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Abstract

A non-technical overview on gravity in two dimensions is provided. Applications discussed in this work

comprise 2D type 0A/0B string theory, Black Hole evaporation/thermodynamics, toy models for quantum

gravity, for numerical General Relativity in the context of critical collapse and for solid state analogues

of Black Holes. Mathematical relations to integrable models, non-linear gauge theories, Poisson-sigma

models, KdV surfaces and non-commutative geometry are presented.
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1. Introduction

The study of gravity in 2D — boring to some, fascinating to others [1] — has the undeniable disadvantage
of eliminating a lot of structure that is present in higher dimensions; for instance, the Riemann tensor
is determined already by the Ricci scalar, i.e., there is no Weyl curvature and no trace-free Ricci part.
On the other hand, it has the undeniable advantage of eliminating a lot of structure that is present in
higher dimensions; for instance, non-perturbative results may be obtained with relative ease due to technical
simplifications, thus allowing one to understand some important conceptual issues arising in classical and
quantum gravity which are universal and hence of relevance also for higher dimensions.

The scope of this non-technical overview is broad rather than focussed, since there exist already various
excellent reviews and textbooks presenting the technical pre-requisites in detail,1 and because the broadness
envisaged here may lead to a cross-fertilization between otherwise only loosely connected communities. Some
recent results are presented in more detail. It goes without saying that the topics selected concur with the
authors’ preferences; by no means it should be concluded that an issue or a reference omitted here is devoid
of interest.

The common link between all applications mentioned here is 2D dilaton gravity,2

S2DG =
1
2

∫
d2x
√−g

[
XR + U(X) (∇X)2 − 2V (X)

]
, (1)

1For instance, the status of the field in the late 1980ies is summarized in [2].
2The 2D Einstein-Hilbert action will not be discussed except in section 6.1.
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the action of which depends functionally on the metric gµν and on the scalar field X. Note that very
often, in particular in the context of string theory, the field redefinition X = e−2φ is employed; the field
φ is the dilaton of string theory, hence the name “dilaton gravity”. However, it is emphasized that the
natural interpretation of X need not be the one of a dilaton field — it may also play the role of surface
area, dual field strength, coordinate of a suitable target space or black hole (BH) entropy, depending on
the application. The curvature scalar R and covariant derivative ∇ are associated with the Levi-Civita
connection and Minkowskian signature is implied unless stated otherwise. The potentials U , V define the
model; several examples will be provided below. A summary is contained in table 1.

This proceedings contribution is organized as follows: section 2 is devoted to a reformulation of (1) as
a non-linear gauge theory, which considerably simplifies the construction of all classical solutions; section
3 discusses applications in 2D string theory; section 4 summarizes applications in BH physics; section 5
demonstrates how to reconstruct geometry from matter in a quantum approach; section 6 contains not only
mathematical issues but also some open problems.

2. Gravity as non-linear gauge theory

It has been known for a long time how to obtain all classical solutions of (1) not only locally, but globally.
Two ingredients turned out to be extremely useful: a reformulation of (1) as a first order action and the
imposition of a convenient (axial or Eddington-Finkelstein type) gauge, rather than using conformal gauge.3

Subsequently we will briefly recall these methods. For a more comprehensive review cf. [4].

Table 1. Selected list of models

Model (cf. (1) or (3)) U(X) V (X) w(X) (cf. (4))

1. Schwarzschild [5] − 1
2X −λ2 −2λ2

√
X

2. Jackiw-Teitelboim [6, 7] 0 −ΛX −1
2ΛX2

3. Witten BH/CGHS [8, 9] − 1
X

−2b2X −2b2X
4. CT Witten BH [8, 9] 0 −2b2 −2b2X
5. SRG (D > 3) − D−3

(D−2)X −λ2X(D−4)/(D−2) −λ2D−2
D−3X

(D−3)/(D−2)

6. (A)dS2 ground state [10] − a
X −B

2 X a �= 2 : − B
2(2−a)X

2−a

7. Rindler ground state [11] − a
X −B

2 X
a −B

2 X

8. BH attractor [12] 0 −B
2X

−1 −B
2 lnX

9. All above: ab-family [13] − a
X −B

2 X
a+b b �= −1 : − B

2(b+1)X
b+1

10. Liouville gravity [14] a beαX a �= −α : b
a+αe

(a+α)X

11. Scattering trivial [15] generic 0 const.
12. Reissner-Nordström [16] − 1

2X −λ2 + Q2

X −2λ2
√
X − 2Q2/

√
X

13. Schwarzschild-(A)dS [17] − 1
2X −λ2 − �X −2λ2

√
X − 2

3�X
3/2

14. Katanaev-Volovich [18] α βX2 − Λ
∫ X

eαy(βy2 − Λ) dy
15. Achucarro-Ortiz [19] 0 Q2

X − J
4X3 − ΛX Q2 lnX + J

8X2 − 1
2ΛX2

16. KK reduced CS [20, 21] 0 1
2X(c −X2) −1

8 (c−X2)2

17. Symmetric kink [22] generic −XΠn
i=1(X2 −X2

i ) cf. [22]
18. 2D type 0A/0B [23, 24] − 1

X
−2b2X + b2q2

8π
−2b2X + b2q2

8π
lnX

19. exact string BH[25, 26] (31) (31) (33)

3In string theory almost exclusively conformal gauge is used. A notable exception is [3].
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2.1. First order formulation

The Jackiw-Teitelboim model (cf. the second model in table (1)) allows a gauge theoretic formulation
based upon (A)dS2,

[Pa, Pb] = ΛεabJ , [Pa, J ] = εa
bPb , (2)

with Lorentz generator J , translation generators Pa and Λ �= 0. A corresponding first order action, S =∫
XAF

A, has been introduced in [27]. The field strength F = dA+[A,A]/2 contains the SO(1, 2) connection
A = eaPa+ωJ , and the Lagrange multipliersXA transform under the coadjoint representation. This example
is exceptional insofar as it allows a formulation in terms of a linear (Yang-Mills type) gauge theory. Similarly,
the fourth model in table 1 allows a gauge theoretic formulation [28] based upon the centrally extended
Poincarè algebra [29]. The generalization to non-linear gauge theories [30] allowed a comprehensive treatment
of all models (1) with U = 0, which has been further generalized to U �= 0 in [31]. The corresponding first
order gravity action

SFOG = −
∫ [

XaT
a +XR + ε

(
X+X−U(X) + V (X)

)]
(3)

is equivalent to (1) (with the same potentials U, V ) upon elimination of the auxiliary fields Xa and the
torsion-dependent part of the spin-connection. Here is our notation: ea = eaµdx

µ is the dyad 1-form. Latin
indices refer to an anholonomic frame, Greek indices to a holonomic one. The 1-form ω represents the
spin-connection ωa

b = εabω = εabωµ dxµ with the totally antisymmetric Levi-Civita symbol εab (ε01 = +1).
With the flat metric ηab in light-cone coordinates (η+− = 1 = η−+, η++ = 0 = η−−) it reads ε±± = ±1.
The torsion 2-form present in the first term of (3) is given by T± = (d±ω) ∧ e±. The curvature 2-form Ra

b

can be represented by the 2-form R defined by Ra
b = εabR with R = dω. It appears in the second term in

(3). Since no confusion between 0-forms and 2-forms should arise the Ricci scalar is also denoted by R. The
volume 2-form is denoted by ε = e+ ∧ e−. Signs and factors of the Hodge-∗ operation are defined by ∗ε = 1.
It should be noted that (3) is a specific Poisson-sigma model [31] with a 3D target space, with target space
coordinates X,X±, see section 6.3 below. A second order action similar to (1) has been introduced in [32].

2.2. Generic classical solutions

It is useful to introduce the following combinations of the potentials U and V :

I(X) := exp
∫ X

U(y) dy , w(X) :=
∫ X

I(y)V (y) dy (4)

The integration constants may be absorbed, respectively, by rescalings and shifts of the “mass”, see equation
(10) below. Under dilaton dependent conformal transformations Xa → Xa/Ω, ea → eaΩ, ω → ω +
Xae

a d ln Ω/ dX the action (3) is mapped to a new one of the same type with transformed potentials Ũ , Ṽ .
Hence, it is not invariant. It turns out that only the combination w(X) as defined in (4) remains invariant,
so conformally invariant quantities may depend on w only. Note that I is positive apart from eventual
boundaries (typically, I may vanish in the asymptotic region and/or at singularities). One may transform
to a conformal frame with Ĩ = 1, solve all equations of motion and then perform the inverse transformation.
Thus, it is sufficient to solve the classical equations of motion for Ũ = 0,

dX + X̃−ẽ+ − X̃+ẽ− = 0 , (5)

(d±ω̃)X̃± ∓ ẽ±Ṽ (X) = 0 , (6)

(d±ω̃) ∧ ẽ± = 0 , (7)

which is what we are going to do now. Note that the equation containing dω̃ is redundant, whence it is not
displayed.
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Let us start with an assumption: X̃+ �= 0 for a given patch. To get some physical intuition as to what this
condition could mean: the quantities Xa, which are the Lagrange multipliers for torsion, can be expressed as
directional derivatives of the dilaton field by virtue of (5) (e.g. in the second order formulation a term of the
form XaXa corresponds to (∇X)2). For those who are familiar with the Newman-Penrose formalism: for
spherically reduced gravity the quantities Xa correspond to the expansion spin coefficients ρ and ρ′ (both
are real). If X̃+ vanishes a (Killing) horizon is encountered and one can repeat the calculation below with
indices + and − swapped everywhere. If both vanish in an open region by virtue of (5) a constant dilaton
vacuum emerges, which will be addressed separately below. If both vanish on isolated points the Killing
horizon bifurcates there and a more elaborate discussion is needed [33]. The patch implied by X̃+ �= 0
is a “basic Eddington-Finkelstein patch”, i.e., a patch with a conformal diagram which, roughly speaking,
extends over half of the bifurcate Killing horizon and exhibits a coordinate singularity on the other half. In
such a patch one may redefine ẽ+ = X̃+Z with a new 1-form Z. Then (5) implies ẽ− = dX/X̃+ + X̃−Z
and the volume form reads ε̃ = ẽ+ ∧ ẽ− = Z ∧ dX. The + component of (6) yields for the connection
ω̃ = −dX̃+/X̃+ +ZṼ (X). One of the torsion conditions (7) then leads to dZ = 0, i.e., Z is closed. Locally
(in fact, in the whole patch) it is also exact: Z = du. It is emphasized that, besides the integration of (9)
below, this is the only integration needed! After these elementary steps one obtains already the conformally
transformed line element in Eddington-Finkelstein (EF) gauge

ds̃2 = 2ẽ+ẽ− = 2 du dX + 2X̃+X̃− du2 , (8)

which nicely demonstrates the power of the first order formalism. In the final step the combination X̃+X̃−

has to be expressed as a function of X. This is possible by noting that the linear combination X̃+×[(6) with
− index] + X̃−×[(6) with + index] together with (5) establishes a conservation equation,

d(X̃+X̃−) + Ṽ (X) dX = d(X̃+X̃− +w(X)) = 0 . (9)

Thus, there is always a conserved quantity (dM = 0), which in the original conformal frame reads

M = −X+X−I(X) − w(X) , (10)

where the definitions (4) have been inserted. It should be noted that the two free integration constants
inherent to the definitions (4) may be absorbed by rescalings and shifts of M , respectively. The classical
solutions are labelled by M , which may be interpreted as mass (see section 4.2). Finally, one has to transform
back to the original conformal frame (with conformal factor Ω = I(X)). The line element (8) by virtue of
(10) may be written as

ds2 = 2I(X) du dX − 2I(X)(w(X) + M) du2 . (11)

Evidently there is always a Killing vector K · ∂ = ∂/∂u with associated Killing norm K2 = −2I(w + M).
Since I �= 0 Killing horizons are encountered at X = Xh where Xh is a solution of

w(Xh) +M = 0 . (12)

It is recalled that (11) is valid in a basic EF patch, e.g., an outgoing one. By redoing the derivation above,
but starting from the assumption X− �= 0 one may obtain an ingoing EF patch, and by gluing together
these patches appropriately one may construct the Carter-Penrose diagram, cf. [34, 33, 4].

As pointed out in the introduction the full geometric information resides in the Ricci scalar. The one
related to the generic solution (11) reads

R =
2

I(X)
d

dX

(
U(X)(M +w(X)) + I(X)V (X)

)
. (13)
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There are two important special cases: for U = 0 the Ricci scalar simplifies to R = 2V ′(X), while for
w(X) ∝ 1/I(X) it scales proportional to the mass, R = 2MU ′(X)/I(X). The latter case comprises so-
called Minkowskian ground state models (for examples cf. the first, third, fifth and last line in table 1). Note
that for many models in table 1 the potential U(X) has a singularity at X = 0 and consequently a curvature
singularity arises.

2.3. Constant dilaton vacua

For sake of completeness it should be mentioned that in addition to the family of generic solutions
(11), labelled by the mass M , isolated solutions may exist, so-called constant dilaton vacua (cf. e.g. [22]),
which have to obey4 X = XCDV = const. with V (XCDV ) = 0. The corresponding geometry has constant
curvature, i.e., only Minkowski, Rindler or (A)dS2 are possible space-times for constant dilaton vacua.5 The
Ricci scalar is determined by

RCDV = 2V ′(XCDV) = const. (14)

Examples are provided by the last eighth entries in table 1. For instance, 2D type 0A strings with an equal
number q of electric and magnetic D0 branes (cf. the penultimate entry in table 1) allow for an AdS2 vacuum
with XCDV = q2/(16π) and RCDV = −4b2 [37].

2.4. Topological generalizations

In 2D there are neither gravitons nor photons, i.e. no propagating physical modes exist [38]. This feature
makes the inclusion of Yang-Mills fields in 2D dilaton gravity or an extension to supergravity straightforward.
Indeed, both generalizations can be treated again in the first order formulation as a Poisson-sigma model,
cf. e.g. [39]. In addition to M (see (10)) more locally conserved quantities (Casimir functions) may emerge
and the integrability concept is extended.

As a simple example we include an abelian Maxwell field, i.e., instead of (3) we take

SMDG = −
∫ [

XaT
a + XR +BF + ε

(
X+X−U(X,B) + V (X,B)

)]
, (15)

where B is an additional scalar field and F = dA is the field strength 2-form. Variation with respect to
A immediately establishes a constant of motion, B = Q, where Q is some real constant, the U(1) charge.
Variation with respect to B may produce a relation that allows to express B as a function of the dilaton and
the dual field strength ∗F . For example, suppose that V (X,B) = V (X)+ 1

2B
2. Then, variation with respect

to B gives B = −∗F . Inserting this back into the action yields a standard Maxwell term. The solution of
the remaining equations of motion reduces to the case without Maxwell field. One just has to replace B by
its on-shell value Q in the potentials U , V .

Concerning supergravity we just mention a couple of references for further orientation [40, 41, 36].

2.5. Non-topological generalizations

To get a non-topological theory one can add scalar or fermionic matter. The action for a real, self-
interacting and non-minimally coupled scalar field T ,

ST =
1
2

∫ [
F (X) dT ∧ ∗ dT + εf(X, T )

]
, (16)

4Incidentally, for the generic case (11) the value of the dilaton on an extremal Killing horizon is also subject to these two

constraints.
5In quintessence cosmology in 4D such solutions serve as late time dS4 attractor [35]. In 2D dilaton supergravity solutions

preserving both supersymmetries are necessarily constant dilaton vacua [36].

353



GRUMILLER, MEYER

in our convention requires F < 0 for the kinetic term to have the correct sign; e.g. F = −κ or F = −κX.
While scalar matter couples to the metric and the dilaton, fermions6 couple directly to the Zweibein

(A←→d B = AdB − (dA)B),

Sχ =
∫ [ i

2
F (X) (∗ea) ∧ (χγa

←→d χ) + εH(X)g(χχ)
]
, (17)

but not — and this is a peculiar feature of 2D — to the spin connection. The self-interaction is at most
quartic (a constant term may be absorbed in V (X)),

g(χχ) = mχχ + λ(χχ)2 . (18)

The quartic term (henceforth: Thirring term [43]) can also be recast into a classically equivalent form by
introducing an auxiliary vector potential,

λ

∫
ε(χχ)2 =

λ

2

∫
[A ∧ ∗A+ 2A ∧ (∗ea)χγaχ] , (19)

which lacks a kinetic term and thus does not propagate by itself.
We speak of minimal coupling if the coupling functions F (X), f(X, T ), H(X) do not depend on the

dilaton X, and of nonminimal coupling otherwise.
As an illustration we present the spherically reduced Einstein-massless-Klein-Gordon model (EMKG). It

emerges from dimensional reduction of 4D Einstein-Hilbert (EH) gravity (cf. the first model in table 1) with
a minimally coupled scalar field, with the choices f(X, τ ) = 0 and

w(X) = −2λ2
√
X , F (X) = −κX , I(X) =

1√
X
, (20)

where λ is an irrelevant scale parameter and κ encodes the (also irrelevant) Newton coupling. Minimally
coupled Dirac fermions in four dimensions yield upon dimensional reduction two 2-spinors coupled to each
other through intertwinor terms, which is not covered by (17) (see [44] for details on spherical reduction of
fields of arbitrary spin and the spherical reduced standard model).

With matter the equation of motion (6) and the conservation law (9) obtain contributions W± = δ(ST +
Sχ)/δe∓ and X−W+ + X+W−, respectively, destroying integrability because Z is not closed anymore:
dZ = W+ ∧ Z/X+. In special cases exact solutions can be obtained:

1. For (anti-)chiral fermions and (anti-)selfdual scalars with W+ = 0 (W− = 0) the geometric solution
(8) is still valid [4] and the second equation of motion (6) implies W− = W−

u du. Such solutions have
been studied e.g. in [45, 46]. They arise also in the Aichelburg-Sexl limit [47] of boosted BHs [48].

2. A one parameter family of static solutions of the EMKG has been discovered in [49]. Studies of static
solutions in generic dilaton gravity may be found in [50, 51]. A static solution for the line-element
with time-dependent scalar field (linear in time) has been discussed for the first time in [52]. It has
been studied recently in more detail in [53].

3. A (continuously) self-similar solution of the EMKG has been discoverd in [54].

4. Specific models allow for exact solutions even in the presence of more general matter sources; for
instance, the conformally transformed CGHS model (fourth in table 1), Rindler ground state models
(seventh in table 1) and scattering trivial models (eleventh in table 1).

6We use the same definition for the Dirac matrices as in [42].
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3. Strings in 2D

Strings propagating in a 2D target space are comparatively simple to describe because the only propa-
gating degree of freedom is the tachyon (and if the latter is switched off the theory becomes topological).
Hence several powerful methods exist to describe the theory efficiently, e.g. as matrix models. In particu-
lar, strings in non-trivial backgrounds may be studied in great detail. Here are some references for further
orientation: For the matrix model description of 2D type 0A/0B string theory cf. [55, 23] (for an extensive
review on Liouville theory and its relation to matrix models and strings in 2D cf. [14]; some earlier reviews
are refs. [56]; the matrix model for the 2D Euclidean string BH has been constructed in [57]; a study of
Liouville theory from the 2D dilaton gravity point of view may be found in [58]). The low energy effective
action for 2D type 0A/0B string theory in the presence of RR fluxes has been studied from various aspects
e.g. in [59, 23, 37, 24].

3.1. Target space formulation of 2D type 0A/0B string theory

For sake of definiteness focus will be on 2D type 0A with an equal number q of electric and magnetic D0
branes, but other cases may be studied as well. For vanishing tachyon the corresponding target space action
is given by (setting κ2 = 1)

S0A =
1
2

∫
d2x
√−g

[
e−2φ

(
R − 4 (∇φ)2 + 4b2

)
− b2q2

4π

]
, (21)

Obviously, this is a special case of the generic model (1), with U, V given by the penultimate model in
table 1, to which all subsequent considerations — in particular thermodynamical issues — apply. Note that
the dilaton fields X and φ are related by X = exp (−2φ). The constant b2 = 2/α′ defines the physical scale.
In the absence of D0 branes, q = 0, the model simplifies to the Witten BH, cf. the third line in table 1.

The action defining the tachyon sector up to second order in T is given by (cf. (16))

ST =
1
2

∫
d2x
√−g [F (X)gµν (∂µT )(∂νT ) + f(X, T )] , (22)

with

F (X) = X , f(T , X) = b2T 2
(
X − q2

2π

)
. (23)

The total action is S0A + ST .

3.2. Exact string Black Hole

The exact string black hole (ESBH) was discovered by Dijkgraaf, Verlinde and Verlinde more than a
decade ago [25]. The construction of a target space action for it which does not display non-localities or
higher order derivatives had been an open problem which could be solved only recently [26]. There are
several advantages of having such an action available: the main point of the ESBH is its non-perturbative
aspect, i.e., it is believed to be valid to all orders in the string-coupling α′. Thus, a corresponding action
captures non-perturbative features of string theory and allows, among other things, a thorough discussion of
ADM mass, Hawking temperature and Bekenstein–Hawking entropy of the ESBH which otherwise requires
some ad-hoc assumption. Therefore, we will devote some space to its description. At the perturbative
level actions approximating the ESBH are known: to lowest order in α′ one has (21) with q = 0. Pushing
perturbative considerations further Tseytlin was able to show that up to 3 loops the ESBH is consistent with
sigma model conformal invariance [60]. In the strong coupling regime the ESBH asymptotes to the Jackiw–
Teitelboim model [6]. The exact conformal field theory methods used in [25], based upon the SL(2,R)/U(1)
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gauged Wess–Zumino–Witten model, imply the dependence of the ESBH solutions on the level k. A different
(somewhat more direct) derivation leading to the same results for dilaton and metric was presented in [61].
For a comprehensive history and more references [62] may be consulted.

In the notation of [63] for Euclidean signature the line element of the ESBH is given by

ds2 = f2(x) dτ2 + dx2 , (24)

with

f(x) =
tanh(bx)√

1− p tanh2(bx)
. (25)

Physical scales are adjusted by the parameter b ∈ R
+ which has dimension of inverse length. The corre-

sponding expression for the dilaton,

φ = φ0 − ln cosh(bx)− 1
4

ln
(
1− p tanh2(bx)

)
, (26)

contains an integration constant φ0. Additionally, there are the following relations between constants,
string-coupling α′, level k and dimension D of string target space:

α′b2 =
1

k − 2
, p :=

2
k

=
2α′b2

1 + 2α′b2
, D − 26 + 6α′b2 = 0 . (27)

For D = 2 one obtains p = 8
9 , but like in the original work [25] we will treat general values of p ∈ (0; 1)

and consider the limits p → 0 and p → 1 separately: for p = 0 one recovers the Witten BH geometry; for
p = 1 the Jackiw–Teitelboim model is obtained. Both limits exhibit singular features: for all p ∈ (0; 1) the
solution is regular globally, asymptotically flat and exactly one Killing horizon exists. However, for p = 0
a curvature singularity (screened by a horizon) appears and for p = 1 space-time fails to be asymptotically
flat. In the present work exclusively the Minkowskian version of (24)

ds2 = f2(x) dτ2 − dx2 , (28)

will be needed. The maximally extended space-time of this geometry has been studied in [64]. Wind-
ing/momentum mode duality implies the existence of a dual solution, the Exact String Naked Singularity
(ESNS), which can be acquired most easily by replacing bx→ bx+ iπ/2, entailing in all formulas above the
substitutions sinh→ i cosh, cosh→ i sinh.

After it had been realized that the nogo result of [65] may be circumvented without introducing su-
perfluous physical degrees of freedom by adding an abelian BF -term, a straightforward reverse-engineering
procedure allowed to construct uniquely a target space action of the form (1), supplemented by aforemen-
tioned BF -term,

SESBH = −
∫ [

XaT
a + XESBHR + ε

(
X+X−UESBH + VESBH

)]
−
∫
BF , (29)

where B is a scalar field and F = dA an abelian field strength 2-form. Per constructionem SESBH reproduces
as classical solutions precisely (25)–(28) not only locally but globally. A similar action has been constructed
for the ESNS. The relation (X − γ)2 = arcsinh 2γ in conjunction with the definition γ := exp (−2φ)/B may
be used to express the auxiliary dilaton field X entering the action (1) in terms of the “true” dilaton field
φ and the auxiliary field B. The two branches of the square root function correspond to the ESBH (main
branch) and the ESNS (second branch), respectively:

XESBH = γ + arcsinh γ , XESNS = γ − arcsinh γ . (30)
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Figure 1. The potentials U(γ) for the ESNS, the Witten BH and the ESBH.

The potentials read [26]

VESBH = −2b2γ , UESBH = − 1
γN+(γ)

, VESNS = −2b2γ , UESNS = − 1
γN−(γ)

, (31)

with

N±(γ) = 1 +
2
γ

(
1
γ
±
√

1 +
1
γ2

)
. (32)

Note that N+N− = 1. The conformally invariant combination (4),

wESBH = −b
(

1 +
√
γ2 + 1

)
, wESNS = −b

(
1−

√
γ2 + 1

)
, (33)

of the potentials shows that the ESBH/ESNS is a Minkowskian ground state model, w ∝ 1/I. In figure 1
the potential U is plotted as function of the auxiliary dilaton γ. The lowest branch is associated with the
ESBH, the one on top with the ESNS and the one in the middle with the Witten BH (i.e., the third entry in
table 1). The regularity of the ESBH is evident, as well as the convergence of all three branches for γ →∞,
encoding (T-)self-duality of the Witten BH. For small values of the dilaton the discrepancy between the
ESBH, the ESNS and the Witten BH is very pronounced. Note that U remains bounded globally only for
the ESBH, concurring with the absence of a curvature singularity.

The two constants of motion — mass and charge — may be parameterized by k and φ0, respectively.
Thus, the level k is not fixed a priori but rather emerges as a constant of motion, namely essentially the ADM
mass. A rough interpretation of this — from the stringy point of view rather unexpected — result has been
provided in [26] and coincides with a similar one in [63]. There is actually a physical reason why k defines
the mass: in the presence of matter the conservation equation dM = 0 (with M from (10)) acquires a matter
contribution, dM = W (m), where W (m) = dC(m) is an exact 1-form defined by the energy-momentum tensor
(cf. section 5 of [4] or [66]). In a nutshell, the addition of matter deforms the total mass which now consists
of a geometric and a matter part, M and C(m), respectively. Coming back to the ESBH, the interpretation
of k as mass according to the preceding discussion implies that the addition of matter should “deform” k.
But this is precisely what happens: adding matter will in general change the central charge and hence the
level k. Thus, from an intrinsically 2D dilaton gravity point of view the interpretation of k as mass is not
only possible but favored.

It could be interesting to generalize the target space action of 2D type 0A/0B, (21), as to include the
non-perturbative corrections implicit in the ESBH by adding (22) (not necessarily with the choice (23)) to
the ESBH action (29). However, it is not quite clear how to incorporate the term from the D0 branes —
perturbatively one should just add b2q2/8π to V in (31), but non-perturbatively this need not be correct.
More results and speculations concerning applications of the ESBH action can be found in [26].
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4. Black Holes

BHs are fascinating objects, both from a theoretical and an experimental point of view [67]. Many of
the features which are generic for BHs are already exhibited by the simplest members of this species, the
Schwarzschild and Reissner-Nordström BHs (sometimes the Schwarzschild BH even is dubbed as “Hydrogen
atom of General Relativity”). Since both of them, after integrating out the angular part, belong to the
class of 2D dilaton gravity models (the first and twelfth model in table 1), the study of (3) at the classical,
semi-classical and quantum level is of considerable importance for the physics of BHs.

4.1. Classical analysis

In section 2.2 it has been recalled briefly how to obtain all classical solutions in basic EF patches, (11).
By looking at the geodesics of test particles and completeness properties it is straightforward to construct
all Carter-Penrose diagrams for a generic model (3) (or, equivalently, (1)). For a detailed description of this
algorithm cf. [34, 33, 4] and references therein.

4.2. Thermodynamics

Mass The question of how to define “the” mass in theories of gravity is notoriously cumbersome. A
nice clarification for D = 4 is contained in [68]. The main conceptual point is that any mass definition is
meaningless without specifying 1. the ground state space-time with respect to which mass is being measured
and 2. the physical scale in which mass units are being measured. Especially the first point is emphasized
here. In addition to being relevant on its own, a proper mass definition is a pivotal ingredient for any
thermodynamical study of BHs. Obviously, any mass-to-temperature relation is meaningless without defining
the former (and the latter). For a large class of 2D dilaton gravities these issues have been resolved in
[69]. One of the key ingredients is the existence [70, 71] of a conserved quantity (10) which has a deeper
explanation in the context of first order gravity [72] and Poisson-sigma models [31]. It establishes the
necessary prerequisite for all mass definitions, but by itself it does not yet constitute one. Ground state
and scale still have to be defined. Actually, one can take M from (10) provided the two ambiguities from
integration constants in (4) are fixed appropriately. This is described in detail in appendix A of [51]. In
those cases where this notion makes sense M then coincides with the ADM mass.

Hawking temperature There are many ways to calculate the Hawking temperature, some of them
involving the coupling to matter fields, some of them being purely geometrical. Because of its simplicity we
will restrict ourselves to a calculation of the geometric Hawking temperature as derived from surface gravity
(cf. e.g. [73]). If defined in this way it turns out to be independent of the conformal frame. However, it
should be noted that identifying Hawking temperature with surface gravity is somewhat naive for space-
times which are not asymptotically flat. But the difference is just a redshift factor and for quantities like
entropy or specific heat actually (34) is the relevant quantity as it coincides with the period of Euclidean
time (cf. e.g. [74]). Surface gravity can be calculated by taking the normal derivative d/ dX of the Killing
norm (cf. (11)) evaluated on one of the Killing horizons X = Xh, where Xh is a solution of (12), thus yielding

TH =
1

2π

∣∣∣w′(X)
∣∣∣
X=Xh

. (34)

The numerical prefactor in (34) can be changed e.g. by a redefinition of the Boltzmann constant. It has
been chosen in accordance with refs. [75, 4].

Entropy In 2D dilaton gravity there are various ways to calculate the Bekenstein-Hawking entropy. Using
two different methods (simple thermodynamical considerations, i.e., dM = T dS, and Wald’s Noether charge

358



GRUMILLER, MEYER

technique [76]) Gegenberg, Kunstatter and Louis-Martinez were able to calculate the entropy for rather
generic 2D dilaton gravity [77]: entropy equals the dilaton field evaluated at the Killing horizon,

S = 2πXh . (35)

There exist various ways to count the microstates by appealing to the Cardy formula [78] and to recover
the result (35). However, the true nature of these microstates remains unknown in this approach, which is
a challenging open problem. Many different proposals have been made [79].

Specific heat By virtue of Cs = T dS/ dT the specific heat reads

Cs = 2π
w′

w′′

∣∣∣∣
X=Xh

= γS TH , (36)

with γS = 4π2 sign (w′(Xh))/w′′(Xh). Because it is determined solely by the conformally invariant combi-
nation of the potentials, w as defined in (4), specific heat is independent of the conformal frame, too. On a
curious sidenote it is mentioned that (36) behaves like an electron gas at low temperature with Sommerfeld
constant γS (which in the present case may have any sign). If Cs is positive and CsT

2 � 1 one may calculate
logarithmic corrections to the canonical entropy from thermal fluctuations and finds [80]

Scan = 2πXh +
3
2

ln
∣∣∣w′(Xh)

∣∣∣− 1
2

ln
∣∣∣w′′(Xh)

∣∣∣+ . . . . (37)

Hawking-Page like phase transition In their by now classic paper on thermodynamics of BHs in AdS,
Hawking and Page found a critical temperature signalling a phase transition between a BH phase and a
pure AdS phase [17]. This has engendered much further research, mostly in the framework of the AdS/CFT
correspondence (for a review cf. [81]). This transition is displayed most clearly by a change of the specific
heat from positive to negative sign: for Schwarzschild-AdS (cf. the thirteenth entry in table 1) the critical
value of Xh is given by Xc

h = �2/3. For Xh > Xc
h the specific heat is positive, for Xh < Xc

h it is negative.7

By analogy, a similar phase transition may be expected for other models with corresponding behavior of
Cs. Interesting speculations on a phase transition at the Hagedorn temperature Th = k/(2π) induced by a
tachyonic instability have been presented recently in the context of 2D type 0A strings (cf. the penultimate
model in table 1) by Olsson [83]. From equation (22) of that work one can check easily that indeed the
specific heat (at fixed q), Cs = (q2/8)(T/Th)/(1− T/Th), changes sign at T = Th.

4.3. Semi-classical analysis

After the influential CGHS paper [9] there has been a lot of semi-classical activity in 2D, most of which is
summarized in [84, 75, 4]. In many applications one considers (1) coupled to a scalar field (16) with F = const.
(minimal coupling). Technically, the crucial ingredient for 1-loop effects is the Weyl anomaly (cf. e.g. [85])
< Tµ

µ >= R/(24π), which — together with the semi-classical conservation equation ∇µ < Tµν >= 0 —
allows to derive the flux component of the energy momentum tensor after fixing some relevant integration
constant related to the choice of vacuum (e.g. Unruh, Hartle-Hawking or Boulware). This method goes
back to Christensen and Fulling [86]. For non-minimal coupling, e.g. F ∝ X, there are some important
modifications — for instance, the conservation equation no longer is valid but acquires a right hand side
proportional to F ′(X). The first calculation of the conformal anomaly in that case has been performed by
Mukhanov, Wipf and Zelnikov [87]. It has been confirmed and extended e.g. in [88].

7Actually, in the original work [17] Hawking and Page did not invoke the specific heat directly. The consideration of the

specific heat as an indicator for a phase transition is in accordance with the discussion in [82].
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4.4. Long time behavior

The semi-classical analysis, while leading to interesting results, has the disadvantage of becoming unreli-
able as the mass of the evaporating BH drops to zero. The long time behavior of an evaporating BH presents
a challenge to theoretical physics and touches relevant conceptual issues of quantum gravity, such as the
information paradox. There are basically two strategies: top-down, i.e., to construct first a full quantum
theory of gravity and to discuss BH evaporation as a particular application thereof, and bottom-up, i.e., to
sidestep the difficulties inherent to the former approach by invoking “reasonable” ad-hoc assumptions. The
latter route has been pursued in [12]. A crucial technical ingredient has been Izawa’s result [89] on consistent
deformations of 2D BF theory, while the most relevant physical assumption has been boundedness of the
asymptotic matter flux during the whole evaporation process. Together with technical assumptions which
can be relaxed, the dynamics of the evaporating BH has been described by means of consistent deformations
of the underlying gauge symmetries with only one important deformation parameter. In this manner an
attractor solution, the endpoint of the evaporation process, has been found (cf. the eighth model in table 1).

Ideologically, this resembles the exact renormalization group approach, cf. e.g. [90, 91] and references
therein, which is based upon Weinberg’s idea of “asymptotic safety”.8 There are, however, several conceptual
and technical differences, especially regarding the truncation of “theory space”: in 4D a truncation to EH
plus cosmological constant, undoubtedly a very convenient simplification, may appear to be somewhat ad-
hoc, whereas in 2D a truncation to (3) comprises not only infinitely many different theories, but essentially9

all theories with the same field content as (3) and the same kind of local symmetries (Lorentz transformations
and diffeomorphisms).

The global structure of an evaporating BH can also be studied, and despite of the differences between
various approaches there seems to be partial agreement on it, cf. e.g. [93, 94, 12, 95, 96, 91]. The crucial
insight might be that a BH in the mathematical sense (i.e., an event horizon) actually never forms, but only
some trapped region, cf. figure 5 in [96].

4.5. Killing horizons kill horizon degrees

As pointed out by Carlip [97], the fact that very different approaches to explain the entropy of BHs
nevertheless agree on the result urgently asks for some deeper explanation. Carlip’s suggestion was to
consider an underlying symmetry, somehow attached to the BH horizon, as the key ingredient, and he noted
that requiring the presence of a horizon imposes constraints on the physical phase space. Actually, the change
of the phase-space structure due to a constraint which imposes the existence of a horizon in space-time is
an issue which is of considerable interest by itself.

In a recent work [98] we could show that the classical physical phase space is smaller as compared to
the generic case if horizon constraints are imposed. Conversely, the number of gauge symmetries is larger
for the horizon scenario. In agreement with a conjecture by ’t Hooft [99], we found that physical degrees of
freedom are converted into gauge degrees of freedom at a horizon. We will now sketch the derivation of this
result briefly for the action (3) which differs from the one used in [98] by a (Gibbons-Hawking) boundary
term. For sake of concreteness we will suppose the boundary is located at x1 = const. Consistency of the
variational principle then requires

X+δe−0 + X−δe+0 +Xδω0 = 0 (38)

at the boundary. Note that one has to fix the parallel component of the spin-connection at the boundary
rather than the dilaton field, which is the main difference to [98]. The generic case imposes δe±0 = 0 = δω0,
while a horizon allows the alternative prescription δe−0 = X− = 0 = δω0. One can now proceed in the same

8In the present context also [92] should be mentioned.
9Actually, one should replace in (3) the term X+X−U (X)+ V (X) by V(X+X−, X). However, only (3) allows for standard

supergravity extensions [41].
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way as in [98], i.e., derive the constraints (the only boundary terms in the secondary constraints are now X

and X±, while the primary ones have none) and calculate the constraint algebra. All primary constraints
and the Lorentz constraint turn out to be first class, even at the boundary, whereas the Poisson bracket
between the two diffeomorphism constraints (G2, G3 in the notation of [98]) acquires a boundary term of
the form

X(U ′X+X− + V ′) + U(X)X+X− − V (X) . (39)

Notably, it vanishes only for V ∝ X and U ∝ 1/X, e.g. for the second, third and sixth model in table 1, i.e.,
(A)dS2 ground state models. The boundary constraints for the generic case convert all primary constraints
into second class constraints. The construction of the reduced phase space works in the same way as in
section 6 of [98], thus establishing again one physical degree of freedom “living on the boundary”. Actually,
this had been known already before [100]. The horizon constraints, however, lead to more residual gauge
symmetries and to a stronger fixing of free functions — in fact, no free function remains and the reduced
phase space is empty. Thus, the physical degree of freedom living on a generic boundary is killed by a Killing
horizon.

It would be interesting to generalize this physics-to-gauge conversion at a horizon to the case with matter.
Obviously, it will no longer be a Killing horizon, but one can still employ the (trapping) horizon condition
X− = 0.

4.6. Critical collapse

Critical phenomena in gravitational collapse have been discovered in the pioneering numerical investiga-
tions of Choptuik [101]. He studied a free massless scalar field coupled to spherically symmetric EH gravity
in 4D (the EMKG) with sophisticated numerical techniques that allowed him to analyze the transition in the
space of initial data between dispersion to infinity and the formation of a BH. Thereby the famous scaling
law

MBH ∝ (p − p∗)γ , (40)

has been established, where p ∈ [0, 1] is a free parameter characterizing a one-parameter family of initial
data with the property that for p < p∗ a BH never forms while for p > p∗ a BH always forms with mass
MBH determined by (40) for p sufficiently close to p∗. The critical parameter p∗ ∈ (0, 1) may be found
by elaborate numerical analysis and depends on the specific family under consideration; but the critical
exponent γ ≈ 0.37 is universal, albeit model dependent. Other systems may display a different critical
behavior, cf. the review [102]. The critical solution p = p∗, called the “Choptuon”, in general exhibits
remarkable features, e.g. discrete or continuous self-similarity and a naked singularity.

Since the original system studied by Choptuik, (20), is a special case of (1) (with U, V as given by the
first line in table 1) coupled to (16), it is natural to inquire about generalizations of critical phenomena to
arbitrary 2D dilaton gravity with scalar matter. Indeed, in [103] a critical exponent γ = 1/2 has been derived
analytically for the RST model [104], a semi-classical generalization of the CGHS model (cf. the third line
in table 1). Later, in [105] critical collapse within the CGHS model has been considered and γ ≈ 1/2 has
been found numerically. More recently the generalization of the original Choptuik system to D dimensions
has been considered [106, 107, 108]. For 3.5 ≤ D ≤ 14 the approximation γ(D) ≈ 0.47(1− exp (−0.41D))
shows that γ increases monotonically10 with D. Since formally the CGHS corresponds to the limit D→ ∞
one may expect that γ(D) asymptotes to the value γ ≈ 1/2.

In the remainder of this subsection we will establish evolution equations for generic 2D dilaton gravity
with scalar matter, to be implemented numerically analogously to [109, 110]. In these works for various

10In [107] a maximum in γ near D=11 has been found. The most recent study suggests it is an artifact of numerics [108].

Another open question concerns the limit D→ 3: does γ remain finite?
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reasons Sachs-Bondi gauge has been used. Thus we employ

e+0 = 0 , e−0 = 1 , x0 = X , (41)

while the remaining Zweibein components are parameterized as

e−1 = α(u,X) , e+1 = I(X)e2β(u,X) . (42)

In the gauge (41) with the parameterization (42) the line element reads

ds2 = 2I(X)e2β(u,X) du (dX + α(u,X) du) . (43)

A trapping horizon emerges either if α = 0 or β → ∞. The equations of motion may be reduced to the
following set:

Slicing condition : ∂Xα(u,X) = −e2β(u,X)w′(X) (44)

Hamiltonian constraint : ∂Xβ(u,X) = −F (X)(∂XT (u,X))2 (45)

Klein−Gordon equation : � T (u,X) = 0 (46)

with

� = 2∂X∂u − 2∂X(α(u,X)∂X)− F ′(X)
F (X)

(2α(u,X)∂X − ∂u) . (47)

These equations should be compared with (2.12a), (2.12b) in [109] or with (2.4) (and for the Klein-Gordon
equation also (2.3)) in [110], where they have been derived for spherically symmetric EH gravity in 4D. In
the present case they are valid for generic 2D dilaton gravity coupled non-minimally to a free massless scalar
field. Thus, the set of equations (44)-(47) is a suitable starting point for numerical simulations in generic
2D dilaton gravity. The Misner-Sharp mass function

m(u,X) = −X+X−I(X) − w(X) = −α(u,X)e−2β(u,X) − w(X) (48)

allows to rewrite the condition for a trapped surface as αe−2β = 0 (cf. (12) with (10)). Thus, as noted before,
either α has to vanish or β →∞; it is the latter type of horizon that is of relevance for numerical simulations
of critical collapse. One may use the Misner-Sharp function instead of α and thus obtains instead of (44)

∂Xm(u,X) = (m(u,X) +w(X))2F (X)(∂XT (u,X))2 . (49)

To monitor the emergence of a trapped surface numerically one has to check whether

m(u0, Xh) +w(Xh) ≈ 0 (50)

is fulfilled to a certain accuracy at a given retarded time u0; the quantity Xh corresponds to the value of the
dilaton field at the horizon. By analogy to (2.16) of [110] one may now introduce a compactified “radial”
coordinate, e.g. X/(1 + X), although there may be more convenient choices.

As a consistency check the original Choptuik system in the current notation will be reproduced. We
recall that (20) describes the EMKG. Using dr = I(X) dX the evolution equations for geometry read:

∂rβ =
κ

2
r(∂rT )2 (51)

∂rα = λ2e2β (52)

They look almost the same as (2.4) in [110]. The coupling constant κ just has to be fixed appropriately in
(51) (i.e. κ = 4π). Also, the scaling constant λ must be fixed. Note that the line element reads

ds2 = 2
2
r
e2β(u,X(r)) du

(
dr
r

2
+ α(u,X(r)) du

)
= 2e2β du

(
dr +

2α
r

du
)

(53)

This shows that β here really coincides with β in [110] and α here coincides, up to a numerical factor, with
V there (and there are some signs due to different conventions).
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4.7. Quasinormal modes

The term “quasinormal modes” refers to some set of modes with a complex frequency, associated with
small perturbations of a BH. For U = 0 and monomial V in [111] quasinormal modes arising from a scalar
field, (16) with f = 0 and F ∝ Xp, have been studied in the limit of high damping by virtue of the
“monodromy approach”, and the relation

eω/TH = −(1 + 2 cos (π(1− p))) (54)

for the frequency ω has been found (TH is Hawking temperature as defined in (34)). Minimally coupled
scalar fields (p = 0) lead to the trivial result ω/TH = 2πin. High damping implies that the integer n has to
be large. For the important case of p = 1 (relevant for the first and fifth entry in table 1) one obtains from
(54)

ω

TH
= 2πi

(
n+

1
2

)
+ ln 3 . (55)

The result (55) coincides with the one obtained for the Schwarzschild BH with 4D methods, both numerically
[112] and analytically [113]. Moreover, consistency with D > 4 is found as well [114]. This shows that the
2D description of BHs is reliable also with respect to highly damped quasinormal modes.

4.8. Solid state analogues

BH analogues in condensed matter systems go back to the seminal paper by Unruh [115]. Due to the
amazing progress in experimental condensed matter physics, in particular Bose-Einstein condensates, in the
past decade the subject of BH analogues has flourished, cf. e.g. [116] and references therein.

In some cases the problem effectively reduces to 2D. It is thus perhaps not surprising that an analogue
system for the Jackiw-Teitelboim model has been found [117] for a cigar shaped Bose-Einstein condensate.
More recently this has led to some analogue 2D activity [118]. Note, however, that some issues, like the
one of backreaction, might not be modelled very well by an effective action method [119]. Indeed, 2D
dilaton gravity with matter could be of interest in this context, because these systems might allow not
just kinematical but dynamical equivalence, i.e., not only the fluctuations (e.g. phonons) behave as the
corresponding gravitational ones (e.g. Hawking quanta), but also the background dynamics does (e.g. the
flow of the fluid or the metric, respectively). Such a system would be a necessary pre-requisite to study
issues of mass and entropy in an analogue context. At least for static solutions this is possible [120], but of
course the non-static case would be much more interesting. Alas, it is not only more interesting but also
considerably more difficult, and a priori there is no reason why one should succeed in finding a fully fledged
analogue model of 2D dilaton gravity with matter. Still, one can hope and try.

5. Geometry from matter

In first order gravity (3) coupled to scalar (16) or fermionic (17) matter the geometry can be quantized
exactly: after analyzing the constraints, fixing EF gauge

(ω0, e−0 , e
+
0 ) = (0, 1, 0) (56)

and constructing a BRST invariant Hamiltonian, the path integral can be evaluated exactly and a (nonlocal)
effective action is obtained [121]. Subsequently the matter fields can be quantized by means of ordinary
perturbation theory. To each order all backreactions are included automatically by this procedure.

Although geometry has been integrated out exactly, it can be recovered off-shell in the form of interac-
tion vertices of the matter fields, some of which resemble virtual black holes (VBHs) [122, 123, 15]. This
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Figure 2. VBH

metamorphosis of geometry however does not take place in the matterless case [124], where the quantum
effective action coincides with the classical action in EF gauge. We hasten to add that one should not take
this off-shell geometry at face value — this would be like over-interpreting the role of virtual particles in a
loop diagram. But the simplicity of such geometries and the fact that all possible configurations are summed
over are both nice qualitative features of this picture.

A Carter-Penrose diagram of a typical VBH configuration is depicted in figure 2. The curvature scalar
of such effective geometries is discontinuous and even has a δ-peak. A typical effective line element (for the
EMKG) reads

(ds)2 = 2 dr du+
(

1− θ(ry − r)δ(u − uy)
(

2m
r

+ ar − d
))

(du)2 , (57)

It obviously has a Schwarzschild part with ry-dependent “mass” m and a Rindler part with ry-dependent
“acceleration” a, both localized on a lightlike cut. This geometry is nonlocal in the sense that it depends
not just on the coordinates r, u but additionally on a second point ry, uy. While the off-shell geometry (57)
is highly gauge dependent, the ensuing S-matrix — the only physical observable in this context [125] —
appears to be gauge independent, although a formal proof of this statement, e.g. analogously to [126], is
lacking.

5.1. Scalar matter

After integrating out geometry and the ghost sector (for f(X, T ) = 0), the effective Lagrangian (w is
defined in (4))

LeffT = F (X̂)(∂0T )(∂1T )− w′(X̂) + sources (58)

contains the quantum version of the dilaton field X̂ = X̂(∇−2
0 (∂0T )2), depending non-locally on T . The

quantity X̂ solves the equation of motion of the classical dilaton field, with matter terms and external sources
for the geometric variables in EF gauge. The simplicity of (58) is in part due to the gauge choice (56) and
in part due to the linearity of the gauge fixed Lagrangian in the remaining gauge field components, thus
producing delta-functionals upon path integration.

In principle, the interaction vertices can be extracted by expanding the nonlocal effective action in a
power series of the scalar field T . However, this becomes cumbersome already at the T 4 level. Fortu-
nately, the localization technique introduced in [121] simplifies the calculations considerably. It relies on
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Figure 3. Non-local 4-point vertices

two observations: First, instead of dealing with complicated nonlocal kernels one may solve corresponding
differential equations after imposing asymptotic conditions on the solutions. Second, instead of taking the
n-th functional derivative of the action with respect to bilinear combinations of T , the matter fields may be
localized at n different space-time points, which mimics the effect of functional differentiation. For tree-level
calculations it is then sufficient to solve the classical equations of motion in the presence of these sources,
which is achieved most easily via appropriate matching conditions.

It turns out (as anticipated from (57)) that the conserved quantity (10) is discontinuous for a VBH. This
phenomenon is generic [15].11 The corresponding Feynman diagrams are contained in figure 3.12 For free,
massless, non-minimally coupled scalars (F �= const.) both the symmetric and the non-symmetric 4-point
vertex

V (4) =
∫

d2x d2y(∂0T )2x
[
Va(x, y)(∂0T )2y + Vb(x, y)(∂0T )y(∂1T )y

]
(59)

are given in [15], and have the following properties:

1. They are local in one coordinate (e.g. containing δ(x1 − y1)) and nonlocal in the other.

2. They vanish in the local limit (x0 → y0). Additionally, Vb vanishes for minimal coupling F = const.

3. The symmetric vertex depends only on the conformal invariant combination w(X) and the asymptotic
value M∞ of (10). The non-symmetric one is independent of U , V and M∞. Thus if M∞ is fixed in
all conformal frames, both vertices are conformally invariant.

4. They respect the Z2 symmetry F (X) �→ −F (X).

It should be noted that the class of models with UV + V ′ = 0 and F = const (containing the CGHS model,
the seventh and eleventh entry in table 1) shows “scattering triviality”, i.e., the classical vertices vanish,
and scattering can only arise from higher order quantum backreactions. For these models the VBH has no
classically observable consequences, but at 1-loop level physical observables like the specific heat are modified
appreciably [127].

The 2D Klein-Gordon equation relevant for the construction of asymptotic states is also conformally
invariant. For minimal coupling it simplifies considerably, and a complete set of asymptotic states can be
obtained explicitly. Since both, asymptotic states and vertices, only depend on w(X) and M∞, at tree level
conformal invariance holds nonperturbatively (to all orders in T ), but it is broken at 1-loop level due to
the conformal anomaly. Because asymptotically geometry does not fluctuate, a standard Fock space may be
built with creation/annihilation operators a±(k) obeying the standard commutation relations. The S-matrix
for two ingoing (q, q′) into two outgoing (k, k′) asymptotic modes is determined by (cf. (59))

T (q, q′; k, k′) =
1
2
〈0
∣∣∣a−(k)a−(k′)V (4)a+(q)a+(q′)

∣∣∣ 0〉 . (60)

11With the exception of scattering trivial models, cf. the eleventh entry in table 1.
12The scalar field T is denoted by S in these graphs.
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The simple choice M∞ = 0 yields a “standard QFT vacuum” |0〉, provided the model under consideration
has a Minkowskian ground state (e.g. the first, third, fifth and last model in table 1).

For the physically interesting case of the EMKG model such an S-matrix was obtained in [128, 123].
Both the symmetric and the non-symmetric vertex contribute, each giving a divergent contribution to the
S-matrix, but the sum of both turned out to be finite! The whole calculation is highly nontrivial, involving
cancellations of polylogarithmic terms, but at the end giving the surprisingly simple result

T (q, q′; k, k′) = − iκδ (k + k′ − q − q′)
2(4π)4|kk′qq′|3/2 E3T̃ , (61)

with ingoing (q, q′) and outgoing (k, k′) spatial momenta, total energy E = q + q′,

T̃ :=
1
E3

[
Π ln

Π2

E6
+

1
Π

∑
p∈{k,k′,q,q′}

p2 ln
p2

E2
·
(

3kk′qq′ − 1
2

∑
r �=p

∑
s �=r,p

(
r2s2

))]
, (62)

and the momentum transfer function Π = (k + k′)(k − q)(k′ − q). The factor T̃ is invariant under rescaling
of the momenta p �→ ap, and the whole amplitude transforms monomial like T �→ a−4T . It should be noted
that due to the non-locality of the vertices there is just one δ-function of momentum conservation (but no
separate energy conservation) present in (61). This is advantageous because it eliminates the problem of
“squared δ-functions” that is otherwise present in 2D theories of massless scalar fields (cf. e.g. [129]). In this
sense gravity acts as a regulator of the theory.

The corresponding differential cross section also reveals interesting features [123]:

1. For vanishing Π forward scattering poles are present.

2. There is an approximate self-similarity close to the forward scattering peaks. Far away from them it
is broken, however.

3. It is CPT invariant.

4. An ingoing s-wave can decay into three outgoing ones. Although this may be expected on general
grounds, within the present formalism it is possible to provide explicit results for the decay rate.

Although it seems straightforward to generalize (60) to arbitrary n-point vertices, no such calculation has
been attempted so far. This is related to the fact that the derivation of (61) has been somewhat tedious
and lengthy. Thus, it could be worthwhile to find a more efficient way to obtain this interesting S-matrix
element.

5.2. Fermionic matter

Recently we considered 2D dilaton gravity (3) coupled to fermions (17) along the lines of the previous
subsection. The results will be published elsewhere, but we give a short summary with emphasis on differences
to the scalar case.

The constraint analysis for the general case (17) has been worked out first in [42]. Three first class
constraints generating the two diffeomorphisms and the local Lorentz symmetry and four well-known second
class constraints relating the four real components of the Dirac spinor to their canonical momenta are present
in the system. As anticipated the Hamiltonian is fully constrained. After introducing the Dirac bracket the
constructions of the BRST charge and the gauge fixed Hamiltonian are straightforward. Path integration
over geometry is even simpler than in the scalar case, because the second class constraints are implemented
in the path integral through delta functionals, allowing to integrate out the fermion momenta. The effective
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Lagrangian

Leffχ =
i√
2
F (X̂)(χ∗

1
←→
∂1 χ1)

+I(X̂)
(

i√
2
F (X̂)(χ∗

0
←→
∂0 χ0) + H(X̂)g(χχ)− V (X̂)

)
+ sources (63)

again depends on the quantum version X̂ = X̂(∇−2
0 (χ∗

1
←→
∂0 χ1)) of the dilaton field and exhibits non-locality

in the matter field.

Some properties remain the same as compared to previous studies with scalar matter. For instance,
the VBH phenomenon is still present, now even for the eleventh model in table 1. In fact, the conserved
quantity (10) now becomes continuous only for the trivial case F (X) = 0. But there are also some notable
differences. For example, the non-selfinteracting system already has three 4-point vertices, two of them being
the symmetric and asymmetric vertices of the scalar case and a new third one, arising from the first term
in the second line of (63). All vertices show the first two properties listed above, and the symmetric and
non-symmetric ones also the third one.

The new vertex however does not vanish for minimal coupling, and thus in contrast to the scalar case
there are two vertices present even for this simple case. It is not conformally invariant, but rather transforms
additively because it contains a term proportional to U(X). However, since also the external legs have a
conformal weight, conformal invariance of the tree-level S-matrix still is expected to hold, despite of the
non-invariance of some of the vertices and some of the asymptotic modes.

At 1-loop level and for minimal coupling conformal symmetry is broken and, exactly as in the case of
scalar matter, the conformal anomaly can be integrated to the non-local Polyakov action [130]. This has
been applied e.g. in[131]. A possible Thirring term can be reformulated using (19) and integrated by use
of the chiral anomaly, giving a Wess-Zumino [132] contribution to the effective action. In this case, a path
integral over the auxiliary vector potential remains, with a highly non-local self-interaction. Whether this
treatment is favourable over treating the Thirring term directly as an interaction vertex has to be decided
by application.

Another peculiar feature of 2D field theories is bosonization, e.g. the quantum equivalence of the Thirring
model and the Sine-Gordon model, both in flat 1+1 dimensions [133]. This issue has been addressed
recently on a curved background by Frolov, Kristjánsson and Thorlacius [134] to investigate the effect of
pair-production on BH space times in regions of small curvature (as compared to the microscopic length
scale of quantum theory). In the framework of first order gravity it may be possible to investigate the
question of bosonization even outside this simple framework, since one is able to integrate out geometry
non-perturbatively.

6. Mathematical issues

In the absence of matter many of the interesting features discussed in the previous three sections are
absent: there is no tachyon dynamics, no Hawking radiation, no interesting semi-classical behavior, no
critical collapse, no quasinormal modes, no relevant solid state analogue, no scattering processes and no
reconstruction of geometry from matter. Nevertheless, some basic features remain, like the global structure
of the classical solutions or the physics-to-gauge conversion mentioned in section 4.5. Mathematically,
however, the absence of matter bears some attractiveness and reveals beautiful structures responsible for
the classical integrability of (3). They may allow some relevant generalizations of (3), e.g. in the context of
non-commutative gravity.
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6.1. Remarks on the Einstein-Hilbert action in 2D

In 2D the Einstein tensor vanishes identically for any 2D metric and thus conveys no useful information.
Similarly, the 2D EH action, supplemented appropriately by boundary and corner terms, just counts the
number of holes of a compact Riemannian manifold, cf. e.g. [135]. Thus, as compared to (1) or (3) the study
of “pure” 2D gravity, i.e., without coupling to a dilaton field, is of rather limited interest. If one adds a
cosmological constant term one may study quantum gravity in 2D by means of dynamical triangulations,
cf. e.g. [136] and references therein. The EH part of the action plays no essential role, however.

It is possible to consider EH gravity in 2 + ε dimensions, an idea which seems to go back to [137]. After
taking the limit ε → 0 in a specific way [138] one obtains again a dilaton gravity model (1) with V = 0
and U = const. (cf. the eleventh model in table 1). That such a limit can be very subtle has been shown
recently by Jackiw [139] in the context of Weyl invariant scalar field dynamics: if one simply drops the EH
term in equation (3.5) of that work the Liouville model is obtained (cf. the tenth model in table 1), but
Weyl invariance is lost.

6.2. Relations to 3D: Chern-Simons and BTZ

The gravitational Chern-Simons term [140] and the 3D BTZ BH [141] have inspired a lot of further
research. Here we will focus on relations to (1) and (3): dimensional reduction of the BTZ to 2D has been
performed in [19], cf. the fifteenth model in table 1. A reduction of the gravitational Chern-Simons term
from 3D to 2D has been performed in [20], cf. the sixteenth model in table 1. Recently [142], such reductions
have been exploited to calculate the entropy of a BTZ BH in the presence of gravitational Chern-Simons
terms, something which is difficult to achieve in 3D because there is no manifestly covariant formulation
of the Chern-Simons term, whereas the reduced theory is manifestly covariant. It is not unlikely that also
other open problems of 3D gravity may be tackled with 2D methods.

6.3. Integrable systems, Poisson-sigma models and KdV surfaces

Some of the pioneering work has been mentioned already in section 2.1 and in table 1. In two seminal
papers by Kummer and Schwarz [143] the usefulness of light-cone gauge for the Lorentz frame and EF gauge
for the curved metric has been demonstrated for the fourteenth model in table 1, which is a rather generic
one as it has non-vanishing U and non-monomial V . A Hamiltonian analysis [72] revealed an interesting
(W-)algebraic structure of the secondary constraints together with the fields X,X± as generators. The
center of this algebra consists of the conserved quantity (10) and its first derivative, ∂1M (which, of course,
vanishes on the surface of constraints). Consequently, it has been shown by Schaller and Strobl [31] that (3)
is a special case of a Poisson-sigma model,13

SPSM = −
∫
M

[
XI dAI −

1
2
P IJAJ ∧AI

]
, (64)

with a 3D target space, the coordinates of which are XI = {X,X+, X−}. The gauge fields comprise the
Cartan variables, AI = {ω, e−, e+}. Because the dimension of the Poisson manifold is odd the Poisson tensor
(I, J ∈ {X,±})

PX± = ±X± , P+− = X+X−U(X) + V (X) , P IJ = −P JI , (65)

cannot have full rank. Therefore, always a Casimir function, (10), exists, which may be interpreted as
“mass”. Note that (65) indeed fulfills the required Jacobi-identities, P IL∂LP

JK + perm (IJK) = 0. For a
generic (graded) Poisson-sigma model (64) the commutator of two symmetry transformations

δXI = P IJεJ , δAI = −dεI −
(
∂IP

JK
)
εK AJ , (66)

13Dirac-sigma models [144] are a recent generalization thereof.
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is a (non-linear) symmetry modulo the equations of motion. Only for P IJ linear in XI a Lie algebra is
obtained; cf. the second model in table 1. For (65) the symmetries (66) on-shell correspond to local Lorentz
transformations and diffeomorphisms. Generalizations discussed in section 2.4 are particularly transparent
in this approach; essentially, one has to add more target space coordinates to the Poisson manifold, some of
which will be fermionic in supergravity extensions, cf. e.g. [39].

Actually, there exist various approaches to integrability of gravity models in 2D, cf. e.g. [145], and we
can hardly do them justice here. We will just point out a relation to Korteweg-de Vries (KdV) surfaces
as discussed recently in [146]. These are 2D surfaces embedded in 3D Minkowski space arising from the
KdV equation ∂tw = ∂3xw + 6w∂xw, with line element (cf. (11) in [146]; u there coincides with w here)
ds2 = 2 dX du− (4λ−w(X, u)) du2, where X ∝ x, u ∝ t and λ is some constant. For static KdV solutions,
∂uw = 0, this line element is also a solution of (3) as can bee seen from (11), with λ playing the role of the
mass M . In the non-static case it describes a solution of (3) coupled to some energy-momentum tensor. It
could be of interest to pursue this relation in more depth.

6.4. Torsion and non-metricity

For U = 0 the equation of motion R = 2V ′(X), if invertible, allows to rewrite the action (1) as SR =∫
d2x
√−gf(R), cf. e.g. [147] and references therein. As compared to such theories, the literature on models

with torsion τa = ∗T a,

SRT =
∫

d2x
√−gf(R, τaτa) , (67)

is relatively scarce and consists mainly of elaborations based upon the fourteenth model in table 1, where
f = Aτaτa +BR2 + CR+ Λ, also known as “Poincarè gauge theory”, cf. [148] and references therein. This
model in particular (and a large class of models of type (67)) allows an equivalent reformulation as (3).
Thus, they need not be discussed separately.

A generalization which includes also effects from non-metricity has been studied in [149]. Elimination of
non-metricity leads again to models of type (1), (3), but one has to be careful with such reformulations as
test-particles moving along geodesics or, alternatively, along auto-parallels, may “feel” the difference. Thus,
it could be of interest to generalize (3) (which already contains torsion if U �= 0) as to include non-metricity,
thus dropping the requirement that the connection ωa

b is proportional to εab. However, a formulation as
Poisson-sigma model (64) (with 6D target space) seems to be impossible as there are only trivial solutions
to the Jacobi identities.

6.5. Non-commutative gravity

In the 1970ies/1980ies theories have been supersymmetrized, in the 1990ies/2000s theories have been
“non-commutativized”, for reviews cf. e.g. [150]. The latter procedure still has not stopped as the original
idea, namely to obtain a fully satisfactory non-commutative version of gravity, has not been achieved so far.
In order to get around the main conceptual obstacles it is tempting to consider the simplified framework of
2D.

There it is possible to construct non-commutative dilaton gravity models with a usual (non-twisted)
realization of gauge symmetries.14 A non-commutative version of the Jackiw-Teitelboim model (cf. the
second entry in table 1),

SNCJT = −1
2

∫
d2x εµν

[
Xa D T

a
µν +Xab D

(
Rab

µν − Λeaµ D e
b
ν

)]
, (68)

14Another approach has been pursued in [151].
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has been constructed in [152] and then quantized in [153]. A non-commutative version of the fourth model in
table 1 was suggested in [154]. For a definition of the Moyal-D and further notation cf. these two references.
A crucial change as compared to (3), besides the D, is the appearance of a second dilaton field ψ in 2Xab =
Xεab − iψηab. However, interesting as these results may be, there seems to be no way to generalize them to
generic 2D dilaton gravity without twisting the gauge symmetries [155]. Moreover, the fact that the metric
can be changed by “Lorentz transformations” seems questionable from a physical point of view, cf. [156] for
a similar problem.

An important step towards constructing a satisfactory non-commutative gravity was recently made by
Wess and collaborators [157], who understood how one can construct diffeomorphism invariants, including
the EH action, on non-commutative spaces (see also [158] for a real formulation). There is, however, a price
to pay. The diffeomorphism group becomes twisted, i.e., there is a non-trivial coproduct [159]. Recently it
could be shown [160] that twisted gauge symmetries close for arbitrary gauge groups and thus a construction
of twisted-invariant actions is straightforward. The main element in that construction (cf. also [159, 161,
157, 158] and [162]) is the twist operator

F = expP, P =
i

2
θµν∂µ ⊗ ∂ν , (69)

which acts on the tensor products of functions φ1 ⊗ φ2. With the multiplication map µ(φ1 ⊗ φ2) = φ1 · φ2
and (69) the Moyal-Weyl representation of the star product,

φ1 D φ2 = µ ◦ F(φ1 ⊗ φ2) = µ*(φ1 ⊗ φ2) , (70)

can be constructed. Consider now generators u of some symmetry transformations which form a Lie algebra.
If one knows the action of these transformations on primary fields, δuφ = uφ, the action on tensor products
is defined by the coproduct ∆. In the undeformed case the coproduct is primitive, ∆0(u) = u ⊗ 1 + 1 ⊗ u

and δu(φ1 ⊗ φ2) = ∆0(u)(φ1 ⊗ φ2) = uφ1 ⊗ φ2 + φ1 ⊗ uφ2 satisfies the usual Leibniz rule. The action of
symmetry generators on elementary fields is left undeformed, but the coproduct is twisted,

∆(u) = exp(−P)∆0(u) exp(P) . (71)

Obviously, twisting preserves the commutation relations. Therefore, the commutators of gauge transforma-
tions for an arbitrary gauge group close.

It seems plausible that a corresponding generalization to twisted non-linear gauge symmetries will
be a crucial technical pre-requisite to a successful construction of generic non-commutative 2D dilaton
gravity[164].15 It would allow, among other things, a thorough discussion of non-commutative BHs, along
the lines of sections 2-5.
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