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Abstract

We apply equivariant localization to supersymmetric quantum mechanics and show that the partition
function localizes on the instantons of the theory. Our construction of equivariant cohomology for SUSY
quantum mechanics is different than the ones that already exist in the literature. A hidden bosonic
symmetry is made explicit and the supersymmetry is extended. New bosonic symmetry is the square
of the new fermionic symmetry. The D term is now the parameter of the bosonic symmetry. This
construction provides us with an equivariant complex together with a Cartan differential and makes the
use of localization principle possible.
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1. Introduction

The aim of this article is to apply equivariant localization to SUSY quantum mechanics [1] and show that
the partition function of the theory localizes on the instantons of the action. This is a well known result that
can also be derived by using arguments based on Nicolai map [2], [3]. The advantage of localization principle
is that it is a very general result, almost as general as Stoke’s theorem of ordinary de Rham theory, which
can easily be applied whenever the right setting, namely the equivariant cohomology, is present. There are
important instances in quantum field theory where such a setting is available [4–9]. We will show that SUSY
quantum mechanics is another example which accommodates equivariant cohomology, and use localization
principle to derive the above mentioned result. Our work will also make the symplectic structure of the
theory more explicit.

The construction presented in this article is different than the one used by Morozov, Niemi and Palo in
their work on SUSY theories [9] and the one used by Cordes, Moore and Ramgoolam in [10]. The main
difference is that in our case the BRST like operator which gives rise to equivariant localization is not
nilpotent; instead it squares to a hidden bosonic symmetry of the theory. So the BRST operator is nilpotent
only on the gauge invariant observables of the theory. With this, our construction becomes a special abelian
case of the general construction given by Witten in [6].

Equivariant cohomology is a generalization of de Rham theory to manifolds with group actions. If a
group G acts freely on a manifold M then equivariant cohomology is defined to be the de Rham cohomology
of the quotient manifold M/G. If the action is not free it is still possible to define equivariant cohomology
as cohomology of certain complexes associated with M and G. Two commonly used complexes are the Weil
complex and the Cartan complex. Resulting cohomologies are equivalent and reduce to de Rham cohomology
of M/G in the case of free actions. In this article we will use the Cartan model of equivariant cohomology.
For reviews of equivariant cohomology see [10–14]
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The relevance of equivariant cohomology to quantum field theory is that the field content of theories with
BRST symmetry fit into an equivariant complex (Cartan complex). Therefore one can hope to apply many
interesting and useful results of equivariant cohomology to the analysis of these quantum field theories. One
such result is localization.

In de Rham theory one can integrate differential forms. The theorems of classical integral calculus such
as Stoke’s theorem and divergence theorem are naturally unified in exterior calculus and this provides us
with great technical prowess and deep geometric insights. In equivariant theory one can integrate equivariant
forms. The most interesting result in equivariant integration is localization. It means that the integral of a
closed, but otherwise arbitrary, equivariant form over a large region is equal to the integral of the same form
over a much smaller subregion. In quantum field theory this means that only a subset of field configurations
contribute to the path integral. A particularly useful special case of localization arises when the manifold is
symplectic and the action of the group is Hamiltonian. All the known applications of equivariant localization
to field theory, including this one, involve infinite dimensional analogs of this case.

Localization was first proved by Duistermaat and Heckman in the case of torus actions on symplectic
manifolds [15]. Nonabelian generalization was given by Witten in [6]. A more rigorous treatment is given in
[16].

Our analysis of localization in SUSY quantum mechanics will proceed as follows.
As a first step we show that the field content and symmetries of the theory allow us to embed the

theory into an equivariant complex. At this point we encounter an obstruction. It seems that a bosonic
field is missing from the theory. The cure is to add one extra field, modify the symmetry of the theory by
making it act on the new variable nontrivially and do all this without changing the action. As a result of
this construction we obtain a modified fermionic symmetry and a new bosonic symmetry with the crucial
property that the latter is the square of the former. This allows us to interpret the fermionic symmetry
operator as an equivariant differential operator and thus embed the theory into an equivariant complex. We
note that the extra bosonic field we introduce is not the usual D term which is already present in the action.
In fact in our construction the D term becomes the parameter of the bosonic symmetry. Next we show that
the action of the theory is an equivariantly closed form. Using this fact, we apply localization principle to
the partition function and show that the path integral localizes on the instantons of the action.

In the first few sections of the article we review the basics of equivariant cohomology and discuss the field
theoretic generalizations. In Sec.4 and the first part of Sec.5, following [6], we derive localization formula
and show how it can be applied to localize integrals on symplectic manifolds with Hamiltonian group action.
The remainder of the article is devoted to the discussion of SUSY quantum mechanics in the context of
equivariant cohomology and localization principle.

2. Equivariant Cohomology

Let M be a smooth manifold and G a simple, compact Lie group with a smooth action on M . We
will denote the Lie algebra of G by G. A typical element in G will be written as φaTa where Ta’s are the
generators of the Lie algebra. Killing-Cartan form will be denoted by ( , ). The infinitesimal generator of
the action corresponding to the element

∑
a φ

aTa of the Lie algebra is V (φ) =
∑

a φ
aVa where Va is the

infinitesimal generator corresponding to Ta. From now on we will use summation convention.
We will also need the algebra of formal power series over G; it will be denoted by P (G). This algebra is

isomorphic to the symmetric algebra on the dual of the Lie algebra

P (G) ∼= S(G∗). (1)

As a consequence of this isomorphism G acts on P (G) by the co-adjoint action whose infinitesimal version is

ad∗(ψbTb)φa = −ψb cabc φ
c. (2)

Here cabc are the structure constants of G.
Ω∗
G(M) is defined as the G-invariant part of the tensor product of the exterior algebra on M with P (G):

Ω∗
G(M) = (Ω∗(M)⊗P (G))G. A typical element of ΩG is of the form

∑
k α

kPk(φ) and is invariant under the
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group action whose infinitesimal version is

£V (ψ) ⊗ 1 + 1 ⊗ ad∗(ψbTb). (3)

Here αk is a k-form on M , Pk is a polynomial in the Lie algebra and £V (ψ) is the Lie derivative with respect
to the infinitesimal generator V (ψ). Multiplication in this algebra is given by

αkPk(φ) · βlRl(φ) = (αk ∧ βl)Pk(φ)Rl(φ). (4)

Alternatively one can represent elements of Ω∗
G(M) as polynomials in G with differential forms as coeffi-

cients ∑
I

∑
k

αkIφ
I. (5)

Here I is a multi-index, αkI a k-form on M and φI a monomial in P (G). This representation allows us to
define a grading on (Ω∗

G(M) by declaring the degree of αkIφ
I to be k + 2 | I |.

Ω∗
G(M) =

⊕
i≥0

ΩiG(M) (6)

where
ΩiG(M) = span{αkIφI ∈ Ω∗

G(M) : i = k + 2 | I |}. (7)

Now let us consider the operator
Dφ = d− iφaιVa (8)

Here ι is the contraction. The action on Ω∗
G(M) is given by

Dφ

∑
I

∑
k

αkIφ
I = [dαkI + iφaιVaα

k
I ]φI. (9)

Note that
Dφ : ΩiG → Ωi+1

G (10)

and
D2
φ = −i£V (φ) (11)

the last statement implies that D2
φ = 0 on Ω∗

G(M).
It is also easy to show that for α ∈ Ai and β ∈ Aj

Dφ(αβ) = (Dφα)β + (−1)iαDφβ (12)

therefore D is a graded differential of degree 1.
Now we have all the ingredients needed for a cohomology theory, namely, a graded algebra and a graded

differential operator of degree 1. The resulting cohomology is called the Cartan model of equivariant coho-
mology and is denoted by H∗

G(M).

3. Field Theoretic Generalization

Let us now show how equivariant cohomology arises in quantum field theories with BRST like symmetries.
More precisely we will consider field theories which involve three types of fields: dynamical bosonic fields
Aa, anticommuting ghosts ψa and auxiliary bosonic fields φa. We will require the theory to posses two
symmetries; one bosonic and one fermionic. The bosonic symmetry, which from now on will be referred to
as gauge symmetry, will effect only Aa’s by mixing them with φa’s. The fermionic symmetry will be called
BRST symmetry and the infinitesimal action will be denoted by δBRST . The crucial point is that these two
symmetries are related to each other by the following relations
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δBRSTA
a = ψa (13)

δBRSTψ
a = −iδgaugeA

a (14)
δBRSTφ

a = 0 (15)

which implies
δ2
BRST = −iδgauge. (16)

Roughly speaking one can define the BRST symmetry as the square root of the gauge symmetry. Note
that it is the inclusion of the ghosts to the theory which makes it possible to take the square root of the
gauge transformation. Incidentally this is very similar to the definition of imaginary numbers as square roots
of negative numbers. In order to take square roots of negative numbers we have to enlarge R to C = R⊕R.

A prototypical example of a BRST like theory is of course the gauge fixed Yang-Mills theory in the first
order formalism where Aa’s are the gauge fields, ψa’s are the Faddeev-Popov ghosts and φa’s are the Lie
algebra valued auxiliary fields.

Note that the BRST operator is nilpotent (of order 2) on the gauge invariant sector of the theory. This
is again the familiar situation encountered in gauge theories.

In order to see the relevance of equivariant cohomology to field theory let us go back to the finite
dimensional case and consider the action of the equivariant differential on the generators of ΩG(M)

Dφx
i = dxi (17)

Dφdx
i = −iφaV i

a (18)
Dφφ

a = 0. (19)

Comparing this with the relation between the gauge and BRST transformations, and using the following
identifications in passing from finite dimensional case to field theory

xi → Aa (20)
dxi → ψa (21)
φa → φa (22)

we conclude that δBRST and δgauge are the field theory analogs of Dφ and £V (φ) respectively.
Note that this identification also implies the interpretation of ghost fields as infinite dimensional differ-

ential forms.
Thus we see that our BRST like field theory provides us with an equivariant cohomology where the

BRST operator plays the role of the Cartan differential Dφ.

4. Equivariant Localization

Let us go back to the finite dimensional case and see how one can integrate equivariant forms. The field
theoretic generalization will involve path integrals.

The integral of an equivariant form is defined as∮ ∑
k

αkPk(φ) =
∑
k

∫
M

αk
∫

[dφ]Pk(φ). (23)

Here the φ integration is over all G and [dφ] is a measure on the Lie algebra which includes a Gaussian
convergence factor

[dφ] =
dφ1 . . . dφn

V olG
e−

ε
2 (φ,φ) (24)

A very useful property of this integral is that if M is without boundary then the integral of an equivariantly
exact form vanishes. In other words integration by parts produces a vanishing surface term∮

M

Dα = 0 (25)

provided ∂M is empty.
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Localization Principle. Let α be an equivariantly closed form and λ an equivariant 1-form. Then it is
easy to show that the following form is equivariantly exact

α(1 − etDφλ). (26)

Integrating this exact form over M we obtain the very important formula which forms the basis of equivariant
localization ∮

α =
∮

αetDφλ. (27)

So the integral on the right hand side is in fact independent of the value of the parameter t and is equal to
the integral of α. In particular

∮
α can be calculated by evaluating

∮
αetDφλ in the asymptotic limit t → ∞.

So let us take a closer look at this integral
∮

αetDφλ =
∮

αetdλ+i
∑

a
φaλ(Va). (28)

Since the two terms appearing in the argument of the exponential commute with each other we can separate
the exponential as etdλ ei

∑
a
φaλ(Va). The contribution of the first factor to the integral is just a polynomial

in t. Therefore in the limit t → ∞ the integral is localized on the critical points of the function
∑

a φ
aλ(Va):

λ(Va) = 0 (29)

and
φadλ(Va) = 0. (30)

From now on we will assume that the only solution of the last equation is φa = 0 for all a.

5. Localization on Symplectic Manifolds

In this section we want to localize the integral of a specific equivariantly closed form on a symplectic
manifold (M ,ω). Here ω is the symplectic form on M . We assume that a compact Lie group G with a
simple Lie algebra G acts on M . Moreover, the action will be assumed to be symplectic and Hamiltonian.
The moment map µa corresponding to the action of the generator Ta of G is given by

dµa = −ιVaω. (31)

We will also define
I =

∑
a

µ2
a. (32)

The equivariant form that want to integrate is eω̄ where

ω̄ = ω − iφaµa. (33)

is the so called equivariant symplectic form. An easy calculation [12, Chapter 9] shows that ω̄ is G-invariant
and equivariantly closed.

The explicit form of the integral in question is
∫
M

∫
dφ1 . . . dφn

V olG
exp

[
ω − iφaµa −

ε

2
(φ, φ)

]
(34)

In order to apply localization to this integral we have to choose a convenient λ. This can be done if we
assume that there exists a G-invariant almost complex structure J on M whose associated metric g(X, Y ) =
ω(JX, Y ) is positive definite. Then

λ = JdI (35)

is a suitable choice.
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It is shown in [6] that the condition λ(Va) = 0 for all a is equivalent to dI = 0. Thus the integral in
question localizes on the critical set of the function I. Writing down the condition dI = 0 explicitly

∑
a

µadµa = 0 (36)

we see that there are two types of critical points: those coming from the simultaneous vanishing of moment
maps and those that don’t (higher critical points). In what follows we will ignore the higher critical points.

Example. Let us consider R2n with a symplectic form

ω = ωij(q)dpi ∧ dqj. (37)

Here the matrix ωij(q) is a function of q coordinates only. The closedness of ω implies

∂ωjk
∂qi

− ∂ωji
∂qk

= 0 (38)

Now the action of the additive group Rn given by

qi → qi (39)
pj → pj + aj (40)

is symplectic and Hamiltonian. Infinitesimal generators of this action are

Vk =
∂

∂pk
(41)

The moments are given implicitly by the solutions of

∂µk
∂qi

= −ωki (42)

∂µk
∂pi

= 0. (43)

In this example we have relaxed the compactness condition on the group G = Rn. This is not harmful in the
case of Rn which admits a bi-invariant measure anyway. In any case, it is a simple matter to put periodicity
conditions on the coordinates and replace Rn by an appropriate toric group.

6. Localization for SUSY Quantum Mechanics

Here we have a 0+1 dimensional theory on the circle with the action

S =
∫

dt

[
dx

dt
+

∂V (x)
∂x

]
(iD) +

1
2
F 2 − iψ

[
d

dt
+

∂2V (x)
∂x2

]
ψ. (44)

This theory is invariant under a SUSY transformation of the form

δSUSY x = ψ (45)
δSUSY ψ = 0 (46)
δSUSY ψ = −i(iD) (47)

δSUSY (iD) = 0 (48)
δ2
SUSY = 0. (49)

We see that this SUSY transformation is nilpotent of degree 2. However δ2
SUSY vanishes identically and

therefore our theory does not seem to be a BRST like theory as defined above. The problem is that there
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is no bosonic gauge symmetry at sight. The solution is to introduce an extra variable without changing the
theory and extend the SUSY transformation in such a way that its square gives us a new bosonic symmetry.
Thus we introduce a new bosonic field π and replace the SUSY transformation by the BRST transformation

δBRST x = ψ (50)
δBRST ψ = 0 (51)
δBRST π = ψ (52)
δBRST ψ = −i(iD) (53)

δBRST (iD) = 0. (54)

or
δBRST =

∫
dt ψ(t)

δ

δx(t)
+ ψ(t)

δ

δπ(t)
− i(iD)(t)

δ

δψ(t)
. (55)

Now we have
δ2
BRST = −iδgauge (56)

where

δgaugeπ = iD (57)
δgauge(x, ψ, ψ, iD) = 0. (58)

or
δgauge =

∫
dt (iD)(t)

δ

δπ(t)
(59)

Note that δBRST agrees with δSUSY on the original variables so it is a symmetry of the theory. Moreover
δgauge is a symmetry since it effects only the extra variable π which does not even appear in the action. In
this way we turn our theory into a BRST like theory.

Our next task is to look for possible applications of localization. We will show that the partition function
localizes on the instantons of the theory.

Symplectic Geometry of the Field Space and Localization. The bosonic fields of the theory are
the coordinates of the field space M = (x(t), π(t)). We will assume periodic boundary conditions for these
variables. Ghost fields are interpreted as differentials of the coordinates δx(t) = ψ(t) and δπ(t) = ψ(t).

The (pre)symplectic structure on the field space is defined as∫
dt dt′ ψ(t′)ω[t′, t; x]ψ(t) (60)

where

ω[t′, t; x] = i

[
− d

dt
+

∂2V (x)
∂x2

]
δ(t− t′). (61)

This form is closed since

δω[t′, t; x]
δx(t′′)

= V ′′′(x(t′))δ(t′ − t′′)δ(t′ − t) (62)

δω[t′, t′′; x]
δx(t)

= V ′′′(x(t′))δ(t′ − t)δ(t′ − t′′) (63)

δω[t′, t; x]
δx(t′′)

− δω[t′, t′′; x]
δx(t)

= 0. (64)

The action of the gauge transformation is symplectic since

δgauge(x, ψ, ψ) = (0, 0, 0) (65)

δgauge

∫
dt dt′ ψ(t′)ω[t′, t; x]ψ(t) = 0. (66)

397



AKANT

In order to show that the action is Hamiltonian we have to solve the moment equations

δµ[t′; x]
δx(t)

= −ω[t′, t; x] (67)

δµ[t′; x]
δπ(t)

= 0. (68)

These can be integrated to give

µ[t′; x] = i

[
dx(t′)
dt′

+ V ′(x(t′))
]
. (69)

So the action is
S = ω[x] +

∫
dt

1
2
D2. (70)

where
ω[x] = ω[x] − i

∫
dt µ[t; x](iD)(t) (71)

is the equivariant symplectic form on the field space.
The partition function is

Z =
∫

DDDxDψDψ exp i

[
ω[x] − i

∫
dtµ[t; x](iD)(t) +

∫
dt

1
2
D2

]
. (72)

This is almost in the form of equation (34). All we need to do to arrive at the correct form (up to a harmless
factor of i) is to integrate over the new variable π and divide by the volume of the gauge group. Since
V olG =

∫
Dπ these operations do not change the value of the partition function. So we conclude that the

partition function localizes on the zeroes of the moment map, that is, the instantons of the theory
[
dx(t)
dt

+ V ′(x(t))
]

= 0. (73)

Integrating the square of this expression and using periodicity to discard the surface term yields:

dx(t)
dt

= 0 (74)

V ′(x(t)) = 0, (75)

so localization is on the critical points of the potential V . Moreover it is possible to show that for these
configurations the (pre)symplectic form ω is invertible and thus in fact is a symplectic form [17]. The effect
of higher critical points will also be discussed in the cited reference.
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