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Abstract

Carbon has diverse structures, especially (0-dimensional) fullerenes, (1-dimensional) tubes have gen-
erated great interest among scientists and technologists. Studies of the structures and properties of these
low dimensional carbon molecules show tremendous potential for use in nanoscale device applications.
Motivated by these exciting possibilities in finding new forms of carbon materials and their potential
applications, we have designed hypothetical single wall carbon nano-toroids. Carbon toroids are also
ideal in studying the elastic and plastic deformation behavior of nanotubes under bending loads. We
can accurately correlate the behavior of the tubes to its uniform curvature. In this particular work we
focused on the rings of (10,10) tubes and studied their energetics, structure and mechanical properties as
a function of their toroidal radius. Especially important, we have observed specific strain release paths
for the toroids, i.e. the toroids going through plastic deformations and nucleating a number of kinks.
We have studied phase stability diagram of toroids with kinks as a function of ring radius.

1. Introduction

Carbon has diverse forms of structure [1, 2] both in nature and by lab synthesize. Three dimensional
diamond and two dimensional graphite sheet are the two well-known forms. In the past decade, the dis-
coveries of zero dimensional bucky balls [3—7] and one dimensional bucky tubes [8, 9] have generated great
interests among researchers. Studies of the structures and properties of low-dimensional carbon molecules,
theoretical [10-13] and experimental [14—18] showed tremendous potential use of nano scale carbon material
as components of electro-magnetic devices, or high yielding materials. Among them, experiments done by
Dai [19] and Wang [20] illustrated the potential use of carbon nano tube as scanning microscopic probe.
Motivated by these exciting development in finding new forms of carbon materials and studies of their prop-
erties, among others [21, 22] we proposed and designed a hypothetical carbon molecules, single walled carbon
nano toroids [23]. Carbon toroids system is an ideal model for studying the behavior of single walled nano
tubes under bending. We can accurately correlate the behavior of the tubes to its uniform curvature. Since
then various groups has observed circular ropes of single wall carbon nanotubes [24, 25]. From technological
applications point of view, pure, or doped (inside the tube by other elements) forms of carbon toroids could
be synthesized and find its use as components of electro-magnetic devices or micro machines, e.g., as nano
conducting rings. They are expected to have interesting diamagnetic properties as well [26].

The carbon toroid can be characterized by three integers (n,m, ), where (n, m) defines the single-walled
nano tube that is used to construct the toroid, while [ is the number of the smallest repeating units along
tube axis. We investigated the mechanical property of carbon toroids to investigate the bending of (10, 10)
single-walled carbon nano tube.
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Figure 1. Starting structure of two toroids with different radii, the smallest stable toroid and the largest toroid used
in our calculation.

2. Methods and Results

2.1. Force Field Parameters Used for Carbon Nano Toroids

We generated toroids with radius from 19.43 A that is (10, 10, 100) with 2,000 atoms, to 388.69 A, (10,
10, 2000) with 40,000 atoms. Based on the molecular simulation force field (MSFF) [27], their structures are
optimized by using molecular mechanics and molecular dynamics. Developed for graphite and fullerenes,
MSFF was proved to be very accurate in calculating vibration frequencies and predicting experimental
structures. The parameters are listed in Table and Figure 1 show the initial structures of two toroids,
R=38.87 A of (10, 10, 200), and R=388.7 A of (10, 10, 2000).

The Van der Waals energy is given through Lennard-Jones form

1 2
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where p = .= and r, is the separation at minimum energy, and r is the distance between two atoms. The

bond stretch’ energy defined via shifted Morse potential:
Eyona = Dy(x — 1)%,

with y = e~("=") 1y is the equilibrium bond length and  is the current bond length. Angle bending energy
is the sum of harmonic bending and stretch-bend coupling;:

1
Eingle = 5/{9 (cost — 005911)2 + k1g(r1 — r10)(cost — cosb,,) (1)
+koo(re — 1r29)(cosO — cos0y) + k12(r1 — r19)(r2 — 129) (2)
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Table. Force Field Parameters for the carbon nanotube.

Van der Waals R, D, Bond Te ke Ey
C 3.8050 0.06920 C-C 1.4114 720.0 133.0
Angle o ko k1o koo k12
C-C 120.0 196.13  -72.410 -72.410 68.0
Torsional V., Vi Vs
C-C-C-C 10.64 0.0 -10.64

Strain energy per atom versus 1/R”
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Figure 2. Strain energy per atom versus curvature

where kg, k19, k29, and k12 are the bond stretch and stretch-bend force constants defined for the angle 6 with
equilibrium value 6, and ryg, 29 are the equilibrium bond lengths for the first and second bonds forming
the angle §. Finally, the dihedral angle energy between four bonded atoms is given by

Edinedral = Vo + Vicosg + Vacos(29),

as the truncated Fourier expansion up to second order, V,, V7 and V5 are the expansion coefficients.

2.2. Structures of Toroids

Toroids with small radius are highly strained. To stabilize the structure, harmonic bond interactions are
used at the early stage of the minimization. The more accurate Morse potential that allows bond breaking are
then used at the latter stage of minimization. By doing so, we can avoid the bias built in when the starting
structure was created. This is important for tracking down the transition radius that separates stable toroids
(though highly strained) from the unstable toroids (under Morse bond interaction, the structure flies apart).
Figure 2. is the strain energy per atom (relative to infinite long straight (10, 10) tube) versus %. For
toroids with different radius, different final structures resulted. In the plot, we can identify three transition
radii, associated with four structural regions.
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Figure 3. Snapshots of structural minimization; numbered according to the minimization stages to illustrate nucle-
ation of small buckles into large buckle

For toroids with radii larger than R, = 183.3 A (corresponds to (10, 10, 943) toroid with 18,860 atoms),
after molecular dynamics simulation and energy minimization, smooth toriod is the only stable structure.
This corresponds to the elastic bending of isolated (10, 10) tube.

For toroids with radii smaller than R, = 183.3 A and larger than 109.6 A ((10, 10, 564) with 11280 atoms),
the optimum structures obtained through minimization are smooth toroids without buckles. However, after
20 ps of molecular dynamics equilibration at 300 K, numerous small dents appeared along the inner wall. Take
a snapshot of dynamics trajectory as the starting point of structural minimization, we found an interesting
phenomena. During the minimization, small dents diffused along the inner tube and nucleated into larger
dents when they meet. This nucleation of deformations continues, until the optimum structure resulted.
The optimum structures usually have a number of buckles almost uniformly spaced along the tube.

In Figure 3 displayed are the snapshots at the late stage of minimization for (10, 10, 564) (toroid with
radius of 109.6 A and 11280 atoms). Looking at the lower left quarter of each ring, we can clearly identify
the diffusion of small dents. These small dents eventually moved toward the larger dent as the minimization
progresses, and combined with the large dent. The snapshots are numbered according to the minimization
sequence. Snapshot with smaller numbering represents structure at earlier stage of minimization. Comparing
to the smooth toroids, these structures have lower strain energy per atom. This is due to the stretching
of the outer surface and compression of the inner surface. Knee like buckle relaxes compression over large
region at the expense of increased local strain.

Figure 4 represents a close look at a buckle, which is cut out from a optimized toroid with one buckle.
At the center of the buckle, tube wall collapsed completely. The closest distance between atoms in opposite
tube walls is 3.3 A, comparable to the distance between adjacent layers of graphite. A short distance away
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Figure 4. Close look at a buckle

from the collapsed point, the tube stays almost circular. Rooms created for the inner wall at the buckles
relax the stretch and compression along the rest of the toroid.

There is a strong correlation between the number of buckles and the curvature of the toroids. The higher
the strain (curvature) is, the more buckles appeared in the final structure of minimization. However, for
each toroid within this region, there are many stable final structures with different number of buckles, each
resulted from different starting structure. This suggests that there exist many meta stable structures for
toroids in this region. The fact that the curves towards small radius in Figure 2 are not smooth suggests
that we are not connecting the points with optimum number of buckles. Generally, if we increase the radius
(thus reduce strain) we get structures with smaller number of buckles and when we approach the smooth
region, we should get only structures with single buckle.

In order to track down the transition point, we created structures with different number of buckles as
starting point of minimization. The buckles are uniformly distributed along the circumferences. To create
a buckle, we added artificial harmonic constraint on two atoms in the opposite wall of the tube to pull
together the inner wall and the outer wall. After the structures are minimized to lower RMS force, where
the structures are stable under Morse bond interaction, we remove the constraints and switch harmonic
bond potential back to Morse potential to further optimize the structures. We could just heat up the initial
structures by using molecular dynamics and then anneal them down to zero temperature. However, given
the size of the toroids in the transition, the long time that takes to anneal each structure, and the fact that
there could be several stable structures associated with different number of buckles, it is impractical to do
S0.

Figure 5 shows the transition region where smooth toroids and toroids with different number of buckles
co-exist. Points with same number of buckles are connected into lines. It clearly shows the overlap and
shifts of lines with different number of buckles. Towards the transition point beyond which smooth toroids
resulted, we are able to create stable structures with four buckles, three buckles, two buckles and one buckle.
At region close to the transition radius R, only the one buckle toroids have the smallest strain energy per
atom. Figure 6 shows the buckled structures in this region.

If we further increase the curvature (decrease radius), at Rx=109.6 A, (corresponds to (10, 10, 564)
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Figure 5. Strain energy per atom versus &z at the transition region where smooth toroids and toroids with different

number of buckles co-exist

Figure 6. Optimized carbon toroids with 1, 2, 3, and 4 buckles. The single buckle toroid has 16,800 carbon atoms.
Denoted as (10,10,840), the radius of its circular form is 163.3 A. The double-buckle toroid has 16,400 carbon atoms,
(10,10,820), its radius of circular form is 159.4 A. The triple-buckle toroid has 18,000 atoms, (10,10,900), radius of
its circular form is 174.9 A. The toroid with four buckles has 14,400 atoms, (10,10,720), radius of its circular form is
139.9 A.
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toroid with 11,280 atoms), only toroids with various number of buckles exist. At even higher curvature,
the toroids are flatterned. In this region, there are no smooth toroids, due to the high strain built in the
compression of inner wall and tension of the outer wall. Further decrease the radius down to the point of
Ry=38.9 A (corresponds to (10, 10, 200) toroid with 4,000 atoms), the structure breaks and atoms fly apart
in the course of minimization. Figure 7 shows toroids with more than eight buckles to the smallest toroid
that can stand the built in strain.

R=S03A

Figure 7. A Collection of buckled toroids

2.3. Mechanical Properties

Consider the (10, 10) tube as thin elastic rods, then the toroids are rings of thin rods. Assuming & as
the Young’s modulus of the (10,10) tube, I as the moment of inertia about the axis parallel to tube cross
section, the strain energy of the rings are given by

1 1

1 2
Estrazn - 5'%[/(? - R_o) dl;
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where .
Iy :/$2df: §/T2df: %(T?)ut _T?n)'

Taking 7ou: = 16.70 A, the inter-tube distance of (10, 10) SWNT crystals, r;, = 10.5 A, which assumes 13.6
as the radius of (10, 10) tube, we get Young’s modulus of the 913 GPa for toroids of large radius.

3. Concluding Remarks

We have investigated energetics and structures of (10, 10, n) toroids, three transition radii are found
that define the regions with different stable structures. Below R,=38.9 A, there is no stable (10,10,1) single
wall nano rings, between R,=38.9 A and R,=109.6 A only the toroids with buckles are stable. With
R,=183.3 A, between Ry and Rs both circular and kinked structures are stable. In this region the kinked
ones are energetically more favorable. Above R, the circular structures are energetically favorable, but
structures with kinks are also possible. The optimum number of buckles for each structure evolves through
the propagation of buckles and their coalescence to new ones on the inner portion of the tori. Based on
classical elastic theory analysis, we calculated the modulus of different regions. The calculated Young’s
modulus along the tube axis of (10,10) tube is found to be 913 GPa from these calculations.
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