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Abstract

We present a Fourier transform analysis of Cherenkov radiation for a point charge uniformly moving

inside a 2D-homogeneous, isotropic, unbounded, chiral medium endowed with the Drude-Born-Fedorov

constitutive relations when the chirality parameter ß and the wave number k make negligible the ß2k2

terms. The electromagnetic field is not described in terms of circularly right and left polarized waves but

in terms of TM and TE components. The Cherenkov radiation arises when the velocity v of the point

charge is greater than the phase velocity c/n, where n is the refractive index of the chiral medium and

the electromagnetic field stands inside the Mach cone with opening angle c/nv.
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1. Introduction

The Fourier transform of Cherenkov radiation generated by a point charge (electron) uniformly moving
inside a homogeneous, isotropic, unbounded chiral medium has been analyzed many years ago for two types
of constitutive relations with two different techniques [1, 2]. Because time-harmonic fields in these media
are circularly birefringent, they are expressed in terms of two components: left handed and right handed, a
different wave number being associated with each handedness. So, the Fourier transform of the Cherenkov
radiation uses these two components.

We present a different description starting with the remark that, for harmonic plane waves in homoge-
neous, isotropic, chiral media, the wave equations satisfied by the electric and magnetic fields transform in
absence of currents into a linear homogeneous system of equations with a solution only if its determinant is
null; a condition fulfilled, as just stated, by two circularly right and left eigenmodes. But, in the presence
of a current, and for the same situation, the wave equations give a nonhomogeneous linear system of equa-
tions with a solution free of constraints on its determinant, a result used to revive the Cherenkov radiation
analysis.

For a point charge uniformly moving in a homogeneous, isotropic, unbounded, chiral medium endowed
with the Drude-Born-Fedorov constitutive relations [2] the electric displacement and magnetic field are
described by

D = ε(E + β∇ ∧E) , B = µ(H + β∇ ∧H) (1)
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in which permittivity ε, permeability µ and chirality ß are function of the frequency ω. The Maxwell
equations are

∇∧E + iωµ/c (H + β∇ ∧H) = 0, ∇ ∧H− iωε/c (E + β∇∧E) = J. (2)

The time factor exp(iωt) is implicit, c is the velocity of light and J is the vector current density.
A simple calculation gives the wave equations satisfied by E and H

∆E + 2βγ2∇ ∧E + γ2E = im2 (J + β∇ ∧ J) ; (3)

∆H + 2βγ2∇∧H + γ2H = −∇ ∧ J, (3a)

in which

γ2 = k2(1− ß2k2)−1, k2 = ω2n2/c2, n2 = εµ, andm2 = ωµγ2/ck2. (3b)

Then, to simplify the Cherenkov radiation analysis, without prejudicing its conclusions, calculations are
made in a 2D-space: fields and current do not depend on the y coordinate. We suppose, in addition, |ßk | is
small enough to make negligible the ßsks terms for s ≥ = 2 and we work to approximation order O(ß2k2),
O denoting the Landau symbol.

The components of the current density J for a point charge uniformly moving along the z-axis with the
velocity v are [1]

Jx = Jy = 0, Jz = qδ(x) exp(iωz/v) (4)

where δ(x) is the Dirac distribution and q is a constant depending on the charge.
Taking into account (4), the Maxwell equations (2) in a 2D-space reduce to

∂zHy = −iωε/c(Ex − ß∂zEy) (5a)

∂zHx − ∂xHz = iωε/c[Ey + ß(∂zEx − ∂xEz)] (5b)

∂xHy = iωε/c(Ez + ß∂xEy) + Jz (5c)

∂zEy = iωµ/c(Hx − −ß∂zHy) (6a)

∂zEx − ∂xEz = − iωµ/c[Hy + ß(∂zHx − ∂xHz)] (6b)
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∂xEy = −iωµ/c(Hz + ß∂xHy). (6c)

For harmonic plane waves,

E = e exp[i(χxx + χzz)], H = h exp[i(χxx + χzz)], χ2
x + χ2

z = χ2, (7)

and wave equations (3) transform for J = 0 into an homogeneous system of equations with determinant

Q =

∣∣∣∣∣∣∣∣∣∣
γ2 − χ2 −2iβγχz 0

2iβγχz γ2 − χ2 2iβγχx

0 2iβγχx γ2 − χ2

∣∣∣∣∣∣∣∣∣∣
, (8)

and Q = 0 gives the equation χ4−-2 γ2χ2 (1+2 β2γ2) + γ4 = 0 with the solutions

χ± =
[
1 + 2β2χ2 ± 2βγ

(
1 + β2γ2

)1/2
] 1/2

= γ (1± βγ) + O
(
β2k2

)
,

(8a)

where

γ = k + O
(
β2k2

)
,

k = nω/c ,
(8b)

thus supplying the phase velocity:

v± = ω/χ± = cn−1(1± ßγ) + O(ß2k2). (9)

We first look for the solutions of equations (5), (6) in a homogeneous, isotropic, achiral medium when ß
= 0.

2. Cherenkov Radiation in 2D-homogeeous, Isotropic Media

With ß = 0, Maxwell equations (5), (6) reduce to

∂xzHy = −iωε/cEx (10a)

∂zHx − ∂xHz = iωε/cEy (10b)

∂xHy = iωε/cEz + Jz (10c)
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∂zEy = iωµ/cHx (11a)

∂zEx − ∂xEz = −iωµ/cHy (11b)

∂xEy = −iωµ/cHz. (11c)

The symmetry of these equations implies Hx = Hz = Ey = 0, reducing the Cherenkov radiation to a
TM electromagnetic wave and we are left with equations (10a), (10c) and (11b), from which we get the
nonhomogeneous wave equation satisfied by the component Hy:

(∂2
x + ∂2

z + k2)Hy = ∂xJz, k
2 = ω2n2/c2. (12)

We look for the solution of equation (12) in the form

Hy(x, z) = h(x) exp(iωz/v). (13)

Substituting (13) into (12) and using (4) gives the differential equation

(∂2
x + λ2)h(x) = j(x), j(x) = qδd′(x) (14)

λ2 = k2 − ω2/v2 = ω2n2/c2(1− −c2/n2v2), (14a)

where δd′(x) is the derivative of the Dirac distribution and λ2 > 0 for v > c/n.
Then, the solution of equation (11) is [3]

h(x) =
∫∞
−∞ j(x′)g(x, x′) dx′;

g(x, x′) = i
2λ

exp (iλ|x− x′|) ,
(15)

in which g(x, x′) is Green’s function of the 1D-Helmholtz equation. Then

h(x) = iq
2λ

∫ x
−∞ δ′(x′) exp [−iλ(x′ − x)]dx′ + iq

2λ

∫∞
x

δ′(x′) exp [iλ(x − x′)]dx′

= iq
2λ

[
− i

2
∂x exp(−iλx) − i

2
∂x exp(iλx)

]
= iq

2 sin (λx) .

(16)

Taking into account (13), we get from (16)

Hy = (iq/2) sin (λx) exp(iωz/v). (17)

Substituting (17) into (10a) and (11b) gives the components Ex, Ez as
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Ex = −iqc/2εv sin(λx) exp(iω z/v)

Ez = λqc/2ωε cos(λx) exp(iω z/v)
(17a)

so that Ex/Ez = icn/v(1 − c2n2/v2) −1/2 tan(λx) = i cosθ(1 − cos2 θ)−1/2 tan(λx), implying that the
radiation is contained within the 2D Mach cone of opening angle θ. (A more complete discussion may be
found in [4], [5].)

Remark. These mathematical results are also valid with minor changes for a point charge moving in a
homogeneous, isotropic, Veselago, chiral medium [6] in which ε, µ, n are negative. According to (17), λ

becomes −λ, and the phase velocity of plane waves is in the opposite direction being antiparallel to the
Poynting vector. And according to (17a), the sign of Ex is different, implying that the θ angle of the Mach
cone is changed to π − θ, with nontrivial physical consequences.

3. Cherenkov Radiation in 2D-homogeneous, Isotropic, Chiral Me-

dia

We now come back to Maxwell’s equations (5), (6). The results of Section 2 suggest that the components
Hx, Hz, Ey, of the Cherenkov radiation, null in achiral media, become ß-linear with the form

Hx = (iωε/c)ßMx, Hz = (iωε/c)ßMz , Ey = (iωµ/c)ßNy. (18)

Substituting (18) into (5), (6) shows that equations (5a) (5c) and (6b) reduce to (10a), (10c) and (11b)
so that the TM components Hy, Ex, Ez have still the expressions (17), (17a) as for ß = 0. This statement
is easily justified, for instance, with respect to equation (5a) which becomes

∂zHy = −iωε/cEx −−ß2k2∂zNy = −iωε/cEx + O(ß2k2). (18a)

Now, taking into account (18), equations (5b), (6a) and (6c) become

∂zMx − ∂xMz = iωµ/cNy + A1; A1 = ∂zEx − ∂xEz (19a)

∂zNy = iωε/cMx −A2; A2 = ∂zHy (19b)

∂xNy = −iωε/cMz −−A3; A3 = ∂xHy, (19c)

from which we get the nonhomogeneous wave equation satisfied by Ny:

(∂2
x + ∂2

z + k2)Ny = iωε/cA1 − ∂zA2 − ∂xA3; (20)

and using (11b), (12) to explicit A1, A2, A3, gives
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(∂2
x + ∂2

z + k2)Ny = 2k2Hy − ∂xJz. (20a)

We look for the solution to (20a) in the form

Ny(x, z) = N(x) exp(iωz/v), (21)

and taking into account (4), (13) and (14) wave equation (20a) becomes

(∂2
x + λ2)N(x) = 2k2h(x)− j(x). (22)

According to (15) and (16) the solution to (22) is

N(x) = N1(x) + N2(x), (23)

where

N1(x) = −h(x) (23a)

N2(x) = (ik2/λ)
∞8

∫
−∞8

h(x′) exp(iλ|x− x′|)dx′. (23b)

Using additional results from Appendix A for x in the interval {(m− 1)πp/λ, (m + 1)πp/λ}, where m is
an arbitrary integer, we get

N2(x) = iqk2/2λ2[(λx−mπp) cos(λx)− (1− iπp) sin(λx], (m± 1)areevenintegers (24a)

N2(x) = iqk2/2λ2[(λx−mπp) cos(λx) + i{cos(λx) + πp sin(λx)}], (m± 1)areoddintegers.(24b) (24b)

Substituting (23) into (21) gives

Ny = −Hy + N2(x) exp(iωz/v); (25)

and according to (19b) and (19c),

Mx = c/εvN2(x) exp(iωz/v) (25a)

Mz = ic/εω∂xN2(x) exp(iωz/v). (25b)

Finally, substituting (25) and (25a) into (18) gives the TE components of the Cherenkov radiation inside
the Mach cone as
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Ey(x, z) = −(iωµß/c)[Hy −N2(x) exp(iωz/v)], (26)

Hx(x, z) = (iωß/v)N2(x) exp(iωz/v)], (26a)

Hz(x, z) = −ß∂xN2(x) exp(iωz/v)]. (26b)

So,

Hx/Hz = −iω
v

N2
∂xN2

= −i cos θ
(
1− cos2 θ

)−1/2 N2
∂xN2

,

(27)

where θ is the opening angle of the Mach cone. The presence of Hy in Ny makes the decoupling of TE and
TM components only partial.

4. Conclusions

To O(ß2k2) order, the electric field has the same expression as in achiral media with an identical Mach
cone, and the Cherenkov radiation takes place for superluminal velocities v > c/n and not superluminal
with respect to the chiral phase velocities (9).

The analysis of the Cherenkov radiation has been simplified with the help of two particular features: the
approximation of O(ß2k2), and the 2D dimensional space in which the point charge propagates.

To illustrate how we may get higher order approximations, we consider the approximation of O(ß3k3) for
TM components Ex, Ez, Hy with the TE components Hx, Hz, Ey given by (18), in which Mx, Mz, Ny are
expressions (25) and (25a). Noting E0

x, E0
z , H0

y are the solutions obtained in Section 2 for ß = 0, we write

Ex = E0
x + ß2k2E1

x, Ez = E0
z + ß2k2E1

z , Hy = H0
y + ß2k2H1

y , (28)

in which E0
x, E0

z , H0
y are solutions of equations (10a), (10c) and (11b) and Mx, Mz , Ny are solutions of

equations (19).
Then, the Maxwell equations (5a), (5c) and (6b) give the following equations for E1

x, E1
z , H1

y :

∂zH
1
y = −iωε/cE1

x − ∂zNy (29a)

∂xH
1
y = iωε/cE1

z + ∂xNy (29b)

∂zE
1
x − ∂xE

1
z = −iωµ/cH1

y + ∂zMx − ∂xMz , (29c)

from which it is easy to get a nonhomogeneous wave equation for H1
y with the Helmholtz operator (∂2

x+∂2
z +

k2); and giving the solutions in the form H1
y = h1(x) exp(iωz/v), a differential equation with the differential

operator (∂2
x + λ2) acting on h1(x) whose solutions are obtained with the Green’s function in (15).
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In the same way, we may use (18) to get the O(ß4k4) of the TE components, just by writing

Hx = H0
x + ß3k3H1

x, Hz = H0
z + ß3k3H1

z , Ey = E0
y + ß3k3E1

y , (30)

in which H0
x , H0

z , E0
y are expressions (26). Substituting (30) into equations (5b), (6a) and (6c) would

supply the equations satisfied by H1
x, H1

z , E1
y.

This process may be iterated to achieve higher order approximations. At any order, the approximations
E

(m)
y , H

(m)
y of the Ey, Hy components may be written

E(m)
y (x, z) = e(m)(x) exp(iωz/v), H(m)

y (x, z) = h(m)(x) exp(iωz/v), (31)

e(m)(x), h(m)(x) being solutions of a differential equation with the differential operator (∂2
x+ λ2) to order

m. So, to any order, the Cherenkov radiation takes place for the superluminal velocities v ¿ c/n.
We now discuss the second point mentioned earlier. Taking into account the divergence equations ∇·E =

∇ ·H = 0, we get for Ey, Hx, Hz, when ß = 0,

Ey = 0, Hx = ic/µω∂yEz, Hz = −ic/ωµω∂yEx; (32)

and while Ex, Ez are solutions of the differential equations,

∂2
yEx + n2ω2c−2Ex = iωµ/c∂zHy, ∂

2
yEz + n2ω2c−2Ez = −iωmµc∂xHy − Jz , (33)

with the nonhomogeneous wave equation for Hy being

(∂2
x + ∂2

y + ∂2
z + k2)Hy = ∂xJz , Jz = q1δ(x)δ(y) exp(iωz/v). (34)

In the chiral medium with ß 6= 0, and to order O(ß2k2), Ex, Ez, Hy are solutions of equations (33) and
(34), while components Ey, Hx, Hz become

Ey = iωµ/cßNy, Hx = H0
x + iωε/cßMx, Hz = H0

z + iωε/cßMz , (35)

with H0
x and H0

z given by (32). Calculations are only a bit more intricate than in a 2D-space to reach the
same conclusions.

Finally, it is interesting to investigate the role of the constitutive relations. Suppose [1]

D = εE + iξB, B = µH − iµξE. (36)

Then the 2D-Maxwell equations are

∂zHy = −iωε/cEx + ωµξ/c(Hx − iξEx), ∂zEy = iωµ/c(Hx − iξEx) (37a)

∂zHx − ∂xHz = iwe/cEy − ωµξ/c(Hy − iξEy), ∂zEx − ∂xEz = −iωµ/c(Hy − iξEy) (37b)
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∂xHy = iwe/cEz − ωµξ/c(Hz − iξEz) + Jz, ∂xEy = −iωµ/c(Hz − iξEz). (37c)

The O(ξ2) approximation of the Cherenkov radiation is discussed in Appendix B and we get, for instance,
for its TM components in which H0

x , E0
x , E0

z are the expressions (17), (17a),

Hx(x, z) = H0
x(x, z) + ξ exp[iλx + ωz/v)] (38a)

Ex(x, z) = Ex0(x, z)− cξ/εv exp[i(λx + ωz/v)] (38b)

Ez(x, z) = E0
z (x, z) + cξλ/ωε exp[i(λx + ωz/v)]. (38c)

These results complete those obtained with constitutive relations (1), because the O(ξ2) approximation
is less stringent than the O(ß2k2) approximation, since O(ξ2) does not call out the frequency ω through k.

Cherenkov radiation devices are extensively used in high energy physics as instruments for velocity
measurements, as mass analyzers when combined with momentum analysis and as discriminators against
slow particles [5]. According to the present analysis of Cherenkov radiation, the use of Cherenkov counters
in chiral media would not suffer any ambiguity since only one Mach cone intervenes. With the previous
analysis [1, 2], some ambiguity may arise because of the relative value of particle’s velocity with respect to
the two right handed and left handed phase velocities. We ignore whether an experiment has been performed
to check the properties of the Cherenkov radiation in a chiral medium.

Appendix A

Using the relation (37) for h(x), integral (23a) (rewritten here)

N2(x) = (ikr2/λ)
∞
∫
−∞

h(x′) exp(iλ|x− x′|)dx′ (23a)

becomes for x in the interval {t = (m− 1)π/λ, u = (m + 1)π/λ}, where m is an arbitrary integer,

N2(x) = (−qk2/2λ)
u

∫
t
dx′ sin(λx′) exp(iλ|x− x′|) (A.1)

= −(qk2/2λ)
x

∫
t
dx′ sin(λx′) exp[iλ(x − x′)]

−(qk2/2λ)
u

∫
x

dx′ sin(λx′) exp[iλ(x′ − x)]. (A.1a)

Now when m± 1 are even integers,

x

∫
t
dx′ sin(λx′) exp[iλ(x− x′)] = exp(iλx)/2i

x

∫
t
dx′[1− exp(−2λx′)] (A.2)
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= 1/2iλ [λx− (m− 1)π] exp(iλx)− 1/2iλ sin(λx) (A.2a)

and

u

∫
x

dx′ sin(λx′) exp[iλ(x′ − x)] = exp(−iλx)/2i
x

∫
t
dx′[exp(2λx′)− 1] (A.3)

= 1/2iλ[λx− (m + 1)π] exp(−iλx) − 1/2iλ sin(λx). (A.3a)

Substituting (A.2a) and (A.3a) into (A.1a) gives

N2(x) = (iqk2/2λ2)[(λx−mπ] cos(λx) − (1− iπ) sin(λx)]. (A.4)

For the case when m± 1 are odd integers, we have only to change −1/2iλ sin(λx) into 1/2λ cos(λx) in
(A.2) and (A.3) so that

N2(x) = (iqk2/λ2)[(λx−mπ] cos(λx) + i{cos(λx) + π sin(λx)}]. (A.5)

Appendix B

Neglecting the ξ2 terms in (37) gives this system of equations:

∂zHy = −iωε/cEx + ωξ2/cHx(B.1a), ∂zEy = iωµ/c(Hx − iξEx) (B.2a)

∂zHx − ∂xHz = iωε/cEy − ωµξ/cHy(B.1b), ∂zEx − ∂xEz = −iωµ/c(Hy − iξEy) (B.2b)

∂xHy = iωε/cEx − ωµξHz + Jz(B.1c), ∂xEy = −iωµ/c(Hz −−iξEz). (B.2c)

For ξ = 0 these equations reduce to systems (10), (11); the TE components are null and the TM
components, which are E0

x, E0
z , H0

y , have the expressions (17), (17a) and we write

Ex = E0
x + ξE1

x, Ez = E0
z + ξE1

z , Hy = H0
y + ξH1

y (B.3a)

Hx = ξH1
x, H = ξH1

z , Ey = ξE1
y . (B.3b)

To O(ξ2) order, and taking into account (B.3b), equations (B.2a), (B.2c) and (B.1b) become

∂zE
1
y = iωµ/c(H1

x − iE0
x) (B.4a)
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∂xE
1
y = −iωµ/c(H1

z − iE0
z ) (B.4b)

∂zH
1
x − ∂xH

1
z = iωε/cE1

y − ωµ/cH0
y . (B.4c)

Note that the component E1
y satisfies the wave equation

(∂2
x + ∂2

z + k2)E1
y = −2iω2µ2/c2H0

y . (B.5)

Looking for E1
y(x, z) in the form E1

y(x, z) = E(x) exp(iωz/v) gives the differential equation

(∂2
x + λ2)E(x) = 2iω2µ2/c2h(x), (B.6)

where h(x) is the function (16); and using (15)

E(x) = ω2µ2/λc2
∞
∫
−∞

dx′h(x′) exp(iλ|x − x′|); (B.7)

and taking into account (23a),

E(x) = −iω2µ2/k2c2N2(x), (B.8)

with N2(x) given by (A.4) and (A.5) so that

E1
y = −iω2µ2/k2c2N2(x) exp(iωz/v). (B.8a)

Substituting (B.8a) into the first two equations (B.4) gives H1
x and H1

z .
Similarly, taking into account (B.3a) and (B.3b), we get from (B.1a), (B.1c) and (B.2b) to O(ξ2) order,

since E0
x, E0

z , H0
y satisfy (10a), (10c) and (11b),

∂zH
1
y = −iωε/cE1

x, ∂xH
1
y = iωε/cE1

z ( (B.9)

∂zE
1
x − ∂xE

1
z = iωµ/cH1

y . (B.9a)

So, H1
y is a solution of the wave equation (∂2

x + ∂2
z + k2)H1

y = 0 with the solution

H1
y(x, z) = exp[i(λx + ωz/v); (B.10)

and substituting (B.10) into the firsf two relations (B.9) gives

E1
x(x, z) = −c/εv exp[i(λx + ωz/v), E1

z (x, z) = cλ/ωε exp[i(λx + ωz/v) (B.10a)

which allows, according to (B.3a), one to determine Ex, Ez and Hy.
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