṗi = gi(P,Q, t). (61)

In terms of K(P,Q, t),

fi =
∂K

∂Pi
, gi = − ∂K

∂Qi
, (62)

Qi =
∂K

dPi
, Pi = − ∂K

dQi
. (63)

Q and P are called canonical variables and the canonical transformations can be generated using S(P,q, t),
which is the generating function [19]:

Pi =
∂S

∂qi
, Qi = − ∂S

∂Pi
. (64)

When the equations above are solved for

q = q(P,Q, t) (65)

and

p = p(P,Q, t), (66)

K is given as

K(P,Q, t) = H(p(P,Q, t),q(P,Q, t), t) +
∂S

∂t
. (67)

Also S must satisfy the Hamilton-Jacobi equation:

H(
∂S

∂q1
, . . . ,

∂S

∂qN
, q1, q2, . . . , qN , t) +

∂S

∂t
= 0. (68)

Complete solutions of the equation are not available for general H . If H = H0 + H1, where H1 is small
compared to H0, a complete solution S0(P1, . . . , PN , q1, . . . , qN , t) is available for

H0(
∂S0

∂q1
, . . . ,

∂S0

∂qN
, q1, q2, . . . , qN , t) +

∂S0

∂t
= 0. (69)

A generating function S = S0(P1, . . . , PN , q1, . . . , qN , t) can be used where Ṗi = − ∂K
∂Qi

, Q̇i = − ∂K
∂Pi

and

K = H0 + H̃ +
∂S0

∂t
= H̃. (70)

The method is the same as the generalized method of averaging [17]. Stern has shown [20] for Hamiltonian
systems Kruskal’s technique is [21] equivalent to Von Zeipel’s technique. The system under discussion is
described by the Hamiltonian

H(p,q, t) =
∑

(εnHn(p,q, t)), ε� 1. (71)
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If S0 = S0(P,q, t) is a complete solution of the Hamilton-Jacobi equation and ε� 1,

H0

[
∂S0

∂q
,q, t

]
+
∂S0

∂t
= 0 (72)

and the equations p = p(P,Q, t), q = q(P,Q, t) are the solutions of

pi =
∂S0

∂qi
, (73)

Qi =
∂S0

∂Pi
. (74)

Assume P and Q to be time varying and the generating function S = S0(P,q, t), to transform from the
canonical system p and q to the canonical system P and Q. The Hamiltonian is then transformed into

H̃ =
∑

(εnHn[p,q, t]) +
∂S0

∂t

∑
(εnH̃n). (75)

Hence P and Q are stated by the variational equations

Ṗ = −
∑(

εn
∂H̃n

∂Q

)
, (76)

Q̇ =
∑(

εn
∂H̃n

∂P

)
. (77)

Using the generating function S to determine an approximate solution to (75) and (76) to any order, we
introduce a transformation from the canonical system P and Q to the new canonical system:

S =
∑

(P ∗i Qi) +
∑

(εnSn(P ∗,Q, t)). (78)

Then

Pi = P ∗i +
∑

(εn
∂Sn
∂Qi

), (79)

so H̃ is transformed into

K ≡
∑

εnKn(P ∗, Q, t) =
∑

εnH̃n +
∑

εn
∂Sn
∂t

. (80)

Expand the terms in the right-hand side of (79) for small ε and equate the coefficients of ε on both sides,
we get

K1 = H̃1 +
∂S1

∂t
, (81)

K2 = H̃2 +
∑ ∂S1

∂Qi

∂H̃1

∂Pi
+
∂S2

∂t
. (82)

If this procedure is applied to (9) to get stability boundaries of perturbed VdP oscillator for a =
√

2, (9)
turns into:

Ü +
(
ω2

4
+

1
4
ε cos t− 3

16
ε2 sin2 t

)
U = 0. (83)
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If we write H0 and H̃ as

H0 =
1
2

(
p2 +

ω2

4
q2

)
, (84)

H̃ =
1
2

(
1
4
ε cos t− 3

16
ε2 sin2 t

)
q2, (85)

which are hamiltonians for unperturbed and perturbed VdP equation. The Hamilton-Jacobi equation cor-
responding to the case ε = 0 is

1
2

[(S′(q))2 +
ω2

4
q2] +

∂S

∂t
= 0. (86)

The equation above (86) can be solved by separation of variables:

S = S1(q) + σ(t). (87)

Equations (87) separates into σ̇ = −α and σ = −αt.
We find S1 generator and β new coordinate and q as:

S1 = −αt +
∫ √

2α− ω2

4
q2 dq, (88)

β = −t+
2
ω

arcsin
(

qω

2
√

2α

)
, (89)

q =
2
√

2α
ω

cos
(
ω(t + β)

2

)
. (90)

Hence α and β are canonical variables with respect to

H̃ =
4α
ω2

cos2

(
ω(t + β)

2

)[
1
4
ε cos t− 3

16
ε2 sin2 t

]
(91)

with α̇ = −∂H̃∂β , α̇ = ∂H̃
∂α . To determine an approximate solution to these equations, we introduce a near-

identity transformation from α and β to α∗ and β∗ using the generating function

S = α∗β + εS1(α∗, β, t) + ε2S2(α∗, β, t) + . . . . (92)

Hence

α = α∗ + ε
∂S1

∂β
+ . . . . (93)

Using (91) and (92), K can be written as

K = εK1 + ε2K2 + . . . . (94)

Hence K1 and K2 are

K1 =
∂S1

∂t
+

4α∗

ω2
cos2(

ω(t + β)
2

) cos t, (95)

K2 =
∂S2

∂t
+

4
ω2

∂S1

∂β
cos2(

ω(t + β)
2

) cos t− 3α∗

4ω2
cos2(

ω(t + ωβ)
2

) sin2 t. (96)
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YEŞİLTAŞ, ŞİMŞEK

Using some trigonometric relations, equation (95) above can be written in the form

K1 =
∂S1

∂t
+
α∗

ω2
(2 cos t+ cos((ω + 1)t+ ωβ) + cos((ω − 1)t) + ωβ). (97)

In the same way one can write K2. In the case of ω 6= 1, all the terms on the right-hand side of (97) are
fast varying. Hence K1 = 0 and S1 is

S1 = −α
∗

ω2

(
2 sin t+

1
ω + 1

sin((ω + 1)t+ ωβ) +
1

ω − 1
sin((ω − 1)t + ωβ)

)
. (98)

In the case of ω ≈ 1, cos((ω− 1)t+ωβ) is slowly varying because S1 is singular at ω ≈ 1, as it is seen in
eq. (100). By equating K1 to (97), we have

K1 =
α∗

ω2
cos((ω − 1)t+ ωβ). (99)

Substituting S2 into (96) one can easily get K2 and equating the K2 to the long terms in this equation,
we have

K2 = −
(

1
ω3(ω + 1)

+
3

16ω2

)
α∗ (100)

Therefore K can be written to second order as

K =
α∗ε

ω2
cos((ω − 1)t+ ωβ) − α∗ε2

ω2

(
3
16

+
1

ω(ω + 1)

)
. (101)

It is obvious that α and β in terms of α∗ β∗:

α = α∗ − εα∗

ω(ω + 1)
cos((ω + 1)t+ ωβ), (102)

β = β∗ − 2ε
ω2

(
sin t+

1
2(ω + 1)

sin((ω + 1)t+ ωβ)
)
. (103)

We remove the dependence of K on t by changing from α∗ and β∗ to α
′

and β
′

via the assignments

S
′

= α
′
((ω − 1)t + ωβ∗) (104)

and

α∗ =
∂S
′

∂β∗
, (105)

β
′

=
∂S
′

∂α′
. (106)

Now K can be written as K
′

= K + ∂S
′

∂t , and

K =
εα
′

ω
cos β

′ − ε2α
′

ω

(
3
16

+
1
ω

(ω + 1)
)

+ (ω − 1)α
′
. (107)

Therefore, we can write a couple of differential equations as

α̇
′

=
εα
′

ω
sinβ

′
, (108)
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β̇
′

= − ε
ω

cosβ
′ − 3ε2

16ω
− ε2

ω2(ω + 1)
+ ω − 1. (109)

So, the integration of these equations leads to the equation

lnα
′

= ln
[
ε

ω
cos β

′
+
(

3
16ω

+
1

ω2(ω + 1)

)
ε2 + ω − 1

]
. (110)

The requirement of finite frequency and asymptotics imply

ε

ω
=
∣∣∣∣ω − 1 + ε2

(
3

16ω
+

1
ω2(ω + 1)

)∣∣∣∣ . (111)

Finally, we note that the stability boundaries of perturbed VdP oscillator around ω ≈ 1 are in agreement
with those obtained in sections(3)–(4) using multiple scales:

4 =
ω2

4
→ 1 +

1
2
ε− 3

16
ε2. (112)

5. Conclusions

In this study, we examined the perturbed Van der Pol equation, to which we applied MSPT, turning it
into a second order differential equation with time dependent periodic coefficients. For convenient solutions,
necessary transforms are applied to this variational equation. We employed (∆, ε) parameter space in the
perturbed equation in order to impose the stability conditions through the boundaries. As it has already
been shown [9, 10] that the use of MSPT allows for the elimination of all harmonic and subharmonic solution-
related secular terms appearing in the evolution of the U0(t, τ ) and U1(t, τ ). So the method worked effectively
for limiting the growth of the secular terms; and more accurate results have been obtained for sub-harmonics
by using different time scales. By comparing the results obtained for two different time scales, stability and
instability conditions have been shown to depend on constants, a technique with which one can also can
see if the motion is strictly periodic or not. Our results show that solutions of the terminated nonlinear
structure of the Van der Pol equation are periodic and stable and are similar to solutions of the original
VdP equation [17]. To determine a first approximation to our Hamiltonian system for the perturbed VdP
equation, we use the Von Zeipel method [17], a perturbation method for classical Hamiltonian systems using
an averaging procedure in phase space. Transition curves are in agreement with those obtained by MSPT
methods. As a result, we can say that this work contains useful tools of these applications in the case of
perturbed motions.
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