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Abstract

This paper studies unsteady laminar flow of dusty conducting fluid between parallel porous plates

with temperature dependent viscosity. The fluid is acted upon by a constant pressure gradient and an

external uniform magnetic field is applied perpendicular to the plates. The parallel plates are assumed

to be porous and subjected to a uniform suction from above and injection from below. The viscosity of

the fluid is assumed to vary exponentially with temperature. The governing nonlinear partial differential

equations are solved numerically and some important effects for the variable viscosity and the uniform

magnetic field on the transient flow and heat transfer of both the fluid and dust particles are indicated.
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1. Introduction

The flow of a dusty and electrically conducting fluid through a channel in the presence of a transverse
magnetic field has important application in such areas as magnetohydrodynamic generators, pumps, ac-
celerators, cooling systems, centrifugal separation of matter from fluid, petroleum industry, purification of
crude oil, electrostatic precipitation, polymer technology, and fluid droplets sprays. The performance and
efficiency of these devices are influenced by the presence of suspended solid particles in the form of ash or
soot as a result of the corrosion and wear activities and/or the combustion processes in MHD generators
and plasma MHD accelerators.

The hydrodynamic flow of dusty fluids has been studied by a number of authors [1–5]. Later investigations
studied the influence of the magnetic field on the flow of electrically conducting dusty fluids [6–10]. Most
of these studies are based on constant physical properties. More accurate prediction for the flow and heat
transfer can be achieved by taking into account the variation of these properties, especially the variation of
the fluid viscosity with temperature [11]. Klemp et al. [12] has studied the effect of temperature dependent
viscosity on the entrance flow in a channel in the hydrodynamic case. Attia and Kotb [13] studied the
steady, fully developed MHD flow and heat transfer between two parallel plates with temperature dependent
viscosity. Attia [14] extended the problem to the transient state.
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In the present work, the effect of variable viscosity on the unsteady laminar flow of an electrically
conducting, viscous, incompressible dusty fluid and heat transfer between parallel non-conducting porous
plates is studied. The fluid is flowing between two electrically insulating infinite plates maintained at two
constant but different temperatures. An external uniform magnetic field is applied perpendicular to the
plates. The magnetic Reynolds number is assumed small so that the induced magnetic field is neglected.
The fluid is acted upon by a constant pressure gradient and its viscosity is assumed to vary exponentially with
temperature. The flow and temperature distributions of both the fluid and dust particles are governed by the
coupled set of the momentum and energy equations. The Joule and viscous dissipation terms in the energy
equation are taken into consideration. The governing coupled nonlinear partial differential equations are
solved numerically using the finite difference approximations. The effects of the external uniform magnetic
field and the temperature dependent viscosity on the time development of both the velocity and temperature
distributions are discussed.

Description of the Problem

The dusty fluid is assumed to be flowing between two infinite horizontal plates located at the y = ±h
planes, as shown in Figure 1. The dusty particles are assumed to be uniformly distributed throughout the
fluid. The two plates are assumed to be electrically non-conducting and kept at two constant temperatures:
T1 for the lower plate and T2 for the upper plate with T2 > T1. A constant pressure gradient is applied in
the x-direction and the parallel plates are assumed to be porous and subjected to a uniform suction from
above and injection from below. Thus the y component of the velocity is constant and denoted by vo. A
uniform magnetic field Bo is applied in the positive y-direction. By assuming a very small magnetic Reynolds
number the induced magnetic field is neglected [15]. The fluid motion starts from rest at t = 0, and the
no-slip condition at the plates implies that the fluid and dust particles velocities have neither a z nor an
x-component at y = ±h. The initial temperatures of the fluid and dust particles are assumed to be equal to
T1 and the fluid viscosity is assumed to vary exponentially with temperature. Since the plates are infinite
in the x and z-directions, the physical variables are invariant in these directions. The flow of the fluid is
governed by the Navier-Stokes equation [15]

B0y

y = h    u = 0

h

X

y = -h    u = 0

Figure 1. The geometry of the problem.

ρ
∂u

∂t
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∂
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(
µ
∂u
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)
− σB2

ou−KN(u− up), (1)

where ρ is the density of clean fluid, µ is the viscosity of clean fluid, u is the velocity of fluid, up is the
velocity of dust particles, σ is the electric conductivity, p is the pressure acting on the fluid, N is the number
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of dust particles per unit volume, and K is a constant. The first three terms in the right hand side are,
respectively, the pressure gradient, viscous force and Lorentz force terms. The last term represents the force
term due to the relative motion between fluid and dust particles. It is assumed that the Reynolds number of
the relative velocity is small. In such a case the force between dust and fluid is proportional to the relative
velocity [1]. The motion of the dust particles is governed by Newton’s second law [1] via

mp
∂up
∂t

= KN(u− up), (2)

where mp is the average mass of dust particles. The initial and boundary conditions on the velocity fields
are respectively given by

t = 0; u = up = 0. (3)

For t > 0, the no-slip condition at the plates implies that

y = −h : u = up = 0; (4)

y = h : u = up = 0. (5)

Heat transfer takes place from the upper hot plate towards the lower cold plate by conduction through the
fluid. Also, there is a heat generation due to both the Joule and viscous dissipations. The dust particles gain
heat energy from the fluid by conduction through their spherical surface. Two energy equations are required
which describe the temperature distributions for both the fluid and dust particles and are respectively given
by [16]

ρc
∂T

∂t
+ ρcvo

∂T

∂y
= k

∂2T

∂y2
+ µ

(
∂u

∂y

)2

+ σB2
ou

2 +
ρpCs
γT

(Tp − T ), (6)

∂Tp
∂t

= − 1
γT

(Tp − T ), (7)

where T is the temperature of the fluid, Tp is the temperature of the particles, c is the specific heat ca-
pacity of the fluid at constant pressure, Cs is the specific heat capacity of the particles, k is the thermal
conductivity of the fluid, γT is the temperature relaxation time (=3 Pr γpCs/2c), γp is the velocity relaxation
time (=2ρsD2/9µ), ρs is the material density of dust particles (= 3ρp/4πD3N), D is the average radius of
dust particles. The three terms on the right-hand side of Eq. (6) represent the viscous dissipation, the
Joule dissipation, and the heat conduction between the fluid and dust particles, respectively. The initial and
boundary conditions on the temperature fields are given as

t ≤ 0 : T = Tp = 0, (8)

t > 0, y = −h : T = Tp = T1, (9)
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t > 0, y = h : T = Tp = T2. (10)

The viscosity of the fluid is assumed to depend on temperature and is defined as µ = µof(T ). By
assuming the viscosity to vary exponentially with temperature, the function f(T ) takes the form [13, 14]
f(T )=e−b(T−T1) , where the parameter b has the dimension of T−1 and such that at T = T1, f(T1) = 1 and
then µ = µo. This means that µo is the viscosity coefficient at T = T1. The parameter b may take positive
values for liquids such as water, benzene or crude oil. In some gases like air, helium or methane a1may be
negative, i.e. the coefficient viscosity increases with temperature [13, 14].

The problem is simplified by writing the equations in dimensionless form. The characteristic length is
taken to be h, and the characteristic time is ρh2/µo, while the characteristic velocity is µo/hρ. Thus we
define the following non-dimensional quantities:

(x̂, ŷ, ẑ) = (x, y, z)/h, t̂ = tµo/ρh
2, P̂ = Pρh2/µ2

o, α = −dp̂
dx̂

(û, v̂, ŵ) = (u, v, w)ρh/µo, (ûp, v̂p, ŵp) = (up, vp, wp)ρh/µo

T̂ = T−T1
T2−T1

, T̂p = Tp−T1
T2−T1

,

f(T̂ ) = e−b(T2−T1)T̂ = e−aT̂ , where a is the viscosity parameter,

H2
a = σB2

oh
2/µo, where Ha is the Hartmann number,

and

R = KNh2/µo is the particle concentration parameter,

G = mpµo/ρh
2K is the particle mass parameter,

ξ = ρhvo/µo is the suction parameter,

Pr = µoc/k is the Prandtl number,

Ec = µ2
o/(h2cρ2(T2 − T1)) is the Eckert number,

Lo = ρh2/µoγT is the temperature relaxation time parameter.
In terms of the above dimensionless variables and parameters, equations (1)–(6) take the following form

(where we have dropped the hats for convenience):

∂u

∂t
+ ξ

∂u

∂y
= α+ f(T )

∂2u

∂y2
+
∂f(T )
∂y

∂u

∂y
−H2

au− R(u− up) (11)

G
∂up
∂t

= (u− up) (12)

t ≤ 0; u = up = 0. (13)

t > 0, y = −1; u = up = 0, (14)

t > 0, y = 1; u = up = 0, (15)
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∂T

∂t
+ ξ

∂T

∂y
=

1
Pr
∂2T

∂y2
+ Ecf(T )

(
∂u

∂y

)2

+EcH2
au

2 +
2R
3 Pr

(Tp − T ), (16)

∂Tp
∂t

= −Lo(Tp − T ), (17)

t ≤ 0; T = Tp = 0, (18)

t > 0, y = −1; T = Tp = 0, (19)

t > 0, y = 1; T = Tp = 1. (20)

Equations (11)–(20) represent a system of coupled and nonlinear partial differential equations which must
be solved numerically under the initial and boundary conditions (13)–(15) and (18)–(20) using finite differ-
ence approximations. The system is solved using the Crank-Nicolson implicit method [17]. Finite difference
equations relating the variables are obtained by writing the equations at the mid-point of the computational
cell and then replacing the different terms by their second order central difference approximations in the
y-direction. The diffusion term is replaced by the average of the central differences at two successive time
levels. The nonlinear terms are first linearized and then an iterative scheme is used at every time-step to
solve the linearized system of difference equations.

2. Results and Discussions

The exponential dependence of viscosity on temperature results in decomposing the viscous force term
(=∂/∂y(µ∂u/∂y)) in Eq. (1) into two terms. The variations of these resulting terms with the viscosity
parameter a and their relative magnitudes have an important effect on the flow and temperature fields in
the absence or presence of the applied uniform magnetic field. In the following discussion selected parameters
are given the following fixed values: R = 0.5, G = 0.8, α = 5, Pr=1, Ec = 0.2, and Lo = 0.7.

Figures 2 and 3 indicate the variations of the velocities u and up at the centre of the channel (y = 0)
with time for different values of the viscosity parameter a and for Ha = 0 and ξ = 0. The figures show that
increasing a increases the velocity and the time required to approach the steady state. This implies that
higher velocities are obtained at lower viscosities. The effect of the parameter a on the steady state time is
more pronounced for positive values of a than for negative values. Notice that u reaches the steady state
more quickly than up. This is because the fluid velocity is the source for the dust particles velocity. Figure 2
shows also that the influence of a on up is negligible for some time and then increases as the time develops.
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Figure 2. The evolution of u for different values of a (Ha = 0, ξ =0).
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Figure 3. The evolution of up for different values of a (Ha = 0, ξ =0).

Figures 4 and 5 show the variations of the temperatures T and Tp at the centre of the channel (y = 0)
with time for different values of the viscosity parameter a for Ha = 0 and ξ = 0. The figures show that
increasing a increases the temperatures and the steady state times. Tables 1 and 2 show the evolution of T
and Tp at the centre of the channel (y = 0) for different values of a and for Ha = 0 and ξ = 0. Increasing
the positive values of a decreases the temperature for small times, but increases it as time develops. Thus,
increasing a increases the steady state value of the temperature with the appearance of cross-over of the
temperature curves corresponding to different values of a. The time at which the curves intersect increases
with the increment in a and is longer for T than for Tp, as Tp always follows T . It is noticed that the steady
state values of Tp coincide with the corresponding steady state values of T , and the time required for Tp to
reach the steady state, which depends on a, is longer than that for T . The reduction in temperature with
increasing the viscosity exponent a that occurs at small time can be attributed to the fact that the only
source term is the viscous dissipation (since Ha = 0). At small time the velocity gradient is small and an
increase in adecreases the viscous dissipation as a result of decreasing viscosity and, in turn, decreases T .
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Figure 4. The evolution of T for different values of a (Ha = 0, ξ =0).
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Figure 5. The evolution of Tp for different values of a (Ha = 0, ξ =0).

Table 1. The evolution of T for different values of a, Ha = 0.

a = 0 a = 0.5 a = 1 a = −0.1 a = −0.5
t=0 0 0 0 0 0

t=0.5 0.352 0.346 0.341 0.353 0.359
t=1 0.584 0.583 0.577 0.584 0.581
t=2 0.781 0.839 0.877 0.768 0.721
t=3 0.853 0.979 1.093 0.832 0.762
t=4 0.888 1.066 1.273 0.862 0.780

Table 2. The evolution of Hp for different values of a, Ha = 0.

a = 0 a = 0.5 a = 1 a = −0.1 a = −0.5
t=0 0 0 0 0 0

t=0.5 0.005 0.005 0.005 0.005 0.005
t=1 0.181 0.178 0.176 0.181 0.183
t=2 0.448 0.462 0.468 0.445 0.431
t=3 0.638 0.694 0.737 0.627 0.590
t=4 0.757 0.864 0.968 0.739 0.682

The application of the uniform magnetic field adds one resistive term to the momentum equation and the
Joule dissipation term to the energy equation. Figures 6 and 7 show the influence of the viscosity parameter
a on the evolution of both the velocities u and up at the centre of the channel, respectively for Ha = 1 and
ξ = 0. The presence of the magnetic field results in a reduction in the velocities and the steady state time
for all values of a, and is thus a damping effect. This implies lower velocities at higher magnetic fields.
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Figure 6. The evolution of u for different values of a (Ha = 1, ξ =0).
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Figure 7. The evolution of up for different values of a (Ha = 1, ξ =0).

Figures 8 and 9 show the influence of the viscosity parameter a on the evolution of temperatures T and
Tp at the centre of the channel, respectively forHa = 1 and ξ = 0. Increasing the magnetic field increases the
temperatures for all positive values of a due to the effect of Joule dissipation, which increases the dissipation
and therefore increases temperature. However, for constant, negative values of a, increasing the magnetic
field increases the temperatures for some time then decreases as the time develops; this effect can be seen in
Tables 3 and 4. The effect arises from the resistive effect of the magnetic field, and becomes more pronounced
as time develops, especially with the case of negative a, which exhibits the same resistive effect.
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Figure 8. The evolution of T for different values of a (Ha = 1, ξ =0).
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Figure 9. The evolution of Tp for different values of a (Ha = 1, ξ =0).

Figures 10 and 11 indicate the variations of the velocities u and up at the centre of the channel (y = 0)
with time for different values of the viscosity parameter a and for Ha = 0 and ξ = 1. It is clear that the
suction velocity decreases both u and upand their steady state times as a result of pumping the fluid from
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the slower lower half region to the centre of the channel. This implies higher velocities at lower suction. The
influence of suction on u and upis more pronounced for higher values of the parameter a.

Table 3. The evolution of T for different values of a, Ha = 1.

a = 0 a = 0.5 a = 1 a = −0.1 a = −0.5
t=0 0 0 0 0 0

t=0.5 0.398 0.401 0.404 0.397 0.395
t=1 0.651 0.681 0.709 0.644 0.621
t=2 0.823 0.922 1.031 0.806 0.744
t=3 0.880 1.021 1.200 0.857 0.780
t=4 0.907 1.071 1.304 0.881 0.797

Table 4. The evolution of Tp for different values of a, Ha = 1.

a = 0 a = 0.5 a = 1 a = −0.1 a = −0.5
t=0 0 0 0 0 0

t=0.5 0.006 0.006 0.006 0.006 0.006
t=1 0.203 0.208 0.212 0.202 0.198
t=2 0.486 0.524 0.563 0.479 0.453
t=3 0.674 0.755 0.849 0.659 0.611
t=4 0.786 0.904 1.057 0.767 0.702
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Figure 10. The evolution of u for different values of a (Ha = 0, ξ =1).
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Figure 11. The evolution of up for different values of a (Ha = 0, ξ =1).

Figures 12 and 13 present the influence of the viscosity parameter a on the evolution of the temperatures
T and Tp at the centre of the channel, respectively for Ha = 0 and ξ = 1. It is shown that increasing suction
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velocity decreases both T and Tp and their steady state times. This results from pumping the fluid from
colder lower half region to the centre of the channel which decreases temperatures. The effect of suction on
T and Tp is more apparent for higher values of a.
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Figure 12. The evolution of T for different values of a (Ha = 0, ξ =1).
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Figure 13. The evolution of Tp for different values of a (Ha = 0, ξ =1).

3. Conclusions

In this paper the effect of a temperature dependent viscosity, suction and injection velocity and an
external uniform magnetic field on the unsteady laminar flow and temperature distributions of an electrically
conducting viscous incompressible dusty fluid between two parallel porous plates has been studied. The
viscosity was assumed to vary exponentially with temperature and the Joule and viscous dissipations were
taken into consideration. The most interesting result was the cross-over of the temperature curves due to
the variation of the parameter a and the influence of the magnetic field in the suppression of such cross-over.
On the other hand, changing the magnetic field results in the appearance of cross-over in the temperature
curves for a given negative value of a. Also, changing the viscosity parameter a leads to asymmetric velocity
profiles about the central plane of the channel (y = 0), which is similar to the effect of variable percolation
perpendicular to the plates. The effect of the suction velocity on both the velocity and temperature of the
fluid and particles is more pronounced for higher values of the parameter a.
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