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Coset Algebras of the Maxwell-Einstein Supergravities

Nejat Tevfik YILMAZ
Department of Mathematics, and Computer Science, Çankaya University,
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Abstract

The general structure of the scalar cosets of the Maxwell-Einstein supergravities is given. Following

an introduction of the non-linear coset formalism of the supergravity theories a comparison of the coset

algebras of the Maxwell-Einstein supergravities in various dimensions is discussed.

1. Introduction

The Maxwell-Einstein supergravities are obtained by coupling an arbitrary number of abelian vector
multiplets to the supergravity multiplet in various dimensions. They may also be obtained by the Kaluza-
Klein reduction on the Euclidean torus T 10−D of the ten dimensional simple N = 1 supergravity which is
coupled toN abelian gauge multiplets [1]. The scalar cosets of theMaxwell-Einstein supergarvity theories can
be formulated as non-linear sigma models, more specifically as the symmetric space sigma models. The study
of the scalar cosets of these theories is essential in understanding the global symmetries of the entire theory.
The global symmetry of the scalar lagrangian can be extended to the entire bosonic sector of the theory.
The scalar cosets G/K of the Maxwell-Einstein theories are based on the global internal symmetry groups
G which are in general non-compact real forms of semi-simple Lie groups [2]. Under certain conditions the
global symmetry groups may be maximally non-compact (split) real forms but in general they are elements
of a bigger class of Lie groups which contains the global symmetry groups of the maximal supergravities [3]
namely the split real forms as a special subset [2, 4, 5, 6]. The main difference between the scalar cosets
based on the non-compact and the maximally non-compact global symmetry groups is the parametrization
that one can choose for the coset representatives. For the general non-compact real forms one can make use
of the solvable Lie algebra gauge [7] to parameterize the scalar coset.
The Kaluza-Klein compactification of the bosonic sector of the ten dimensional simpleN = 1 supergravity

which is coupled to N abelian gauge multiplets [8] on the Euclidean torus T 10−D is given in [1]. When as a
special case, the number of the U(1) gauge fields is chosen to be 16, the ten dimensional supergravity which
is coupled to 16 abelian U(1) gauge multiplets becomes the low energy effective limit of the ten dimensional
heterotic string theory. Thus the formulation in this case corresponds to the dimensional reduction of the
low-energy effective bosonic lagrangian of the ten dimensional heterotic string theory. When the number of
coupling vector multiplets is N = 16, the D = 10 Yang-Mills supergravity [8] has the E8 × E8 Yang-Mills
gauge symmetry, however the general Higgs vacuum structure causes a spontaneous symmetry breakdown
so that the full symmetry E8 ×E8 is broken down to its maximal torus subgroup U(1)16, whose Lie algebra
is the Cartan subalgebra of E8 × E8. Thus the ten dimensional Yang-Mills supergravity reduces to its
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maximal torus subtheory which is an abelian supergravity theory. The bosonic sector of this abelian Yang-
Mills supergravity corresponds to the low energy effective Lagrangian of the bosonic sector of the fully
Higgsed ten dimensional heterotic string theory [8]. This abelian supergravity theory is the one where the
Maxwell-Einstein supergravities emerge from due to the Kaluza-Klein reduction as we have discussed above.
The method of non-linear realizations [9, 10, 11, 12, 13] is used in [14, 15] to formulate the gravity as a

non-linear realization in which the gravity and the gauge fields appear on equal footing. Later, the dualization
of the bosonic fields has provided the non-linear realization formulation of the bosonic sectors of the maximal
supergravity theories [3, 4]. By introducing auxiliary fields for a subset of the field content and by using the
coset formulation, the global symmetries of the scalar sectors of the maximal supergravities are studied in
detail in [3]. These symmetries can also be realized on the bosonic fields. A general, dimension-independent
formalism is developed for the bosonic sectors of the maximal supergravities in [16]. The coset realizations
of the non-gravitational bosonic sectors of the D = 11 supergravity [17], the maximal supergravities which
are obtained by the Kaluza-Klein reduction of the D = 11 supergravity over the tori Tn, as well as the IIB
supergravity [18, 19, 20], are introduced by the dualization of the scalars and the higher-order gauge fields in
[4]. In the same work, the twisted self-duality structure [21, 22] of the supergravities is generalized to regain
the first-order equations of the corresponding theories from the Cartan forms of the dualized coset. Therefore
in [4] it is shown that the non-linear coset formulation of the scalars can be improved to include the other
non-gravitational bosonic fields, resulting in the first-order formulation of the relative theories. The mainline
of [4] is to introduce dual fields for the non-gravitational bosonic fields and to construct the Lie superalgebra
which will generate the coset representatives that realize the original field equations both in first and second-
order by means of the Cartan form of the coset map. The dualization method is another manifestation of the
lagrange multiplier methods which are used for the scalar sectors of the maximal supergravities in [3, 23].
In this work we discuss the relative structures of the coset algebras obtained as a result of the non-linear

realization of the bosonic sectors of the Maxwell-Einstein supergarvities in D = 7 [24], D = 8 [25], D = 9
[26]. We will first mention about the general formulation of the scalar cosets of these theories in section two.
In section three after briefly discussing the non-linear realization formalism we will give a comparison of the
coset algebras of the Maxwell-Einstein supergravities which are constructed in [27, 28, 29] respectively.

2. Scalar Cosets

When the supergravity multiplet in D-dimensions is coupled to an arbitrary number of N abelian vector
multiplets the scalars of the vector multiplets are governed by a symmetric space sigma model [3, 5, 6, 30, 31].
The scalar fields ϕα for α = 1, ..., N(10−D) parameterize the scalar coset manifold SO(N, 10−D)/SO(N)×
SO(10 − D) where SO(N, 10 − D) is in general a non-compact real form of a semi-simple Lie group and
SO(N)×SO(10−D) is its maximal compact subgroup. For this reason SO(N, 10−D)/SO(N)×SO(10−D)
is a Riemannian globally symmetric space for all the SO(N, 10 − D)-invariant Riemannian structures on
SO(N, 10−D)/SO(N)× SO(10−D) [2]. Therefore the scalar sector which consists of the vector multiplet
scalars of the D dimensional Maxwell-Einstein supergravity can be formulated as a general symmetric space
sigma model. To construct the symmetric space sigma model lagrangian one may make use of the solvable
Lie algebra parametrization [7] for the parametrization of the scalar coset manifold SO(N, 10−D)/SO(N)×
SO(10 −D). The solvable Lie algebra parametrization is a consequence of the Iwasawa decomposition [2]

so(N, 10 −D) = k0 ⊕ s0

= k0 ⊕ hk ⊕ nk,

(1)

where k0 is the Lie algebra of SO(N) × SO(10 − D) and s0 is a solvable Lie subalgebra of so(N, 10 −D).
In (1) hk is a subalgebra of the Cartan subalgebra h0 of so(N, 10−D) which generates the maximal R-split
torus in SO(N, 10−D) [2, 6, 31]. The nilpotent Lie subalgebra nk of so(N, 10−D) is generated by a subset
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{Em} of the positive root generators of so(N, 10−D) where m ∈ ∆+
nc. The roots in ∆+

nc are the non-compact
roots with respect to the Cartan involution θ induced by the Cartan decomposition [2, 31, 32]

so(N, 10 −D) = k0 ⊕ u0, (2)

where u0 is a vector subspace of so(N, 10−D). By using the scalar fields ϕα of the coupling vector multiplets
and the generators of the solvable Lie algebra s0 we can parameterize the representatives of the scalar coset
manifold SO(N, 10 −D)/SO(N) × SO(10 −D) as [2]

L = exp(
1
2
φiHi)exp(χmEm), (3)

where {Hi} for i = 1, ..., dim(hk) ≡ r are the generators of hk and {Em} for m ∈ ∆+
nc are the positive root

generators which generate nk. The scalars {φi} for i = 1, ..., r are called the dilatons and {χm} for m ∈ ∆+
nc

are called the axions. The coset representatives satisfy the defining relation of SO(N, 10 −D)

LT ηL = η, (4)

where η = diag(−,−, ...,−,+,+, ...,+) in which there are 10−D minus signs and N plus signs. If we assume
that we choose the fundamental representation for the algebra so(N, 10 − D) and if we define the internal
metric

M = LTL, (5)

then the scalar lagrangian which governs the N(10 − D) scalar fields of the vector multiplets can be con-
structed as

Lscalar =
1
4
tr(∗dM−1 ∧ dM). (6)

3. Coset Formulation and the Coset Algebras

In this section we will briefly mention about the general formalism which formulates the bosonic sectors
of the Maxwell-Einstein supergravities as non-linear sigma models. As we have discussed before the coset
construction of the bosonic sectors of the Maxwell-Einstein supergravities can be considered to be an exten-
sion of the coset structure of the scalars of these theories which we have given in the previous section. Such
a formulation treats the scalars and the other bosonic fields on equal footing. One may apply the non-linear
realization or the dualization method of [4] to construct the coset formulation of the bosonic sectors of
the Maxwell-Einstein supergravity theories. Since the dualization method is another manifestation of the
langrange multiplier methods the bosonic first-order formulation is also obtained as a consequence of the
coset construction. In such a coset formulation one first defines a coset element which is generated by the
bosonic fields coupled to the generators of a Lie superalgebra. Then the Lie superalgebra structure of the
generators which parameterize this coset element is derived so that the Cartan form induced by the coset
map realizes the field equations by satisfying the Cartan-Maurer equation. The Cartan form of the dualized
coset element will obey a twisted self-duality equation [4, 33] which results in the first-order bosonic field
equations of the theory. To construct the coset map the first task is to assign a generator for each bosonic
field. The original generators {Ti} are coupled to the fields {τ i} in the coset parametrization. One should
also introduce a dual field for each original field. The dual fields can be given as {τ̃ i}. These dual fields are
the langrange multipliers coupling to the Bianchi identities of the field strengths of the original fields [23].
Thus if the original field is a p-form the dual field must be a (D− p− 2)−form. We will also assign the dual
generators {T̃i} to the dual fields so that they will couple to the dual fields in the parametrization of the
coset element. The Lie superalgebra of the original and the dual generators will have the Z2 grading so that
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the generators will be odd if the corresponding potential is an odd degree differential form and otherwise
even [4]. Specifically the doubled coset element will be parameterized by a differential graded algebra. This
algebra is generated by the differential forms and the generators we have introduced above. The odd (even)
generators behave like odd (even) degree differential forms under this graded differential algebra structure
when they commute with the differential forms. The odd generators obey the anti-commutation relations
while the even ones and the mixed ones obey the commutation relations.

Apart from the graviton erµ the bosonic field content of the D = 7, 8, 9 dimensional Maxwell-Einstein
supergravities can be given as

(Bµν , A
I
µ, σ, ϕ

α), (7)

where I = 1, ..., N + 10 −D. The one-form fields AI
µ include the N Maxwell fields of the vector multiplets

and the 10 − D vectors of the graviton multiplet. B is a two-form field of the graviton multiplet and σ
is the dilaton of the graviton multiplet. The scalar fields ϕα belong to the vector multiplets as mentioned
before. The construction of the coset formulation or the non-linear realization of the bosonic sector of the
Maxwell-Einstein supergravities requires the definition of the coset element

ν =exp(
1
2
φjHj)exp(χmEm)exp(σK)exp(AIVI)exp(

1
2
BY )

× exp(
1
2
B̃Ỹ )exp(ÃI ṼI )exp(σ̃K̃)exp(χ̃mẼm)exp(

1
2
φ̃jH̃j).

(8)

Here we have defined the original generators {K, VI, Y, Hj, Em} and as we have mentioned above the
dual generators {K̃, ṼI , Ỹ , H̃j, Ẽm}. The coset map ν is a map from the D-dimensional spacetime into a
group which is presumably the rigid symmetry group of the dualized lagrangian. However we will not focus
on the group theoretical structure of the non-linear realization of the Maxwell-Einstein supergravities but
rather on the Lie superalgebra which generates (8). Eventually this algebra also contains the information
of the group theoretical structure of the coset formulation [2, 3, 5, 6, 30, 31]. The local map ν induces the
Cartan form G on the D-dimensional spacetime which can be given as

G = dνν−1. (9)

From its construction the Cartan form (9) satisfies the Cartan-Maurer equation

dG − G ∧ G = 0. (10)

The standard dualization procedure [4, 27, 28, 29, 30, 31] requires the construction of the Lie superalgebra
of the original and the dual generators such that they will lead us to the second-order bosonic field equations
of motion when the Cartan form (9) is calculated and inserted in (10). Therefore as performed in [27, 28, 29]
one can calculate the Cartan form (9) in terms of the desired unknown structure constants of the Lie
superalgebra of the original and the dual generators then one can insert this calculated Cartan form in the
Cartan-Maurer equation (10) and finally compare the result with the second-order bosonic field equations
to read the unknown structure constants. This is the general method to determine the Lie superalgebra
structure which leads to the coset formulation of the Maxwell-Einstein supergravities. Next we will present
and discuss the general structure of the coset algebras obtained as a result of the above mentioned coset
formulation of the D = 7 [24], D = 8 [25], D = 9 [26] Maxwell-Einstein supergravities.
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3.1. The D=7 Case

The bosonic lagrangian of the N = 2, D = 7 Maxwell-Einstein supergravity can be given as [24]

L = 1
2
R ∗ 1− 5

8
∗ dσ ∧ dσ − 1

2
e2σ ∗G ∧G

− 1
8
tr(∗dM−1 ∧ dM)− 1

2
eσF ∧M ∗ F,

(11)

where the coupling between the field strengths F I = dAI for I = 1, ..., N+3 and the scalars which parame-
terize the coset SO(N, 3)/SO(N) × SO(3) can be explicitly written as

−1
2
eσF ∧M ∗ F = −1

2
eσMijF

i ∧ ∗F j. (12)

We have assumed the (N + 3)-dimensional matrix representation of so(N, 3). We have the invariant metric
as η = diag(−,−,−,+,+, ...,+). The Chern-Simons form G is defined as [24]

G = dB − 1√
2
ηij A

i ∧ F j. (13)

In [27] the method of dualization which we have introduced above is applied for the lagrangian (11) and the
coset algebra of the N = 2, D = 7 Maxwell-Einstein supergravity is found to be

[K, Vi] =
1
2
Vi, [K, Y ] = Y, [K, Ỹ ] = −Ỹ ,

[Ṽk, K] =
1
2
Ṽk, {Vi, Vj} = − 1√

2
ηijY, [Hl, Vi] = (Hl)ki Vk,

[Em, Vi] = (Em)
j
iVj, [Vl, Ṽk] = −2

5
δlkK̃ +

1
2

r∑
i=1

(Hi)lkH̃i,

{Vk, Ỹ } = 2
√
2 ηl

k Ṽl, [Y, Ỹ ] =
16
5
K̃, [Hi, Ṽk] = −(HT

i )
m
k Ṽm,

[Eα, Ṽk] = −(ET
α )

m
k Ṽm, [Hj, Eα] = αjEα, [Eα, Eβ] = Nα,βEα+β,

[Hj, Ẽα] = −αjẼα, [Eα, Ẽα] =
1
4

r∑
j=1

αjH̃j,

[Eα, Ẽβ] = Nα,−βẼγ , α− β = −γ, α �= β, (14)

where we have also included the commutation relations of the generators of the solvable Lie subalgebra s0

of so(N, 3) which form up a subalgebra in (14). The matrices ((Hm)
j
i , (Eα)

j
i ) are the matrix representatives

of the corresponding generators (Hm, Eα). Also the matrices ((HT
m)

j
i , (E

T
α )

j
i ) are the matrix transpose of

((Hm)
j
i , (Eα)

j
i ). The commutators and the anti-commutators which are not listed in (14) vanish.
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3.2. The D=8 Case

The lagrangian of the bosonic sector of the N = 1, D = 8 Maxwell-Einstein supergravity is given as [25]

L = 1
4
R ∗ 1 + 3

8
dσ ∧ ∗dσ − 1

2
e2σG ∧ ∗G

+
1
16
tr(dM−1 ∧ ∗dM)− 1

2
eσF ∧M ∗ F.

(15)

The Chern-Simons three-form G is

G = dB + ηijF
i ∧Aj . (16)

The scalars parameterize the coset manifold SO(N, 2)/SO(N)×SO(2) and the SO(N, 2) invariant tensor η
is η = diag(−,−,+,+, ...,+) as generally defined before. We assume that we choose an (N +2)-dimensional
matrix representation of so(N, 2). In [28] the coset algebra which leads to the non-linear sigma model or the
coset formulation of the bosonic sector of the N = 1, D = 8 Maxwell-Einstein supergravity is derived as

[K, Vi] =
1
2
Vi, [K, Y ] = Y, [K, Ỹ ] = −Ỹ ,

[Ṽk, K] =
1
2
Ṽk, {Vi, Vj} = ηijY, [Hl, Vi] = (Hl)ki Vk,

[Em, Vi] = (Em)
j
iVj, {Vl, Ṽk} =

2
3
δlkK̃ +

r∑
i=1

(Hi)lkH̃i,

[Vk, Ỹ ] = −4 ηl
k Ṽl, [Y, Ỹ ] = −16

3
K̃, [Hi, Ṽk] = −(HT

i )
m
k Ṽm,

[Eα, Ṽk] = −(ET
α )

m
k Ṽm, [Hj, Eα] = αjEα, [Eα, Eβ] = Nα,βEα+β,

[Hj, Ẽα] = −αjẼα, [Eα, Ẽα] =
1
4

r∑
j=1

αjH̃j,

[Eα, Ẽβ] = Nα,−βẼγ , α− β = −γ, α �= β. (17)

As in the D = 7 case the matrices ((Hm)
j
i , (Eα)

j
i ) are the matrix representatives of the corresponding

generators (Hm, Eα) in the (N+2)-dimensional matrix representation of so(N, 2). Also the matrices ((HT
m)

j
i ,

(ET
α )

j
i ) are the matrix transpose of ((Hm)

j
i , (Eα)

j
i ). The commutators and the anti-commutators which are

not listed in (17) vanish.

3.3. The D=9 Case

Finally we will present the coset algebra of the N = 1, D = 9 Maxwell-Einstein supergravity [26] which
is derived in [29]. The bosonic lagrangian of the N = 1, D = 9 Maxwell-Einstein supergravity can be given
as [26]

L = −1
4
R ∗ 1 + 7

4
∗ dσ ∧ dσ + 1

2
e−4σ ∗G ∧G

+
1
16
tr(∗dM−1 ∧ dM)− 1

2
e−2σF ∧M ∗ F.

(18)
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In this case the scalars of the coupling abelian vector multiplets parameterize the scalar coset manifold which
can be given as SO(N, 1)/SO(N). The Chern-Simons three-form is taken as

G = dB + ηIJA
I ∧ F J . (19)

We assume an (N+1)-dimensional matrix representation of so(N, 1). As before we have the invariant metric
as η = diag(−,+,+, ...,+). The coset algebra which parameterize the coset (8) and which generates the
coset formulation of the bosonic sector is derived in [29] as

[K, VI] = −VI , [K, Y ] = −2Y, [K, Ỹ ] = 2Ỹ ,

[ṼI , K] = −ṼI , {VI , VJ} = ηIJY, [Hl, VI ] = (Hl)KI VK ,

[Em, VI ] = (Em)JI VJ , [VL, ṼM ] = −2
7
δLM K̃ −

r∑
i=1

(Hi)LMH̃i,

{VK , Ỹ } = 4ηL
K ṼL, [Y, Ỹ ] = −16

7
K̃, [Hi, ṼK ] = −(HT

i )
M
K ṼM ,

[Eα, ṼK ] = −(ET
α )

M
K ṼM , [Hj, Eα] = αjEα, [Eα, Eβ] = Nα,βEα+β,

[Hj, Ẽα] = −αjẼα, [Eα, Ẽα] =
1
4

r∑
j=1

αjH̃j,

[Eα, Ẽβ] = Nα,−βẼγ , α− β = −γ, α �= β. (20)

As in the other cases the commutators and the anti-commutators which are not listed above vanish.
We know that in general for the global symmetry algebra so(N, 10−D) in the D-dimensional Maxwell-

Einstein supergravity the dimension of the solvable Lie algebra s0 is N(10 −D). Thus in a D-dimensional
theory we have N(10 − D) dilatons and axions as the scalars of the vector multiplets which parameterize
the scalar coset SO(N, 10 − D)/SO(N) × SO(10 − D). From the coset algebras (14), (17), (20) we also
observe that these algebras contain the solvable Lie algebras s0 in them. One more observation is that the
scalar field generators and their duals form up a subalgebra in each case. Thus one may think of the coset
algebras as extensions of the 2N(10−D) dimensional scalar-dual algebras in each case whereas the scalar-
dual algebras can be considered to be the extensions of the solvable Lie algebras s0 which parameterize the
scalar coset manifolds SO(N, 10−D)/SO(N)×SO(10−D). When we consider the bosonic field content of
the D-dimensional Maxwell-Einstein supergravities in general we have a supergravity multiplet dilaton σ, a
two form field B, N(10 −D) vector multiplet scalars and we have N + (10 − D) one-form fields. For the
coset construction of the bosonic sector one has to double the field content by introducing dual fields. Since
we also assign a generator for each field the dimension of the coset algebra becomes

dim(sdual) = 22N − (2N + 2)D+ 24. (21)

We deduce that the general scheme of the coset algebras in various dimensions is the same however as a
result of the coset construction method we have discussed before, due to the oddness or the evenness of the
dimension D of the spacetime the odd-even structure of the generators differ. For all the coset algebras given
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in (14), (17) and (20) the generators {K̃, H̃i} commute with all the algebra generators thus they generate
the center (sdual)c of the coset algebras sdual in each dimension. Therefore we have

dim((sdual)c) = dim(hk) + 1. (22)

Finally we find that there are several abelian subalgebras of the coset algebras sdual which are generated by
the sets

{K̃, ṼI, Ỹ , H̃j, Ẽm}, {K̃, ṼI , Y, H̃j, Ẽm}, {K̃, Y, H̃j, Hj},

{K̃,K, H̃j, Ẽm}, {K̃,K, H̃j, Hj}, {K̃, Hi, Ỹ , H̃j},

{K̃, Hi, Y, H̃j}. (23)

The dimension of the first two of these algebras which are maximal in dimension is

11N − (N + 1)D+ 12, (24)

which is half of the dimension of the coset algebras sdual. The dimension of the abelian subalgebra generated
by {K̃,K, H̃j, Ẽm} is

N(10−D) + 2, (25)

and the dimension of the rest of the abelian subalgebras of sdual which are given in (23) is

2 dimhk + 2. (26)

As a final remark we can state that if the coset algebras (14), (17), (20) form up a solvable Lie algebra
parametrization for a dualized coset structure Gdual/Kdual then the first two of the above mentioned abelian
algebras in (23) can be the candidates for the subalgebra of the Cartan subalgebra of gdual which generates
the maximal R-split torus in Gdual.

4. Conclusion

In section two we have discussed the scalar coset structures of the Maxwell-Einstein supergravities in
general. After mentioning the general formalism of the non-linear sigma model or the coset formulation of
the bosonic sectors of the Maxwell-Einstein supergravity theories we have given a comparison of the coset
algebras derived in the coset constructions in various dimensions in section three.
The symmetries of the supergravity theories have been studied in the recent years to gain insight in the

symmetries and the duality transformations of the string theories whose low energy effective limits or the
massless sectors are the supergravities. The global symmetries of the supergravities help us to understand
the non-perturbative U-duality symmetries of the string theories and the M theory [34, 35]. A restriction of
the global symmetry group G of the supergravity theory to the integers Z, namely G(Z), is conjectured to
be the U-duality symmetry of the relative string theory which unifies the T-duality and the S-duality [34].
Therefore the coset formulation of the supergravities have not only enabled us to study the symmetries of
the supergravities in detail but also provided a better understanding of the dualities and the symmetries of
the string theories whose low energy effective limits are the relative supergravities.
The Lie superalgebras we have presented in section three generate the dualized coset elements. They

may be considered as the parametrization of a coset structure Gdual/Kdual of the bosonic sector likewise
the coset structure G/K of the scalars. We know that the global (rigid) symmetries of the scalar sector
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whose action on the scalar fields does not depend on the spacetime coordinates are essential to have a
deeper understanding of the supergravity theories. One can also define the action of the global symmetry
group of the scalars on the other fields as well, thus the global symmetry of the scalars can be extended
to be the global symmetry of not only the bosonic sector but the entire theory. The groups of the coset
formulations namely Gdual in various dimensions can be studied as enlarged global symmetry groups of the
corresponding Maxwell-Einstein supergravity theories. Therefore as we have mentioned before the improved
global symmetry analysis of the Maxwell-Einstein supergravities is an essential tool to study the symmetry
scheme of the relative heterotic string theories since as discussed in the introduction the Maxwell-Einstein
supergravities are the low energy limits of the heterotic string theories. In particular the T 3-compactification
of the D = 10 type I supergravity that is coupled to the Yang-Mills theory [8, 36] which forms up the low
energy effective limit of the D = 10 heterotic string gives the D = 7 Maxwell-Einstein supergravity. Also
an equivalent dual bosonic lagrangian of the D = 7 Maxwell-Einstein supergravity in which the two-form
potential B is replaced by a dual three-form field [37, 38] corresponds to the K3-compactification [39] of
the D = 11 supergravity [17] which is conjectured to be the low energy limit of the M theory. Thus by
constructing the coset algebra which reveals information about the global symmetries of the D = 7 Maxwell-
Einstein supergravity we may have insight into the symmetries of M theory. In [40] the string-membrane
dualities in D = 7 which arise from the comparison of the construction of the D = 7 Maxwell-Einstein
supergravity either as a toroidally compactified heterotic string or aK3-compactifiedD = 11 supermembrane
are discussed. The coset formulation of the bosonic sector of the D = 7 Maxwell-Einstein supergravity will
also help to understand the string-membrane and the string-string dualities in D = 7.

The identification of the coset algebras we have given in section three is not done. As a first guess
one may consider them as solvable algebras which are parts of Iwasawa decompositions similar to the
algebraic construction of the scalar cosets we have mentioned in section two. For this reason one may
focus on the identification of the abelian and the nilpotent parts of sdual by considering necessary generator
redefinitions. The relation of these algebras can be inspected with the coset algebras of the D = 11 and
the maximal supergravities [4, 41, 42] as well. The attempt to identify the coset structure Gdual/Kdual and
thus the enlarged global symmetry group Gdual must be in correspondence with the identification of the
coset algebras. However we should point out that likewise proposed and applied in [3] we make use of a
differential graded algebra of the module of the differential forms and the algebra of the field generators
for the parametrization of the coset therefore the group theoretical considerations of the coset formulation
should posses structures more involved than Lie groups. If one manages to construct the group theoretical
framework of the coset formulation one would obtain a legitimate geometrical formulation of the related
supergravity theory at least for the bosonic sector. Another essential inquiry may be held for the realization
of the action of the proposed global symmetry groupGdual on the fields. In [4] it is argued that the symmetry
groups generated by the coset algebras become the symmetry groups of the Cartan forms induced by the
coset maps. Also they are conjectured to be the symmetry groups of the first-order field equations obtained
by a twisted self-duality condition satisfied by the Cartan forms. One may advance in this direction not
only to identify the enlarged global symmetry group Gdual but also to explore the transformation laws of its
action on the field contents of the related supergravities. If one manages to find out the nature of Gdual one
may also work on the construction of a dualized lagrangian which includes the original and the dual fields
and work out the action of Gdual on the dualized lagrangian.

In [43] the method of non-linear realizations is used to derive the dynamics of the M theory branes.
Furthermore the M theory branes when they are in a background are also described as non-linear realizations
in [41]. Thus as a final remark the comparison of the coset structures obtained in these works with the coset
algebras we have studied may reveal new facts about the brane dynamics.
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[3] E. Cremmer, B. Julia, H. Lü, C. N. Pope, Nucl. Phys., B523, (1998), 73, hep-th/9710119.
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