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Department of Physics, Middle East Technical University, 06531 Ankara-TURKEY

e-mail: erkoc@erkoc.physics.metu.edu.tr

Received 18.07.2006

Abstract

A brief introductory information about the accurate atomic calculations using Density Functional
Theory has been reviewed. How relativistic effects can be considered in atomic calculations through the
density functional theory has been discussed. Some sample calculation results for the autoionization
states of the neutral and cationic atoms have been presented.

1. Introduction

The Newtonian assumption that the probe (light or photon) does not interact with the object of mea-
surement is not valid in the microscopic world, because of uncertainty principle. Quantum mechanics was
invented to overcome the difficulties introduced by the uncertainty principle. This is what leads to a prob-
abilistic picture in quantum mechanics. The fundamental equation in quantum mechanics, the Schrödinger
equation, Hψ = Eψ, is obtained by inserting the operators for the position and energy in the classical
Hamiltonian energy expression; pα → −ih̄ ∂

∂α
, α = x, y, z; E → ih̄ ∂

∂t
. The Hamiltonian for a particle is

given in classically, by

H =
1

2m
(p2

x + p2
y + p2

z) + V (1)

substituting the appropriate operators for the momenta and energy we get the time–dependent Schrödinger
equation:

− h̄2

2m

(
∂ψ

∂x2
+

∂ψ

∂y2
+

∂ψ

∂z2

)
+ V ψ = ih̄

∂ψ

∂t
(2)

If ψ does not depend on time, then the energy E is a constant of the system, then we obtain the time–
independent Schrödinger equation:

− h̄2

2m

(
∂ψ

∂x2
+

∂ψ

∂y2
+

∂ψ

∂z2

)
+ V ψ = Eψ (3)

All quantum mechanical expressions, operators, and equations can be obtained from their classical
expressions by simply replacing the appropriate operators. Both time–dependent and time–independent
Schrödinger equations cannot be relativistic, since they were derived with the assumption that the kinetic
energy is given by

T =
1

2m
(p2

x + p2
y + p2

z) (4)

However, in relativistic quantum mechanics the kinetic energy is no longer given by this expression, since
the mass of a particle is a variable of the speed. The relativistic kinetic energy operator is different from
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the nonrelativistic quantum mechanical kinetic energy term. The potential energy term is also different in
relativistic picture. The Schrödinger equation is not Lorentz–invariant. Any physically acceptable relativistic
wave equation must treat the spatial (space) and temporal (time) coordinates on equal footing, and must
be Lorentz–invariant [1].

2. The Klein–Gordon Equation

In 1926 several physicists proposed such equations to treat relativistic quantum–mechanical problems.
The energy of a free particle is given by

E =
√

p2c2 + m2
0c

4 (5)

Substituting p → −ih̄∇, and E → ih̄ ∂
∂t

and then operating on a wavefunction ψ(x, y, z, t), we obtain

ih̄
∂ψ

∂t
=

√
−h̄2c2∇2 + m2

0c
4ψ (6)

This form has some difficulties in solutions, the presence of a square–root term with the Laplacian operator
poses some problems. A logical starting point is to use the square of the relativistic energy expression,

E2 = p2c2 + m2
0c

4 (7)

This was done by Klein and Gordon [2], independently among several others, and hence came to be known
as the Klein–Gordon equation [3,4],

−h̄2 ∂2ψ

∂t2
= (−h̄2c2∇2 + m2

0c
4)ψ (8)

This equation can be expressed in a more convenient form by the introduction of the operator

✷ =
1
c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(9)

The wave equation then can be written as

(h̄2
✷ + m2

0c
2)ψ(x, y, z, t) = 0 (10)

or, in relativistic units (h̄ = 1, c = 1)

(✷ + m2
0)ψ(x, y, z, t) = 0 (11)

This equation is known as the Klein–Gordon equation for a free particle in the absence of any electromagnetic
field. The solution of this equation yields a relativistic scalar wavefunction for a free particle. Klein–Gordon
equation is Lorentz–invariant. For a free particle the solution is in plane–wave form (if ψ depends only on
x and t):

ψ(x, t) = e
i
h̄ (p0t−p·x) (12)

cp0 = E = ∓
√

c2p2 + m2
0c

4 (13)

The Klein–Gordon equation for a charged particle moving in a static Coulomb field, represented by the wave
function

ψ(r, t) = u(r)e−iEt (14)

is in the form
∇2u = [m2

0 − (E − eϕ)2 ]u (15)

Taking

u(r) = R(r)Ylm(θ, φ) , eϕ(r) = −Ze2

4πr
, α =

e2

4π
≈ 1

137
(16)
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1
λ

= Zeα , ρ =
r

λ
, E = (m2

0 −E2)λ2 > 0

the differential equation becomes[
d2

dρ2
+

2
ρ

d

dρ
− ε +

Z

ρ
− l(l + 1) − Z2α2

ρ2

]
U(ρ) = 0 (17)

where U(ρ) = R(r). The energy expression becomes

E = m0


1 +

Z2α2

[nr + 1
2

+
√

(l + 1
2
)2 − Z2α2]2




−1/2

(18)

The Klein–Gordon equation for the Coulomb field requires that

(Zα)2 ≤ (l +
1
2

)2 (19)

This means for the minimum value of Z, which occurs when l = 0,

Z >
1

2α
or Z > 69. (20)

That is if Z > 69, the energy eigenvalue can become complex for the s orbitals, and thus the solution of
the Klein–Gordon equation suggests that an atom cannot exist with Z > 69, as this would lead to complex
energy eigenvalues. Therefore, it is clear that the Klein–Gordon equation does not yield satisfactory results
for an electron in a Coulomb field. The problem is that an electron is a spin 1/2 particle; one must treat
the angular momentum as a four–vector. Thus, the wave function of any spin particle, in general, cannot
be described by a simple scalar wave function, one needs to seek a vectorial solution for the wave function
in relativistic quantum mechanics of any particle possessing spin.

3. The Dirac Equation

Dirac in 1928 proposed a relativistic quantum–mechanical equation, now well known as the Dirac equa-
tion. Dirac proposed a first–order differential equation in both temporal and spatial coordinates. Dirac
assumed that the relativistic wave function ψ consists of n components for a general positive integer n;
subsequently, it will be established that n is 4 [1]. Thus ψ is treated as a n–dimensional column vector
with components ψ1, ψ2, · · · , ψn. The general first–order differential equation in both spatial and temporal
coordinates looks like:

1
c

∂ψl

∂t
+

3∑
k=1

n∑
i=1

αk
li

∂ψi

∂xk
+

im0c

h̄

n∑
i=1

βliψi = 0 (21)

where l = 1, 2, · · · , n. α and β are dimensionless constants.
The Dirac equation is obtained once n and the matrices α and β are determined. This is accomplished

by stipulating that (a) the continuity equation for the charge density current be satisfied and (b) the free–
particle solution satisfies the free–particle Klein–Gordon equation. The matrices α and β are constructed as
follows:

αk =
[

0 σk

σk 0

]
, β =

[
I 0
0 I

]
(22)

where

I =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 i
−i 0

]
, σ3 =

[
1 0
0 −1

]
(23)

σk are Pauli matrices.
The Dirac equation for a free particle in the absence of any external field takes the form [1]

1
c

∂ψ

∂t
+ (α · ∇)ψ +

im0c

h̄
βψ = 0 (24)
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or (considering p → −ih̄∇ , E → ih̄ ∂
∂t

[c(α · p) + βm0c
2]ψ = Eψ (25)

Therefore, we derive the Dirac Hamiltonian for a free particle in the absence of any external field as

H = c(α · p) + βm0c
2 (26)

The Dirac equation, as well as the Dirac Hamiltonian, is a 4 × 4 matrix equation. Consequently, the
wavefunction is also a column vector of length 4. This four–component wave function is called a spinor.
Using the relations γk = −iβαk, k = 1, 2, 3, and γ4 = β, Dirac equation can be simplified further, (in
relativistic units, that is h̄ = 1, c = 1)

(γµ
∂

∂xµ
+ m0)ψ = 0 , µ = 1, 2, 3, 4 (27)

The explicit form of the four equations in terms of spinors:

(
∂

∂t
+ im0)ψ1 + (

∂

∂x
− i

∂

∂y
)ψ4 +

∂

∂z
ψ3 = 0 (28)

(
∂

∂t
+ im0)ψ2 + (

∂

∂x
+ i

∂

∂y
)ψ3 −

∂

∂z
ψ4 = 0 (29)

(
∂

∂t
− im0)ψ3 + (

∂

∂x
− i

∂

∂y
)ψ2 +

∂

∂z
ψ1 = 0 (30)

(
∂

∂t
− im0)ψ4 + (

∂

∂x
+ i

∂

∂y
)ψ1 −

∂

∂z
ψ2 = 0 (31)

For free electron we seek a plane–wave solution for each component. Thus the following form for the
components is taken:

ψµ = Aµe
i(p·r−Et) (32)

The expression for energy, E, takes the following form:

[E2 − m2
0 − (p2

1 + p2
2 + p2

3)]2 = 0 (33)

or
E∓ = ∓

√
p2
1 + p2

2 + p2
3 + m2

0 (34)

The Dirac equation for a charged particle in an electromagnetic field is given as

(γµΠµ − im0)ψ = 0 (35)

This equation explicitly splits into the following four equations in terms of the four components,

(−i
∂

∂t
− eϕ + m0)ψ1 + Π−ψ4 + Π3ψ3 = 0 (36)

(−i
∂

∂t
− eϕ + m0)ψ2 + Π+ψ3 − Π3ψ4 = 0 (37)

(−i
∂

∂t
− eϕ + m0)ψ3 + Π−ψ2 + Π3ψ1 = 0 (38)

(−i
∂

∂t
− eϕ + m0)ψ4 + Π+ψ1 − Π3ψ2 = 0 (39)

where
Π∓ = Π1 ∓ iΠ2 (40)

Πk = −i
∂

∂xk
+ eAk (k = 1, 2, 3) (spatial conjugate) (41)

Π4 = − ∂

∂t
+ ieϕ (temporal conjugate) (42)
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4. The Dirac Equation for the Hydrogen Atom

The Dirac equation for the hydrogen atom becomes a special case of the general Dirac equation for a
charged particle in an electromagnetic field [1,3]. In the case of hydrogen atom we have A = 0, ϕ(r) = Ze

4πr
.

The appropriate relativistic momenta operators for the hydrogen atom are given by

Π∓ = p∓ = −i

(
∂

∂x
∓ i

∂

∂y

)
, Π3 = p3 = −i

∂

∂z
(43)

For bound electronic states, we have
E = ω + m0 = ω + E0 (44)

where ω < 0 for bound states.

The four differential equations for the components of the spinor reduce to following equations:

−(E +
Ze2

4πr
−E0)φ1 + p−φ4 + p3φ3 = 0 (45)

−(E +
Ze2

4πr
−E0)φ2 + p+φ3 − p3φ4 = 0 (46)

−(E +
Ze2

4πr
+ E0)φ3 + p−φ2 + p3φ1 = 0 (47)

−(E +
Ze2

4πr
+ E0)φ4 + p+φ1 − p3φ2 = 0 (48)

For the hydrogen atom, which possesses a single electron, two cases arise for a given orbital angular–
momentum quantum number. Only j is a good quantum number in the relativistic quantum picture, and
for a given l there are two possible j values:

j = l +
1
2

(case I) , j = l − 1
2

(case II) (49)

in both cases we have the condition −j ≤ m ≤ j.

For case I, j = l+ 1
2 , the components φ1 and φ2 have to be chosen, because these are the large components

for the hydrogen atom in stationary states, φ3 and φ4 are small components and these correspond to positive
energy states. These conditions yield the first two components as

φ1(r, θ, φ) = g(r)

√
l + m + 1

2

2l + 1
Yl,m− 1

2
(θ, φ) (50)

φ2(r, θ, φ) = −g(r)

√
l −m + 1

2

2l + 1
Yl,m+ 1

2
(θ, φ) (51)

where g(r) is a radial function, which is yet to be determined by solving the Dirac equation. Inserting φ1

and φ2 in the last two equations one gets two equations which depend only on φ3 and φ4. We therefore seek
the following forms for the third and fourth components:

φ3(r, θ, φ) = −if(r)

√
l − m + 3

2

2l + 3
Yl+1,m− 1

2
(θ, φ) (52)

φ4(r, θ, φ) = −if(r)

√
l + m + 3

2

2l + 3
Yl+1,m+ 1

2
(θ, φ) (53)
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where the function f(r) is yet to be determined. The relation between f(r) and g(r) can be find substituting
the spinor components into the four differential equations, then we obtain the following two differential
equations:

(E +
Ze2

4πr
+ E0)f(r) =

dg

dr
+ (l + 1)

g

r
(54)

(E +
Ze2

4πr
− E0)g(r) = −df

dr
+ (l − 1)

f

r
(55)

It is convenient to express these differential equations in terms of a new quantum number, called the rela-
tivistic quantum number κ, defined as follows:

κ =
{

−(j + 1
2) = −(l + 1) if j = l + 1

2
+(j + 1

2) = l if j = l − 1
2

(56)

In terms of the relativistic quantum numbers, the radial differential equations become:

df

dr
+ (1 − κ)

f

r
+ (E +

Ze2

4πr
−E0)g(r) = 0 (57)

dg

dr
+ (1 + κ)

g

r
− (E +

Ze2

4πr
+ E0)f(r) = 0 (58)

The relativistic quantum number κ introduced above can take both positive and negative integral values,
but κ cannot be zero. For each nonzero κ, there are 2|κ| eigenfunctions with the magnetic quantum number
m varying as

m = −(|κ| − 1
2

) , − (|κ| − 3
2

) , · · · , |κ| − 3
2

, |κ| − 1
2

(59)

The radial functions f(r) and g(r) can be obtained by solving the two coupled differential equations. We
introduce functions F and G as F (r) = rf(r), G(r) = rg(r). Substituting these back into the differential
equations we obtain

dF

dr
− κ

F

r
= [m0(1 − ε) − β

r
]G (60)

dG

dr
+ κ

G

r
= [m0(1 + ε) +

β

r
]F (61)

where the dimensionless constants are defined as

ε =
E

m0
, α =

e2

4π
∼ 1

137
, β = Zα (62)

We introduce another dimensionless variable parameter ρ as

ρ = 2m0

√
1 − ε2r (63)

and introduce the functions u and v, defined as

F (ρ) =
√

1 − εe−
1
2ρργ(u− v) (64)

G(ρ) =
√

1 + εe−
1
2ρργ(u + v) (65)

where γ is a constant yet to be determined. To employ the power–series method to the coupled differential
equations, we take

u =
∞∑
s=0

asρ
s , v =

∞∑
s=0

bsρ
s (66)

On substituting these power series for u and v in the coupled differential equations we get the determinant
of the coefficient matrix for nontrivial solutions:∣∣∣∣∣ γ + βε√

1−ε2
κ + β√

1−ε2

κ− β√
1−ε2

γ − βε√
1−ε2

∣∣∣∣∣ = 0 (67)
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From this determinant we obtain two solutions for γ:

γ = ∓
√

κ2 − β2 = ∓
√

κ2 − Z2α2 (68)

The negative root is not physical, we use the positive root as solution. To obtain the functions u and v, we
eliminate bs from the two equations. This yields

as =
s + γ − (βε/

√
1 − ε2)

(s + γ)2 − γ2
as−1 (69)

The power series must terminate for some value of s = n′: an′ = 0 (n′ = positive integer), an′−1 �= 0. This
yields

n′ =
βε√

1 − ε2
− γ (70)

Another positive quantum number n is introduced as follows:

n = n′ + |κ| or n = n′ + j +
1
2

(71)

The energy levels then can be obtained as

β2ε2

1 − ε2
= (n′ +

√
κ2 − Z2α2)2 (72)

or

ε =




√√√√√1 +


 Zα

n− j − 1
2 +

√
(j + 1

2)2 − Z2α2




2



−1

(73)

The energy depends only on n and j. The power factor γ becomes imaginary if Z > 137, as seen below:

γ =
√

κ2 − Z2α2 since κ2 ≥ 1 Z2α2 ≤ 1 , Z ≤ 1
α

or Z ≤ 137. (74)

That is, the Dirac solution for the hydrogen atom implies that atoms with Z > 137 cannot exist. This result
is an outcome of the point charge nucleus assumed in deriving the Coulomb potential.

Here we note some interesting analogies between the Dirac radial functions and the nonrelativistic
Schrödinger radial functions. In the case of the Dirac radial wave functions, we have the apparent prin-
ciple quantum number N instead of the Schrödinger principle quantum number n. The relativistic quantum
number κ replaces the nonrelativistic l quantum number. In the nonrelativistic limit, that is

Lt = c → ∞ , α =
e2

h̄c
∞0 (75)

Therefore, the Dirac wave function should reduce to the Schrödinger wave function for the hydrogen atom,
if we set α to zero in the Dirac wave function. Neglecting the fine–structure constant leads to N = n, ε = 1,
|κ| = l. The function f(r) vanishes, the four–component Dirac spinor wave function results in a simple
single–component wave function in the nonrelativistic limit. The explicit form of the first few low–lying
energy levels are in the following form (here we take m0c = E0):

1S 1
2

state: n = 1 , l = 0 , j =
1
2

, κ = −1 : E =
E0√

1 + [(Zα)2/
√

1 − (Zα)2]
(76)

2S 1
2

state: n = 2 , l = 0 , j =
1
2

, κ = −1 : E =
E0√

1 + [(Zα)2/(1 +
√

1 − (Zα)2)]
(77)
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2P 1
2

state: n = 2 , l = 1 , j =
1
2

, κ = 1 : E =
E0√

1 + [(Zα)2/(1 +
√

1 − (Zα)2)]
(78)

2P 3
2

state: n = 2 , l = 1 , j =
3
2

, κ = −2 : E =
E0√

1 + [(Zα)2/
√

4 − (Zα)2]
(79)

For n = 2, the energies of the 2S 1
2

and 2P 1
2

energy levels within the Dirac theory are degenerate. The
difference between the 2P 1

2
and 2P 3

2
states is the spin–orbit splitting of the 2P state of the hydrogen atom.

In nonrelativistic Schrödinger theory there is no difference between the energies of these two states. The Dirac
theory thus includes the spin–orbit coupling. In the Schrödinger theory, there are n2 linearly independent
eigenstates for a given principle quantum number n; in Dirac’s theory, we have 2n2 eigenstates, since for
each electron we have two possible spins.

5. Breit Equations for Two–Electron Problem

The relativistic Hamiltonian for the two–electron problem can be written in terms of the one–electron
Dirac Hamiltonian for each electron, and an interaction term for the two electrons.

H = H1 + H2 + H12 (80)

Hi = cαi · (pi + eAi) + βm0c
2 − eϕ(ri) (81)

Non–relativistically, the H12 term corresponds to the electron–electron repulsion term. However, relativis-
ticly, this is not an acceptable two–electron term, since the Coulombic repulsion term of the form H12 = e2

r12
is not Lorentz–invariant.

Derivation of a fully covariant form for the two–electron system involves quantum–electrodynamic treat-
ment of the problem. A fully covariant derivation of the relativistic two–electron problem leads to an equation
called the Bethe–Salpeter equation, which is Lorentz–invariant. A somewhat approximate treatment, by way
of truncation of an expansion, leads to the Breit equation for the two–electron problem [3]:{

H1 + H2 +
e2

r12
− e2

2r12

[
α1 · α2 +

(α1 · r12)(α2 · r12)
r2
12

]}
Ψ = EΨ (82)

where Hi are the one–electron Dirac Hamiltonians of the form

Hi = cαi · (pi + eAi) + βim0c
2 − eϕ(ri) (83)

where αi and βi are the Dirac matrices for the ith electron. The Breit equation is not Lorentz–invariant
because it is correct only to order α4. The exact Hamiltonian contains terms involving higher orders of the
fine–structure constant.

The two–electron relativistic spinor wave function is somewhat more complex in that it has 16 compo-
nents. A typical 16–component two–electron spinor can be written in a four–component representation as
follows:

Ψ =




ψ++

ψ+−
ψ−+

ψ−−


 (84)

where ψ++ is a four–component spinor, for which both electrons have positive energies, and so on for the
other components. A somewhat extended form of the approximate two–electron Hamiltonian, which includes
terms up to O(α4), is called the Breit–Pauli Hamiltonian [3,4]. The various terms in the Breit–Pauli two–
electron Hamiltonian can be arranged and interpreted as follows:

H = H0 + H1 + H2 + H3 + H4 + H5 + H6 (85)
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H0 =
1
2

(p2
1 + p2

2) − eV (86)

H1 = − 1
8m3c3

(p4
1 + p4

2) (87)

H2 = − e2

2m2c2

[
p1 · p2

r12
+

(r12 · p1)(r12 · p2)
r3
12

]
(88)

H3 =
µ

mc

{[
E1 × p1 +

2e
r3
12

(r12 × p1)
]
· s1 +

[
E2 × p2 +

2e
r3
12

(r12 × p2)
]
· s2

}
(89)

H4 =
ieh̄

4m2c2
(p1 · E1 + p2 · E2) (90)

H5 = 4µ4

{
−8π

3
(s1 · s2)δ3(r12) +

1
r3
12

[
s1 · s2 − 3

(s1 · r12)(s2 · r12)
r2
12

]}
(91)

H6 = 2µ(B1 · s1 + B2 · s2) +
e

mc
(A1 · p1 + A2 · p2) (92)

where

V =
Ze

r1
+

Ze

r2
− e

r12
+ ϕ1(r1) + ϕ2(r2) (93)

p1 = −ih̄∇1 , p2 = −ih̄∇2 , µ =
eh̄

2mc
, si =

1
2
σi (94)

E1 = −∇1V , E2 = −∇2V (95)

In these expressions, ϕ1(r1) and ϕ2(r2) are the scalar external potentials due to electrons 1 and 2, while A1

and A2 are the external vector potentials due to electrons 1 and 2, respectively. The terms in the Breit–Pauli
Hamiltonian are interpreted as follows:

H0 is the non–relativistic Schrödinger Hamiltonian for the two–electron system.

H1 is the mass–velocity term attributed to relativistic correction arising from the variation of the mass
of the electron with its speed.

H2 is the relativistic retardation due to the electromagnetic field generated by an electron.

H3 is the spin–orbit coupling term. This corresponds to the interaction between the spin magnetic mo-
ment and the orbital magnetic moment of the electron.

H4 is called the Darwin correction term, it is a relativistic correction in Dirac’s theory, it arises from
the smearing of the charge of the electron due to its relativistic motion.

H5 arises from the interaction of the spin magnetic moments of two electrons, and constitutes a dipole–
dipole interaction between the two spin magnetic moments, and a Fermi–contact type interaction.

H6 is an interaction term with the external electromagnetic field.

6. Breit–Pauli Approximation to the Multielectron Problem

The Breit–Pauli Hamiltonian for the two–electron problem expressed above can be generalized for a
multielectron problem. The multielectron Breit–Pauli Hamiltonian is written as

H = H0 + H1 + H2 + H3 + H4 + H5 + H6 (96)
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H0 =
∑
i

(
p2
i

2m0
− Ze2

ri

)
+

∑
i<j

e2

rij
(97)

H1 = − 1
8m3

0c
3

∑
i

p4
i (98)

H2 = − e2

2m2
0c

2

∑
i<j

[
pi · pj

rij
+

(rij · pi)(rij · pj)
r3
ij

]
(99)

H3 =
µ

m0c

∑
i

si ·


Ei × pi +

∑
i<j

2e
r3
ij

(rij × pj)


 (100)

H4 =
ieh̄

(2m0c)2
∑
i

(pi ·Ei) (101)

H5 = 4µ2




∑
i<j

[
si · sj
r3
ij

− 3
(si · rij)(sj · rij)

r5
ij

− 8π
3

(si · sj)δ3(rij)

]
 (102)

H6 = 2µ
∑
i

Bi · si +
e

m0c

∑
i

Ai · pi (103)

µ =
eh̄

2m0c
, Ei = ∇iV , V = −Ze2

∑
i

1
ri

+ e2
∑
i<j

1
rij

(104)

in these equations pi is given by pi = −i∇i (without the h̄ term).

The Breit–Pauli Hamiltonian given above, as well as the Breit interaction term, are not Lorentz–invariant,
since they are approximations to a fully covariant multielectron relativistic wave equation. Methods have
been developed for fully covariant representation of the interaction between two relativistic electrons using
quantum–electrodynamic methods. The formulation by Bethe and Salpeter is one such equation [3]. How-
ever, it is not a popular choice for practical solutions to heavy atoms, because of the numerical complexities
it leads to in practical applications.

7. Relativistic Hamiltonians for Multielectron Systems

The Dirac Hamiltonian for a multielectron atom can be written as

HD =
∑
i

hD(i) +
∑
i<j

1
rij

(105)

where hD(i) is the one–electron Dirac Hamiltonian

hD(i) = (αi · pi + βic
2 − Z

ri
) (106)

This Hamiltonian ignores the two–electron relativistic Breit interaction. Introduction of the Breit interaction
as a perturbation shows that it is very small in the valence region, and more important for the properties of
core electrons.

Since the one–particle Dirac Hamiltonian involves 4×4 matrices instead of scalar functions, the solution
of the Dirac equation is a vector of four components (a four–component spinor), which takes the form

ψnkm =
1
r

[
Pnk(r) χkm(θ, φ)
iQnk(r) χ−km(θ, φ)

]
(107)
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where
χkm(θ, φ) =

∑
σ∓ 1

2

C(l
1
2
j; m − σ, σ)Y m−σ

λ (θ, φ)Φσ
1
2

(108)

where Y m−σ
λ is a spherical harmonic, and

Φ
1
2
1
2

= α =
(

1
0

)
, Φ− 1

2
1
2

= β =
(

0
1

)
(109)

are the Pauli two–component spinors, C(l 12 j; m−σ, σ) are the Clebsch–Gordon coefficients, k is the relativistic
quantum number,

k =
{

j + 1
2 if j = l − 1

2
−(j − 1

2 ) if j = l + 1
2

(110)

and λ is defined as

λ =
{

k if j = l − 1
2

−(k + 1) if j = l + 1
2

(111)

The Qnk and Pnk are the small and large components, respectively. They satisfy the coupled differential
equations for a central force field:

dPnk

dr
+

kPnk

r
(
2
α

+ α[v(r) − εnk])Qnk = 0 (112)

dQnk

dr
− kQnk

r
+ α[v(r) − εnk]Pnk = 0 (113)

Desclaux [5] numerical Dirac–Fock implementation in a computer is widely used to generate relativistic
all–electron wave functions for almost any atom in the periodic table. Detailed information about and the
derivations of the above equations may be found in [6].

8. Relativistic Quantum Numbers for Atomic Configurations

For the electron configuration nl the possible angular momentum vectors are l, s, and j, where j = l + s,
s = 1/2 for electron, therefore j = l + 1/2 or j = l − 1/2. The relativistic quantum number, κ, takes the
values

κ = l for j = l − 1
2

and κ = −l − 1 for j = l +
1
2

Principle quantum number, n, can be related to κ as

n = n′ + |κ| = n′ + j +
1
2

, n = 1, 2, 3, · · · , κ = ∓(j +
1
2
) = ∓1,∓2,∓3, · · ·

n′ = n = j − 1
2 = n − |κ| is called as the radial quantum number. The values of the quantum numbers for

some of the electronic configurations are given in Tables 1 and 2.

Table 1. Values of quantum numbers for the electron configurations nl.

nl n l j n′ κ nl n l j n′ κ nl n l j n′ κ
1s 1 0 1/2 0 -1 3p 3 1 1/2 2 1 4p 4 1 1/2 3 1
2s 2 0 1/2 1 -1 3 1 3/2 1 -2 4 1 3/2 2 -2
2p 2 1 1/2 1 1 3d 3 2 3/2 1 2 4d 4 2 3/2 2 2

2 1 3/2 0 -2 3 2 5/2 0 -3 4 2 5/2 1 -3
3s 3 0 1/2 2 -1 4s 4 0 1/2 3 -1 4f 4 3 5/2 1 3

4 3 7/2 0 -4
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Table 2. Values of quantum numbers for the electron configurations nlq. Oc represents the occupancy (number of
electrons).

nl n κ Oc nl n κ Oc nl n κ Oc nl n κ Oc
ns n -1 1.0 np4 n -2 2.0 nd2 n -3 1.0 nd6 n -3 3.0
ns2 n -1 2.0 n 1 2.0 n 2 1.0 n 2 3.0
np n -2 1.0 np5 n -2 3.0 nd3 n -3 2.0 nd7 n -3 4.0

n 1 0.0 n 1 2.0 n 2 1.0 n 2 3.0
np2 n -2 1.0 np6 n -2 4.0 nd4 n -3 2.0 nd8 n -3 4.0

n 1 1.0 n 1 2.0 n 2 2.0 n 2 4.0
np3 n -2 2.0 nd n -3 1.0 nd5 n -3 3.0 nd9 n -3 5.0

n 1 1.0 n 2 0.0 n 2 2.0 n 2 4.0
nd10 n -3 6.0

n 2 4.0

9. Applications to Atoms

In this section we present some results of relativistic calculations based on the single–particle Dirac
equation in which we applied an approximate time–independent RDFT to the low–lying autoionization (AI)
states of neutral atoms and positive ions [7]. The calculations require a computational effort similar to
ground–state DFT calculations. The method of calculation is based on the self–consistent solution of N
one–particle Dirac equations (Kohn–Sham orbital equations) of the form (in Rydberg atomic units)

[−icα · ∇ + (β − 1)
1
2
c2 + vσeff ]ψσ,i = εσ,iψσ,i (114)

where
vσeff(r) = v(r) + 2

∫
ρ(r′)
|r− r′|dr

′ + vσxc(r) (115)

In these equations σ is a quantum number that labels the solutions according to their spin state. The wave
functions ψ are four–vectors, but can be described by two radial functions only. The spin dependent charge
density ρσ(r) is obtained self–consistently, and defined as

ρσ(r) =
Nσ∑
i

|ψi,σ(r)|2 and ρ =
∑
σ

ρσ (116)

v(r) is the Coulomb potential between electron and nucleus, and vσxc(r) is the exchange–correlation potential.
The total energy of the atom consists of the kinetic energy of the electrons, the electron–nucleus Coulomb
potential energy, and the exchange–correlation energy of the electrons. The total energy can be determined
from the self–consistent resultant charge density as

E[ρ] =
∑
σ,i

εσ,i −
∫

ρ(r)ρ(r′)
|r − r′| drdr′ + Exc[ρσ] −

∑
σ

vσxc(r)ρσ(r)dr (117)

The local–spin–density approximation has been used for the exchange–correlation energy in the form due to
Von Barth and Hedin and parameterized by Janak [7]

vσxc(r) =
δExc

δρσ(r)
(118)

where the functional Exc[ρ] is defined as

Exc[ρ] =
∑
σ

∫
ρσ(r)εσxc(ρ(r))dr (119)
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As is normally done in this approach, the spin states are defined by the large components only. We divide
the electrons in two groups, labeled by σ. If we use the potential for σ = +1 we solve the Dirac equations
and choose the large component to be spin up. Similarly, for σ = −1 we choose spin down. The small
components will have a mixture of both spins, but the effects of this spin mixing are small compared to
with the energy differences we are trying to obtain. In the calculations each occupied orbital is defined by
an occupation number; we consider integral occupation of states. Some of the results of the calculations are
given in Table 3 for comparison.

Table 3. Comparison of calculated AI energies with experimental values and other calculations for some neutral
atoms and positive ions. Energies are in eV and with respect to the ground state of the corresponding system [7].

Atom(state) RDFT Expt. Other calc. Atom(state) RDFT Expt. Other calc.
He(2s2) 56.54 57.64 57.85 Li+(2s2) 71.70 70.62 70.58
Li(1s2s2) 55.69 56.35 56.32 B2+(1s2s2) 191.05 193±0.5 192.70
F(1s22s2p6) 18.34 20.99 20.68 O5+(1s2s2) 547.49 551±1.5 551.45
Ne(2s2p63p) 41.75 45.55 46.25 F6+(1s2s2) 707.27 711±1.0 710.31
Al(2s3p3d) 8.22 8.43 8.03 F6+(1s2s2p) 708.48 716±2.0 714.07
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