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Abstract

We study symmetric teleparallel (STP) gravity model, in which only spacetime non-metricity is

nonzero. First we obtain STP equivalent Einstein-Hilbert Lagrangian and give an approach for a generic

solution in terms of only metric tensor. Then we obtain a spherically symmetric static solution to the

Einstein’s equation in STP space-time and discuss the singularities. Finally, we study a model given by

a Lagrangian 4-form quadratic in non-metricity. Thus, we seek Schwarzschild-type solutions because of

its observational success and obtain some sets of solutions. Finally, we discuss physical relevance of the

solutions.
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1. Introduction

It can be thought that Einstein’s general relativity (GR) is one of the biggest achievements of the last
century. This work, first time, formulated a comprehensive theory containing gravity and matter that gave
rise to a new understanding of universe Some deficiencies, however, appeared in Einstein’s approach in last
decades and people started to investigate whether GR was a unique and basic theory that explains exactly
the gravitational interactions. These matters come from basically cosmology and the quantum field theory.
In the former; the standard cosmology model based on GR and the standard model of particle physics is
inadequate for explaining the universe at limit zones because of the existence of the bing bang singularity,
flatness and horizon problems. On the other hand, if someone wants to achieve the quantum explanation of
the space-time (or gravitation), it is realized that GR is a classical theory. Because of these realities and the
absence of a definite quantum gravity theory, efforts of finding an alternative gravity theory are continued.
One of the most efficient approaches is the non-Riemannian formulation of gravity (see [1] and references

therein), but little evidence for physical relevance of additional fields. In non-Riemannian gravity models
metric, co-frame and full connection are considered as gauge potentials. The corresponding field strengths
are the non-metricity Qa

b, the torsion T a and the curvature Ra
b. Because of the lack of experimental results

for Qa
b and T a, in general, the non-Riemannian gravity models are studied theoretically. Classification of

the space-time and related theories are given summarily in table 1.
As seen from the table there is nearly no work on the symmetric teleparallel gravity (STPG). This

work aims to fill this gap. Due to the fact that curvature and torsion vanish, it is usually asserted that
this model is a gravitational field theory that is closest possible to flat space-time. Here we adhere to the
following conventions: α, β, · · · = 0̂, 1̂, 2̂, 3̂ are holonomic or coordinate indices and a, b, · · · = 0, 1, 2, 3
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Table 1. Classification of space-times

Spacetime Physical Theory Literature

Qa
b = 0, T

a = 0, Ra
b = 0 Special Relativity A. Einstein (1905)

Minkowski and many people
Qa

b = 0, T
a = 0, Ra

b �= 0 General Relativity A. Einstein (1916)
(Pseudo-)Riemannian and many people

Qa
b = 0, T a �= 0, Ra

b = 0 Teleparallel Gravity K. Hayashi & T. Nakano (1967)
Weitzenböck and many people [2]-[6]

Qa
b �= 0, T a = 0, Ra

b = 0 Symmetric Teleparallel J..M. Nester & H.J.Yo (1999)
??????? Gravity and few people [7]-[9]

Qa
b �= 0, T a = 0, Ra

b �= 0 Einstein-Weyl H. Weyl (1919)
Riemann-Weyl and some people [10]-[11]

Qa
b = 0, T

a �= 0, Ra
b �= 0 Einstein-Cartan A. Trautman (1972)

Riemann-Cartan and many people [12]-[13]
Qa

b �= 0, T a �= 0, Ra
b = 0 ??????? ???????

???????
Qa

b �= 0, T a �= 0, Ra
b �= 0 Einstein-Cartan-Weyl A few [14]-[19]

Non-Riemannian

are anholonomic or frame indices. Vierbein (tetrad) ha
α and its inverse hα

a (i.e. ha
αh

α
b = δa

b ) give
transformations between them. Abbreviations eab··· = ea ∧ eb ∧ · · · and (ab) = 1

2 (a+ b) and [ab] = 1
2(a − b)

are used.

2. Mathematical Preliminaries

The triple {M, g,∇} denotes the space-time where M is a 4-dimensional differentiable manifold, g is a
non-degenerate Lorentzian metric and ∇ is a linear connection. g can be written in terms of the co-frame
1-forms

g = gαβdx
α ⊗ dxβ = ηabe

a ⊗ eb (1)

where {ea} orthonormal and {dxα} co-ordinate co-frame 1−forms, and ηab = (−,+,+,+) orthonormal and
gαβ co-ordinate components of the metric. Orthonormal co-frame is dual to orthonormal frame eb(Xa) =
ıae

b = δb
a. Similarly, dx

β(∂α) = ıαdx
β = δβ

α. Here ı denotes the interior product operator mapping any
p-form into (p − 1)-form. Besides, we set space-time orientation by ε0123 = +1 or ∗1 = e0123 where ∗
is the Hodge star operator mapping any p-form into (4 − p)-form. Finally, the connection is specified by
a set of connection 1-forms {Λa

b}. In the gauge approach to gravity, ηab, ea, Λa
b are interpreted as

the generalized gauge potentials, and the corresponding field strengths; the non-metricity 1-forms, torsion
2-forms and curvature 2-forms are defined through the Cartan structure equations; table 2.

Table 2. Gauge potentials and field strengths

Gauge Potential Field Strength

ηab o.n. metric Qab := −1
2
Dηab = 1

2
(Λab +Λba) Nonmetricity 1−form

ea o.n. co-frame T a := Dea = dea +Λa
b ∧ eb Torsion 2−form

Λa
b Full connection Ra

b := DΛa
b := dΛa

b + Λa
c ∧Λc

b Curvature 2−form
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Here d is the exterior derivative mapping any p-form into (p + 1)-form. These field strengths satisfy the
Bianchi identities; table 3.

Table 3. Bianchi identities
DQab = 1

2(Rab +Rba) Zeroth
DT a = Ra

b ∧ eb First
DRa

b = 0 Second

We also need the identities ∗

D ∗ ea = −Q ∧ ∗ea + T b ∧ ∗eab (2)

D ∗ eab = −Q ∧ ∗eab + T c ∧ ∗eabc (3)

D ∗ eabc = −Q ∧ ∗eabc + T d ∧ ∗eabcd (4)

D ∗ eabcd = −Q ∧ ∗eabcd (5)

where with Q = Λa
a = Qa

a Weyl 1-form. The full connection 1-forms are decomposed uniquely as follows
[14]-[16]:

Λa
b = ωa

b +Ka
b + qa

b +Qa
b (6)

where ωa
b are the Levi-Civita connection 1-forms

ωa
b ∧ eb = −dea or 2ωab = −ıa(deb) + ıb(dea) + [ıaıb(dec)]ec , (7)

Ka
b are the contortion 1-forms

Ka
b ∧ eb = T a or 2Kab = ıaTb − ıbTa − (ıaıbTc)ec , (8)

and qa
b anti-symmetric tensor 1-forms

qab = −(ıaQbc) ∧ ec + (ıbQac) ∧ ec . (9)

In this decomposition the symmetric part

Λ(ab) = Qab (10)

while the anti-symmetric part

Λ[ab] = ωab +Kab + qab . (11)

In gravity models it is complicated to keep all the components of Qa
b. Therefore, people sometimes

deal only with certain irreducible parts of that. To obtain the irreducible decompositions of non-metricity
invariant under the Lorentz group, firstly we write

Qab = Qab︸︷︷︸
trace−free part

+
1
4
ηabQ︸ ︷︷ ︸

trace part

(12)

where Weyl 1-form Q = Qa
a and ηabQab = 0. Now we sum up the components

Qab = (1)Qab + (2)Qab + (3)Qab + (4)Qab (13)

∗Since Qab = 1
2
Dηab �= 0 special attention in lowering and raising index in front of covariant exterior derivative.
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in terms of

(2)Qab =
1
3
∗ (ea ∧ Ωb + eb ∧ Ωa) , (14)

(3)Qab =
2
9
(Λaeb +Λbea − 1

2
ηabΛ) , (15)

(4)Qab =
1
4
ηabQ , (16)

(1)Qab = Qab − (2)Qab − (3)Qab − (4)Qab (17)

where

Λb := ıaQ
a

b , Λ := Λae
a,

Θb := ∗ (Qab ∧ ea) , Θ := eb ∧Θb , Ωa := Θa − 1
3
ıaΘ . (18)

The components have properties

ηab
(1)Qab = ηab

(2)Qab = ηab
(3)Qab = 0 ,

ıa
(1)Qab = ıa

(2)Qab = 0 ,

ea ∧ (1)Qab = 0 ,

ı(a
(2)Qbc) = 0 . (19)

Thus the components are orthogonal in the following sense
(i)Qab ∧ ∗(j)Qab = δijNij (no summation over ij) (20)

where δij is the Kronecker symbol and Nij any 4-form. Then
(1)Qab ∧ ∗(1)Qab = Qab ∧ ∗Qab − (2)Qab ∧ ∗(2)Qab − (3)Qab ∧ ∗(3)Qab

−(4)Qab ∧ ∗(4)Qab , (21)

(2)Qab ∧ ∗(2)Qab =
2
3
(Qac ∧ ea) ∧ ∗(Qbc ∧ eb)−

2
9
(ıaQac)(ıbQbc) ∗ 1− 2

9
Q ∧ ∗Q

+
4
9
(ıaQ)(ıbQab) ∗ 1 , (22)

(3)Qab ∧ ∗(3)Qab =
4
9
(ıaQac)(ıbQbc) ∗ 1 + 1

36
Q ∧ ∗Q− 2

9
(ıaQ)(ıbQab) ∗ 1 , (23)

(4)Qab ∧ ∗(4)Qab =
1
4
Q ∧ ∗Q . (24)

3. Symmetric Teleparallel Gravity

STP space-time is defined as Qa
b �= 0 , T a = 0 , Ra

b = 0. One generic solution to that is obtained in
the coordinate frame; Λα

β = 0, the so-called natural or inertial gauge:

Rα
β = dΛα

β + Λα
γ ∧Λγ

β = 0 , (25)

Tα = d(dxα) + Λα
β ∧ dxβ = 0 , (26)

Qαβ = −1
2
Dgαβ = −1

2
dgαβ �= 0 . (27)

After a frame transformation via vierbein ea = ha
αdx

α and Λa
b = ha

αΛα
βh

β
b+ha

αdh
α

b we obtain the field
strengths in orthonormal components

Ra
b = ha

αR
α

βh
β

b = 0 , (28)

T a = ha
αT

α = 0 , (29)

Qab = Qαβh
α

ah
β

b �= 0 . (30)
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3.1. The Einstein-Hilbert Lagrangian in STPG

The orthonormal teleparallel representation of the Einstein’s theory is interesting and useful. Therefore,
we derive the Einstein-Hilbert Lagrangian 4-form. Firstly we use the decomposition of the full connection
(6), with Ka

b = 0,

Λa
b = ωa

b + Ωa
b where Ωa

b = Qa
b + qa

b . (31)

By substituting that into Ra
b(Λ) we decompose the non-Riemannian curvature as the follows:

Ra
b(Λ) = dΛa

b +Λa
c ∧ Λc

b

= Ra
b(ω) +D(ω)Ωa

b + Ωa
c ∧ Ωc

b (32)

where Ra
b(ω) is the Riemannian curvature 2-form and D(ω) is the covariant exterior derivative with respect

to the Levi-Civita connection. To set Ra
b(Λ) = 0 for STP space-time yields the Einstein-Hilbert Lagrangian

4-form

LEH = Ra
b(ω) ∧ ∗ea

b

= −[D(ω)Ωa
b] ∧ ∗ea

b −Ωa
c ∧ Ωc

b ∧ ∗ea
b (33)

Here after using the equality

d(Ωa
b ∧ ∗ea

b) = [D(ω)Ωa
b] ∧ ∗ea

b − Ωa
b ∧ [D(ω) ∗ ea

b] (34)

we discard the exact form and we notice that D(ω)∗ ea
b = 0 because T a and Qa

b vanish for ωa
b (see eq.(3)).

Thus

LEH =
1
2κ
Ωa

c ∧ Ωc
b ∧ ∗ea

b

=
1
2κ
(Qac + qac) ∧ (Qcb + qcb) ∧ ∗ea

b

=
1
2κ
(Qac ∧Qcb + qac ∧ qcb) ∧ ∗ea

b

=
1
2κ
[−Qab ∧ ∗Qab + 2(Qac ∧ ea) ∧ ∗(Qbc ∧ eb) −Q ∧ ∗Q+ 2(ıbQ)(ıaQab) ∗ 1] (35)

where κ is gravitational coupling constant. In two-dimension we note qac ∧ qcb ∧ ∗ea
b = 0.

3.2. A Symmetric Teleparallel Solution to the Einstein Equation

Now we give a brief outline of GR. GR is written in (pseudo-) Riemannian spacetime in which torsion
and non-metricity are both zero, i.e., connection is Levi-Civita. Einstein equation can be written in the
following form

Ga := −1
2
Rbc(ω) ∧ ∗ eabc = κτa (36)

or alternatively

∗Ga := (Ric)a − 1
2
Rea = κ ∗ τa (37)

where Ga is Einstein tensor 3-form, Rab(ω) is Riemannian curvature 2-form, (Ric)a = ıbRa
b(ω) is Ricci

curvature 1-form, R = ıa(Ric)
a is scalar curvature, τa is the energy-momentum 3-form. For the symmetric
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teleparallel equivalent of Einstein equation we use the the decomposition of the non-Riemannian curvature
2-form (32) and set Ra

b(Λ) = 0. Thus we obtain the symmetric teleparallel equivalent of (36)

Ga :=
1
2
[D(ω)qbc + qb

k ∧ qkc +Qb
k ∧Qkc] ∧ ∗ eabc = κτa . (38)

We now proceed the attempt for finding a solution to the STPG model. As usual in the study of
exact solutions, we have two steps. The first one is to choose the convenient local coordinates and make
corresponding ansatz for the dynamical fields. The second step concerns providing the invariants of the
resulting geometry. While the choice of an ansatz helps to solve the field equations easily, the invariant
description provides the correct understanding of the physical contents of a solution.
Since metric and connection are independent quantities in non-Riemannian spacetimes, we have to predict

separately appropriate candidates for them. Therefore we first write a line element in order to determine
the metric. We naturally start dealing with the case of spherical symmetry for realistic simplicity,

g = −f2dt2 + g2dr2 + r2dθ2 + r2 sin2 θdϕ2 (39)

where f = f(r) and g = g(r). A convenient choice for a tetrad reads

e0 = fdt, e1 = gdr, e2 = rdθ, e3 = r sin θdϕ . (40)

In addition, for the non-Riemannian connection we choose

Λ12 = −Λ21 = −1
r
e2, Λ13 = −Λ31 = −1

r
e3, Λ23 = −Λ32 = −cot θ

r
e3,

Λ00 =
f ′

fg
e1, Λ11 =

1
r
(1− 1

g
)e1, Λ22 =

1
r
(1− 1

g
)e1,

Λ33 =
1
r
(1− 1

g
)e1, others = 0 (41)

where prime denotes derivative with respect to r. These gauge configurations (40) and (41) satisfy the
constraint equations Ra

b(Λ) = 0 , T a(Λ) = 0. One can certainly perform a locally Lorentz transformation

ea → La
be

b , Λa
b → La

cΛc
dL

−1d
b + La

cdL
−1c

b (42)

which yields the Minkowski gauge Λa
b = 0. This may mean that we propose a set of connection components

in a special frame and coordinate which seems contrary to the spirit of relativity theory. However in physically
natural situations we can choose a reference and coordinate system at our best convenience.
We deduce from equations (40)-(41)

ω01 = − f ′

fg
e0, ω12 = − 1

rg
e2, ω13 = − 1

rg
e3, ω23 = −cot θ

r
e3 ,

Q00 =
f ′

fg
e1, Q11 =

1
r
(1− 1

g
)e1, Q22 =

1
r
(1− 1

g
)e1, Q33 =

1
r
(1− 1

g
)e1 ,

q01 =
f ′

fg
e0, q12 =

1
r
(
1
g
− 1)e2, q13 =

1
r
(
1
g
− 1)e3, others = 0 . (43)

When we put (43) into (38) we obtain, with τa = 0(
dqbc + 2ωb

f ∧ qfc + qb
f ∧ qfc

)
∧ ∗ eabc = 0 (44)

384



ADAK

whose components read explicitly

Zeroth component

[
2(g−1)′

rg
− g2 − 1

r2g2

]
e123 = 0 (45)

F irst component −
[
2f ′

rfg2
− g2 − 1

r2g2

]
e023 = 0 (46)

Second component

[
(f ′g−1)′

fg
+

f ′

rfg2
+
(g−1)′

rg

]
e013 = 0 (47)

Third component −
[
(f ′g−1)′

FG
+

f ′

rfg2
+
(g−1)′

rg

]
e012 = 0 . (48)

Then from (45) and (46)

g(r) = 1/f(r) (49)

and from (47) and (48)

f2(r) = 1− C

r
(50)

where C is a constant.
In order to have a correct understanding of the resulting solution, we need to construct invariants of

the Riemannian curvature and the non-metricity. Although the total curvature is identically zero in the
teleparallel gravity, the Riemannian curvature of the Levi-Civita connection is nontrivial:

R01(ω) =
(f ′g−1)′

fg
e10 , R02(ω) =

f ′

rfg2
e20 , R03(ω) =

f ′

rfg2
e30 ,

R12(ω) =
(g−1)′

rg
e21 , R13(ω) =

(g−1)′

rg
e31 , R23(ω) =

1
r2
(1− 1

g2
)e32 . (51)

Thus the quadratic invariant of the Riemannian curvature reads

Rab(ω) ∧ ∗Rab(ω) =

{
2

[
(f ′g−1)′

fg

]2

+ 4
(

f ′

rfg2

)2

+ 4
[
(g−1)′

rg

]2

+ 2
[
1
r2

(
1− 1

g2

)]2
}

∗ 1

=
6C2

r6
∗ 1 (52)

and the spacetime geometry is naturally characterized by the quadratic invariant of the nonmetricity

Qab ∧ ∗Qab =

{(
f ′

fg

)2

+ 3
[
1
r

(
1− 1

g

)]2
}

∗ 1

=

{
C2

4r3(r − C)
− 3C

r3
+
6
r2

[
1−

(
1− C

r

)1/2
]}

∗ 1 . (53)

These two quadratic invariants provide the sufficient tools for understanding the contents of the classical
solutions. Important observation is that the Riemannian curvature invariant (52) is singular at r = 0, but
regular at the zero (r = C) of the metric function f(r), which means that we have a horizon here. The
resulting geometry then describes the well known Schwarzschild black hole at r = 0 with the horizon at
r = C. Since we are dealing with symmetric teleparallel gravity, it is necessary also to analyze the behavior
of nonmetricity As seen from (53), the nonmetricity invariant diverges not only at the origin r = 0, but also
at the Schwarzschild horizon r = C The horizon is a regular surface from the viewpoint of the Riemannian
geometry, but it is singular from the viewpoint of symmetric teleparallel gravity.
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4. Lagrange Formulation of STPG

We formulate STPG in terms of a Lagrangian 4-form

L = L + λa ∧ T a + Ra
b ∧ ρa

b (54)

where ρa
b and λa are the Lagrange multiplier 2-forms giving the constraints

Ra
b = 0 , T a = 0 . (55)

L changes by a closed form under the transformations

λa → λa +Dµa , (56)

ρa
b → ρa

b +Dξa
b − µa ∧ eb (57)

of the Lagrange multiplier fields. Here µa and ξa
b are arbitrary 1-forms. To show this invariance we use

the Bianchi identities and discard exact forms Consequently the field equations derived from the Lagrangian
4-form (54) will determine the Lagrange multipliers only up to above transformations. The gravitational
field equations are derived from (54) by independent variations with respect to the connection {Λa

b} and
the ortohonormal co-frame {ea} 1-forms, respectively:

λa ∧ eb +Dρa
b = −Σa

b , (58)

Dλa = −τa (59)

where Σa
b = ∂L

∂Λa
b
and τa = ∂L

∂ea . In principle the first field equation (58) is used to solve for the Lagrange
multipliers λa and ρa

b and the second field equation (59) governs the dynamics of the gravitational fields.
Here the first equation, however, has 64 and the second one has 16 independent components, thus giving the
total number of independent equations 80. On the other hand, there are totally 120 unknowns: 24 for λa

plus 96 for ρa
b. But we note that the left-hand side of (58) is invariant under the transformations (56)-(57)

and consequently it is sufficient to determine the gauge invariant piece of the Lagrange multipliers, namely
λa ∧ eb + Dρa

b, in terms of Σa
b. One can consult Ref.[20] for further discussions on gauge symmetries of

Lagrange multipliers. It is important to notice Dλa rather than the Lagrange multipliers themselves couple
to the second field equations (59). As a result we must calculate Dλa directly and we can manage that by
taking the set of covariant exterior derivative of (58):

Dλa ∧ eb = −DΣa
b . (60)

Here we used the constraints

Deb = T b = 0, (61)

D2ρa
b = D(Dρa

b) = Rb
c ∧ ρa

c − Rc
a ∧ ρc

b = 0 (62)

where the covariant exterior derivative of a (1, 1)-type tensor is

Dρa
b = dρa

b + Λb
c ∧ ρa

c − Λc
a ∧ ρc

b . (63)

The result (60) is unique because Dλa → Dλa under (56). Thus we arrive at the field equation

DΣa
b − τa ∧ eb = 0 . (64)

Now we write down the following Lagrangian 4-form which is the most general quadratic expression in
the non-metricity tensor [21]:

L =
1
2κ

[
k0R

a
b ∧ ∗ea

b +
4∑

I=1

kI
(I)Qab ∧ ∗(I)Qab + k5

(
(3)Qab ∧ eb

)
∧ ∗

(
(4)Qac ∧ ec

)]
. (65)
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Here k0, k1, k2, k3, k4, k5 are dimensionless coupling constants and κ = 8πG
c3 , with G the Newton’s gravita-

tional constant. Inserting (21)-(24) into (65) we find

L =
1
2κ

[
k0R

a
b ∧ ∗ea

b + c1Qab ∧ ∗Qab + c2(Qac ∧ ea) ∧ ∗(Qbc ∧ eb)

+c3(ıaQac)(ıbQbc) ∗ 1 + c4Q ∧ ∗Q+ c5(ıaQ)(ıbQab) ∗ 1
]

(66)

where the new coefficients are the following combinations of the original coupling constants:

c1 = k1,

c2 = −2
3
k1 +

2
3
k2 ,

c3 = −2
9
k1 −

2
9
k2 +

4
9
k3 ,

c4 = − 1
18

k1 −
2
9
k2 +

1
36

k3 +
1
4
k4 +

1
16

k5 ,

c5 = −2
9
k1 +

4
9
k2 −

2
9
k3 −

1
4
k5 . (67)

We obtain the variational field equations from (66)

Σa
b =

5∑
i=0

ci
iΣa

b , τa =
5∑

i=0

ci
iτa (68)

where

0Σa
b = 2Qbc ∧ ∗eac −Q ∧ ∗ea

b + Tc ∧ ∗ea
bc (69)

1Σa
b = ∗(Qa

b +Qb
a) (70)

2Σa
b = ea ∧ ∗(Qbc ∧ ec) + eb ∧ ∗(Qac ∧ ec) (71)

3Σa
b = ıcQac ∗ eb + ıcQ

bc ∗ ea (72)
4Σa

b = 2δb
a ∗Q (73)

5Σa
b =

1
2
(ıbQ) ∗ ea +

1
2
(ıaQ) ∗ eb + δb

a(ıcQ
cd) ∗ ed (74)

0τa = Rb
c ∧ ∗eab

c (75)
1τa = −(ıaQbc) ∧ ∗Qbc −Qbc ∧ (ıa ∗Qbc) (76)
2τa = −Qab ∧ ∗(Qbc ∧ ec)− (ıaQcd)ec ∧ ∗(Qbd ∧ eb) + (Qbd ∧ eb) ∧ ∗(Qcd ∧ eca) (77)
3τa = −2(ıaQbd)(ıcQcd) ∗ eb + (ıbQbd)(ıcQcd) ∗ ea (78)
4τa = −(ıaQ) ∗Q−Q ∧ (ıa ∗Q) (79)
5τa = (ıbQ)(ıcQbc) ∗ ea − (ıaQ)(ıcQbc) ∗ eb − (ıbQ)(ıaQbc) ∗ ec . (80)

One can consult Ref.[9] for the details of variations. Since 0τa = Rb
c ∧ ∗eab

c = 0 and D0Σa
b = D2 ∗ ea

b ∼
Ra

b = 0 we drop the Einstein-Hilbert term: k0 = 0. The case that k0 �= 0 and others= 0 was discussed in
the previous subsection.

4.1. Spherical symmetric solution to the model

Under the configuration (40)-(41) the only nontrivial field equation comes from the trace of (64):

dΣa
a + ea ∧ τa = 0 . (81)
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Symmetric and antisymmetric parts of the field equation (64) give trivially zero. From (81) we obtain

−51
g

(
f ′

fg

)′
− 52

g

(
1− g

rg

)′
+ 53

(
f ′

fg

)2

+ 54

(
f ′

fg

)(
1− g

rg

)
− 251

rg

(
f ′

fg

)

−252
rg

(
1− g

rg

)
+ 55

(
1− g

rg

)2

= 0 (82)

where

51 = 2c1 + 2c2 + 8c4 + c5, (83)

52 = 6c1 + 4c2 + 2c3 + 24c4 + 7c5, (84)

53 = −6c4 − c5, (85)

54 = −6c1 − 4c2 − 2c3 − 12c4 − 5c5, (86)

55 = 6c1 + 4c2 + 2c3 + 18c4 + 6c5 . (87)

Mathematically, this equation has infinitely many solutions because there are two functions and only one
equation. We give two classes of solutions. At first, let f ′/fg = u, then (82) takes the form, if 53 �= 0,

−
(
51u+ 52

1− g

rg

)′
− 2

r

(
51u+ 52

1− g

rg

)
+

53g

521

(
521u

2 +
52154
53

u
1− g

rg
+

52155
53

(1− g)2

r2g2

)
= 0 . (88)

When let 54 = 25253/51 and 55 = 253522/521 if we define

z = 51u+ 52
1− g

rg
(89)

the equation becomes

− (r
2z)′

(r2z)2
+

53
521

g

r2
= 0 . (90)

This means that given g we obtain f . At the second class; 53 = 0 , 54 = α51 , 55 = α52 with α �= 0 parameter,
(82) turns out to be

−(r
2z)′

r2z
+ α

1− g

r
= 0 . (91)

Again to specify g yields f . Physically, however, due to the observational success of the Schwarzschild
solution of general relativity, we investigate solutions with g = 1/f . Then (82) becomes

−51ff
′′ + 53(f ′)2 − (251 + 52 − 54)

ff ′

r
+ (55 − 52)

f2

r2
− 54

f ′

r
+ (52 − 255)

f

r2
+ 55

1
r2
= 0 . (92)

We can not find an analytical exact solution of this nonlinear second order differential equation. Therefore,
we treat the linear sector of the equation

r2
(
f2

)′′
+ (2 +

52
51
)r

(
f2

)′
+

52
51

f2 =
52
51

(93)

by choosing our parameters as follows;

53 = −51 , 54 = 0 , 55 =
52
2

. (94)

Here some special cases deserve attention.
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1. For 52 = 51, we obtain the solution

f2 = 1 +
C1

r
+D1

ln r
r

(95)

which is asymptotically flat; limr→∞ f = 1. Here C1 and D1 are integration constants

2. For 52 �= 51, the solution is found as

f2 = 1 +
C2

r
+

D2

r�2/�1
(96)

where C2 and D2 are integration constants.

(a) For 52 = 0, we obtain a Schwarzschild-type solution with D2 = 0 for asymptotically flatness
and we identify the other constant with a spherically symmetric mass centered at the origin;
C2 = −2M .

(b) For 52 = −251, we obtain a Schwarzschild-de Sitter-type solution. We again identify C2 with
mass C2 = −2M and D2 with cosmological constant D2 = −1

3
Λ. The Λ term corresponds to a

repulsive central force of magnitude 1
3Λr, which is independent of the central mass.

(c) For 52 = 251, we obtain a Reissner-Nordström-type solution. We again identify C2 with mass
C2 = −2M while D2 with a new kind of gravitational charge. We hope that besides ordinary
matter that interacts gravitationally through its mass, the dark matter in the Universe may
interact gravitationally through both its mass and this new gravitational charge.

5. Conclusion

In this paper we investigated the symmetric teleparallel gravity. After giving the irreducible decom-
positions of non-metricity under the Lorentz group we identified STPG theories and gave an approach for
the generic solution: natural or inertial gauge. Then we obtained symmetric teleparallel equivalence of the
Einstein-Hilbert Lagrangian and found a spherically symmetric static solution to Einstein’s equation in STP
geometry. We analyzed the singularity structure of the space-time according to that solution. The singulari-
ties need to be clarified in the non-Riemannian space-times. Finally, we studied the Lagrange formulation of
the general STPG by considering a 5-parameter symmetric teleparallel Lagrangian without a priori restrict-
ing the coupling constants c1, c2, c3, c4, c5. We obtained sets of solutions in which the Schwarzschild-type,
Schwarzschild-de Sitter-type and Reissner-Nordström-type solutions are some physically interesting ones.
Consequently, we suggest that in addition ordinary matter that interacts gravitationally through its mass,
the dark matter in the Universe may interact gravitationally through both its mass and a new kind of gravita-
tional charge [22]-[23]. The latter coupling is analogous to the coupling of electric charge to electromagnetic
field where the analogue of the Maxwell field is the non-metricity field strength. That is, such ”charges” may
provide a source for the non-metricity. The novel gravitational interactions may have a significant influence
on the structure of black holes For example, we may speculate that this unknown gravitational charge may
have repulsive nature.
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